Parallel and Sequential Data Structures and Algorithms — Lecture 13 15-210 (Fall 2011)

Lecture 13 — Graph Contraction, Connectivity
Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)

Lectured by Guy Blelloch — October 11, 2011

Announcements:
- Exam 1 back at end of class
- Assignment 5 due Oct. 18

Today:
- Dijkstra Costs
- Graph Contraction

1 Cost of Dijkstra

Most of the class did not get the short question about the cost of Dijkstra’s algorithm when using arrays.
We probably did not cover the cost of Dijkstra’s algorithm in enough detail, so we will review it here.
Dijkstra’s algorithm basically operates on three data structures: (1) a structure for the graph itself, (2) a
structure to maintain the distance to each vertex that has already been visited, and (3) a priority queue
holding distances of vertices that are neighbors of the visited vertices.

Here is Dijkstra’s algorithm with the operations on these data types in boxes.

1 fun dijkstra(G,s) =

2 et

3 fun dijkstra(D,Q) =

4 case ’PQ.deleteMin‘(Q) of

5 (PO.empty, )= D

6 | ((d,v), @) =

7 if ((v,_)eD) then dijkstra'(D,qQ)
8 else let

9 fun relax (Q,(u,w)) :(d+w,u) Q
10 val N :m

11 val Q" = iterate relax Q' N

12 in dijkstra’(, Q") end

13 in

14 dijkstra ({},P0.insert(,(0,s)))

15 end

The PQ. insert in Line[I4]is called only once, so we can ignore it. Of the remaining operations,
Lines[10] and [TT] are on the graph, Lines[7 and [12] are on the table of visited vertices, and Lines [ and

1 Version 1.0



Parallel and Sequential Data Structures and Algorithms — Lecture 13 15-210 (Fall 2011)

[9)are on the priority queue. For the priority queue operations, we have only discussed one cost model,
which for a queue of size n requires O(logn) for each of PQ. insert and PQ.deleteMin. We have
no need for a me1d operation here. For the graph, we can either use a tree-based table or an array to
access the neighbor There is no need for single threaded array since we are not updating the graph. For
the table of distances to visited vertices we can use a tree table, an array sequence, or a single threaded
array sequences. The following table summarizes the costs of the operations, along with the number of
calls made to each operation. There is no parallelism in the algorithm so we only need to consider the
sequential execution of the calls.

Operation Line \ # of calls \ PQ \ Tree Table \ Array \ ST Array
deleteMin O(m) O(logn) - - -
insert 9 O(m) O(logn) - - -
Priority Q total \ \ O(mlogn) \ - \ - \ -
find O(m) - O(logn) O(1) 0O(1)
insert 12 O(n) - O(logn) O(n) o(1)
Distances total \ \ - | O(mlogn) | O(n?*) [ O(m)
Ng(v) 10 O(n) - O(logn) 0(1) -
iterate 11 O(m) - o(1) o(1) -
Graph access total | \ - | O(m +nlogn) | O(m) | -

We can calculate the total number of calls to each operation by noting that the body of the let starting
on Line [§|is only run once for each vertex. This means that Lines|10/and [12|are only called O(n) times.
Everything else is done once for every edge.

Based on the table one should note that when using either tree tables or single threaded arrays the
cost is no more than the cost of the priority queue operations. Therefore there is no asymptotic advantage
of using one over the other, although there might be a constant factor speedup that is not insignificant.
One should also note that using regular purely functional arrays is not a good idea since then the cost is
dominated by the insertions and the algorithm runs in ©(n?) work.

2 Graph Contraction

So far we have mostly talking about standard techniques for solving problems on graphs that were
developed in the context of sequential algorithms. Some of these are easy to parallelize while others
are not. For example, we saw there is parallelism in BFS since each level can be explored in parallel,
assuming the number of levels is not too large. However, there was no parallelism in DFS. There was also
no parallelism in the version of Dijkstra’s algorithm we discussed, which used priority first searchE] There
was plenty of parallelism in the Bellman-Ford algorithm, and also in the all pairs shortest path algorithms
since they are based on parallel application of Dijkstra (and perhaps Bellman Ford preprocessing if there
are negative weights).

We are now going to discuss some techniques that will add to your toolbox for parallel algorithms.

"We could also use a hash table, but we have not yet discussed them.

*In reality there is some parallelism in both DFS and Dijkstra when graphs are dense—in particular, although vertices need
to visited sequentially the edges can be processed in parallel. If we have time, we will get back to this when we cover priority
queues in more detail.

2 Version 1.0



Parallel and Sequential Data Structures and Algorithms — Lecture 13 15-210 (Fall 2011)

The first of these techniques is graph contraction. This is actually a reasonably simple technique and can
be applied to a variety of problems including graph connectivity, spanning trees, and minimum spanning
trees. In the discussion of graph contraction, we will assume that the graph is undirected unless otherwise
stated. The basic outline of the approach is the following:

ContractGraph(G = (V, E)) =
1. Identify a set of disjoint connected components in G
2. V' = the set of vertices after contracting each component into a single vertex
3. E' = after relabeling each edge so its endpoints refer to the new vertex
4. E" =remove self-loops (and parallel edges)
5. If (JE”| > 0) then ContractGraph(G’ = (V', E"))

We refer to each recursive call as a contraction step.

Now let’s go through some examples of how we might contract a graph. Consider the following graph:

In this graph, we could identify the disjoint components {a, b, c}, {d}, {e, f}.

e,

a,b,c d ef

After contracting, we would be left with a triangle. Note that in the intermediate step, when we join a, b, c,
we create redundant edges to d (each one of them had an original edge to d). We therefore replace these
with a single edge. However, in some algorithms, it is convenient to allow parallel (redundant) edges
rather than going to the work of removing them. This is sometimes referred to as a multigraph.

Instead of contracting {a, b, c}, {d}, {e, f}, we could contract the components {a, c}, {b,d}, {e, f}.
In this case, we would be left with three vertices connected in a line. In the two limits, we could contract
nothing, or contract all vertices.

There are a couple special kinds of contraction that are worth mentioning:

Edge Contraction: Only pairs of vertices connected by an edge are contracted. One can think of the
edges as pulling the two vertices together into one and then disappearing.

3 Version 1.0



Parallel and Sequential Data Structures and Algorithms — Lecture 13 15-210 (Fall 2011)

Star Contraction: One vertex of each component is identified as the center of the star and all other
vertices are directly connected to it.

Why, you might ask, is contraction useful in parallel algorithms? Well, it is first worth noting that if
the size of the graph reduces by a constant factor on each step, then the algorithm will finish after only
O(log n) steps. (This is the familiar recurrence f(n) = f(n/2) + c.) Therefore, if we can run each step
in parallel, we have a good parallel algorithm. In fact, such algorithms can be theoretically much more
parallel than Breadth First Search since the parallelism no longer depends on the diameter of the graph.
However, even if we can contract in parallel, how can we use it to do anything useful? One reason is that
contraction maintains the connectivity structure of the graph. Therefore, if we start out with k£ connected
components in a graph, we will end up with k¥ components. It also turns out that if we pick the edges to
contract on carefully, then the contraction maintains other properties that are useful. For example, we will
see how it can be used to find minimum spanning trees.

After answering how contraction is useful, the next question to ask is: how do we select components?
Remember that we would like to do this in parallel. Let’s start by limiting ourselves to edge contractions.
Any ideas?

In particular in parallel we want to select some number of disjoint edges (i.e that don’t share an
endpoint). Ideally, the edges should cover a constant fraction of the vertices so that the graph contracts
sufficiently.

Being able to do this efficiently and deterministically turns out to be quite a difficult problem. The
issue is that from the point of view of every vertex the world might look the same. Consider a graph that
is simply a cycle of vertices each pair connected by an (undirected) edge. The example below shows a
6-cycle (Cp).

Wherever we are on the cycle, it looks the same, so how do we decide how
to hook up? As an example, if each node tries to join the person to the right,
we are not going to make any progress. We essentially need a way to break
symmetry. It turns out that randomization is a huge help. Any ideas how we
might use randomization?

On a cycle, we could flip a coin for each edge. Then, the rule is: if an edge gets a heads and both
its neighborsE] then select that edge. This guarantees that no two adjacent edges will be selected so our
components are disjoint. Now we can contract each edge and we are left with a smaller cycle.

How much do we expect this graph to contract? Let’s assume that all coin flips are unbiased and are
independent. What is the expectation that an edge is selected? Notice that the probability that the edge
comes up heads and both neighbors come up tails is % X % X % = %. To calculate the expected number of
edges that are removed, the easiest way is to apply linearity of expectations. In particular, the expectation
that each edge is selected is 1/8, so if we have a cycle of length n (which has n vertices and n edges),

then the expected number of edges that are removed is n/8.

Exercise 1. Come up with a randomized scheme that on a graph that consists of a single undirected cycle
of length n selects an disjoint set of edges of expected size n /3.

3of which there are 2 in a cycle

4 Version 1.0



	Cost of Dijkstra
	Graph Contraction

