Farallel and Sequential Data Structures and Algorithms — Lecture 9 15-210 (Fall 2011)

Lecture 9 — DFS, Weighted Graphs, and Shortest Paths
Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)

Lectured by Guy Blelloch — September 27, 2011

Today:
- Depth First Search
- Priority First Search
- Dijkstra’s single source shortest path algorithm

1 Depth-First Search (DFS)

Last time, we looked at breadth-first search (BFS), a graph search technique which, as the name suggests,
explores a graph an increasing order of hop count from a source node. In this lecture, we’ll begin
discussing another equally common graph search technique, known as depth-first search (DFS). Instead of
exploring vertices one level at a time in a breadth first manner, the depth-first search approach proceeds by
going as deep as it can until it runs out of unvisited vertices, at which point it backs out.

As with BFS, DFS can be used to find all vertices reachable from a start vertex v, to determine if
a graph is connected, or to generate a spanning tree. Unlike BFS, it cannot be used to find shortest
unweighted paths. But, instead, it is useful in some other applications such as topologically sorting a
directed graph (TOPSORT), or finding the strongly connected components (SCC) of a graph. We will
touch on these problems briefly.

For starters, we’ll consider a simple version of depth-first search that simply returns a set of reachable
vertices. Notice that in this case, the algorithm returns exactly the same set as BFS—but the crucial
difference is that DFS visits the vertices in a different order (depth vs. breadth). In the algorithm below,
X denotes the set of visited vertices—we call them X because they have been “crossed out.” Like before,
N¢(v) represents the out-neighbors of v in the graph G.

fun DFS(G,v) = let
fun DFS’ (X,v) =
if (ve X) then X
else iterate DFS’ (X U{v}) (Ng(v))
in DFS’ ({},v) end

The line iterate DFS’ (XU{v}) (Ng(v)) deserves more discussion. First, the iterator concept
is more or less universal and in broad strokes, iterate f init A captures the following:

S = init
foreach a €¢ A: S = f(S, a)

This doesn’t specify the order in which the elements of A are considered. All we know is that all of them
are going to be considered in some order sequentially. What this means for the DFS algorithm is that

1 Version 1.2



Farallel and Sequential Data Structures and Algorithms — Lecture 9 15-210 (Fall 2011)

when the algorithm visits a vertex v (i.e., DFS’ (X, v) is called), it picks the first outgoing edge vwy,
through iterate, calls DES’ (X U {v}, w1) to fully explore the graph reachable through vw;. We know we
have fully explored the graph reachable through vw; when the call DE'S’ (X U {v}, w;) that we made
returns. The algorithm then picks the next edge vws, again through iterate, and fully explores the graph
reachable from that edge. The algorithm continues in this manner until it has fully explored all out-edges
of v. At this point, iterate is complete—and the call DF'S’ (X, v) returns.

As an example, if DE'S’ (X, v) is called on a vertex with N (v) = {w1, we, w3} and iterate picks wy,
wa, and ws in this order, then upon called, DFS’ (X, v) will invoke DFS’ (X U {v},w;) and after this
finishes, it will invoke DF'S” (X', w9), and DFS’ (X", ws) in turn. Notice the difference between X, X’
and X" —this is because DF'S’ accumulates visited vertices.

Is this parallel? At first look, we might think this approach can be parallelized by searching the
outgoing edges in parallel. This would indeed work if the searches initiated never “meet up” (e.g., the
graph is a tree, so then what’s reachable through each edge would be independent). However, when the
graphs reachable through the outgoing edges are shared, visiting them in parallel creates complications
because we don’t want to visit a vertex twice and we don’t know how to guarantee that the vertices are
visited in a depth-first manner.

To get a better sense of the situation, we’ll consider a cycle graph on 6 nodes (Cg). The left figure
shows a 6-cycle Cg with nodes s, a, b, ¢, d, e and the right figure shows the order (as indicated by the
arrows) in which the vertices are visited as a result of starting at s and first visiting a.

e d e d
o<—@
. s \
s c \ ./40
a b a b

In this little example, since the search wraps all the way around, we couldn’t know until the end that e
would be visited (in fact it is visited last), so we couldn’t start searching s’s other neighbor e until we
are done searching the graph reachable from a. More generally, in an undirected graph, if two unvisited
neighbors v and v have any reachable vertices in common, then whichever is explored first will always
wrap all the way around and visit the other one.

Indeed, depth-first search is known to be P-complete, a class of computations that can be done in
polynomial work but are widely believed that they do not admit a polylogarithmic span algorithm. A
detailed discussion of this topic is beyond the scope of our class. But this provides further evidence that
DFS might not be highly parallel.

1.1 Beefing Up DFS

Thus far, our DFS function is only capable of reporting all vertices reachable from a given starting point.
How can we change it so that DFS is a more useful building block? Interestingly, most algorithms based
on DFS can be expressed with just two operations associated with each vertex visited: an enter operation
and an exit operation. The enter operation is applied when first entering the vertex, and the exit operation
is applied upon leaving the vertex when all neighbors have been explored.

2 Version 1.2



Farallel and Sequential Data Structures and Algorithms — Lecture 9 15-210 (Fall 2011)

In other words, depth-first search defines an ordering—the depth-first ordering—on the vertices where
each vertex is visited twice, and the following code “treads through” the vertices in this order, applying
enter the first time a particular vertex is visited and exif the other time that vertex is seen.

As such, DFS can be expressed as follows.

fun DFS (G, Sp,v) = let
fun DFS’ ((X,9),v) =
if (ve€ X) then (X,9)
else let
val S’ = enter(S,v)
val (X',S8”) = iterate DFS’ (X U{v},S") (Ng(v))
val S = exit(5”,v)
in (X’,5") end
in DFS’ (({},S0),v) end

The updated algorithm bears much similarity to our basic DFS algorithm, except now we maintain a
state that is effectively treaded through and where state transitions occur by applying the enter and exit
functions in the depth-first order. At the end, DF'S returns an ordered pair (X, .S), which represents the set
of vertices visitd and the final state .S.

1.2 Topological Sorting

How can we apply the DFS algorithm to solve a specific problem? We now look at an example that applies
this approach to topological sorting (TOPSORT). For this problem, we’ll only need the exit; thus, the enter
function simply returns the state as-is.

Directed Acyclic Graphs. A directed graph that has no cycles is called a directed acyclic graph or
DAG. DAGs have many important applications. They are often used to represent dependence constraints
of some type. Indeed, one way to view a parallel computation is as a DAG where the vertices are the jobs
that need to be done, and the edges the dependences between them (e.g. a has to finish before b starts).
Mapping such a computation DAG onto processors so that all dependences are obeyed is the job of a
scheduler. You have seen this briefly in 15-150. The graph of dependencies cannot have a cycle, because
if it did then the system would deadlock and not be able to make progress.

The idea of topological sorting is to take a directed graph that has no cycles and order the vertices so
the ordering respects reachability. That is to say, if a vertex u is reachable from v, then v must be lower in
the ordering. In other words, if we think of the input graph as modeling dependencies (i.e., there is an
edge from v to u if u depends on v), then topological sorting finds a partial ordering that puts a vertex
after all vertices that it depends on.

To make this view more precise, we observe that a DAG defines a so-called partial order on the
vertices in a natural way:

For vertices a,b € V(G), a <, b if and only if there is a directed path from a to 41_-]

"We adopt the convention that there is a path from a to a itself, so a <, a.

3 Version 1.2



Farallel and Sequential Data Structures and Algorithms — Lecture 9 15-210 (Fall 2011)

Remember that a partial order is a relation <,, that obeys
1. reflexivity —a <, a,

2. antisymmetry —if a <, band b <;, a, then b = a, and
3. transitivity —if a <, band b <, cthena <, c.

In this particular case, the relation is on the vertices. It’s not hard to check that the relation based on
reachability we defined earlier satisfies these 3 properties.

Armed with this, we can define the topological sorting problem formally:

Problem 1.1 (Topological Sorting(TOPSORT)). A fopological sort of a DAG is a total ordering <; on
the vertices of the DAG that respects the partial ordering (i.e. if @ <, b then a <; b, though the other
direction needs not be true).

For instance, consider the following DAG:

b

LTI
'é'\—"j‘

f 9

We can see, for example, that a <, ¢, d < h, and ¢ < h. But it is a partial order: we have no idea how ¢
and g compare. From this partial order, we can create a total order that respects it. One example of this is
the ordering a <; b <;<; ¢ <, d <y e < f <4 g <¢ h. Notice that, as this example graph shows, there
are many valid topological orderings.

Solving TOPSORT using DFS. Let’s now go back to DFS. To topologically sort a graph, we create a
dummy source vertex o and add an edge from it to all other vertices. We then do run DFS from o. To
apply the generic DFS discussed earlier, we need to specify two functions enter and exit and an initial
state. For this, the state maintains a list of visited vertices (initially empty)—and we use the following
enter and exit functions:

val Sy = []
fun enter(X, )=X
fun exit(X,v) =v::X

We claim that at the end, the ordering in the list returned specifies the total order. Why is this correct?

The correctness crucially follows from the property that DFS fully searches any unvisited vertices
that are reachable from it before returning. Consider any vertex v € V. Suppose we first enter v with an
initial list L,,. Now all unvisited vertices reachable from v, denoted by R,,, will be visited before exiting.
But then, when exiting, v is placed at the start of the list (i.e., prepended to L,). Therefore, all vertices
reachable from v appear after v (either in L. or in R,), as required.

We included a dummy source vertex o to make sure that we actually visit all vertices. This is a useful
and common trick in graph algorithms.

4 Version 1.2



Farallel and Sequential Data Structures and Algorithms — Lecture 9 15-210 (Fall 2011)

2 Priority First Search

Generalizing BFS and DFS, priority first search visits the vertices in some priority order. This priority
order can either be static and decided ahead of time, or can be generated on the fly by the algorithm. To
apply priority first search, we only need to make sure that at every step, we have a priority value for all
the unvisited vertices adjacent to the visited vertices. This allows us to pick the best (highest priority)
among them. When we visit a vertex, we might update the priorities of the remaining vertices. One could
imagine using such a scheme for exploring the web so that the more interesting part can be explored
without visiting the whole web. The idea might be to rank the outgoing links based on how interesting the
tag on the link appears to be. Then, when choosing what link to visit next, choose the best one. This link
might not be from the page you are currently on.

Many famous graph algorithms are instances of priority first search. For example, Dijkstra’s algorithm
for finding single-source shortest paths (SSSP) from a single source on a weighted graph and Prim’s
algorithm for finding Minimum Spanning Trees (MST).

3 Shortest Weighted Paths and Dijkstra’s Algorithm

The single-source shortest path (SSSP) problem is to find the shortest (weighted) path from a source
vertex s to every other vertex in the graph. We’ll need a few definitions to describe the problem more
formally. Consider a graph (either directed or undirected) graph G = (V, E'). A weighted graph is a graph
G = (V, E) along with a weight function w: E — R that associates with every edge a real-valued weight.
Thus, the weight of a path is the sum of the weights of the edges along that path.

Problem 3.1 (The Single-Source Shortest Path (SSSP) Problem). Given a weighted graph G = (V, E)
and a source vertex s, the single-source shortest path (SSSP) problem is to find the shortest weighted path
from s to every other vertex in V.

We will use d¢(u, v) to indicate the weight of the shortest path from « to v in the weighted graph
G. Dijkstra’s algorithm solves the SSSP problem when all the weights on the edges are non-negative.
Dijkstra’s is a very important algorithm both because shortest paths have many applications but also
because it is a very elegant example of an efficient greedy algorithm that generates optimal solutions on a
nontrivial task.

Weighted Graph Representation. There are a number of ways to represent weights in a graph. More
generally, we might want to associate any sort of value with the edges (e.g. in Assignment 4). That is, we
have a “label” function of type w: F — label where 1abel is the type of the label.

The first representation we consider translates directly from viewing edge labels as a function. We
keep a table that maps each edge (a pair of vertex identifiers) to its label (or weight). This would have type

(label vertexVertexTable)

i.e. the keys would be pairs of vertices (hence vertexVertexTable), and the values are labels.

Another way to associate values with edges is to use a structure similar to the adjacency set represen-
tation for unweighted graphs and try to piggyback labels on top of it. In particular, instead of associating a

5 Version 1.2



Farallel and Sequential Data Structures and Algorithms — Lecture 9 15-210 (Fall 2011)

set of neighbors with each vertex, we can have a table of neighbors that maps each neighbor to its label
(or weight). It would have type:

(label vertexTable)vertexTable.

This is the representation we will be using for Dijkstra’s algorithm.

Before describing Dijkstra’s algorithm, we would like to understand why we need a new algorithm for
the weighted case. Why, in particular, doesn’t BFS work on weighted graphs? Consider the following
directed graphs on 3 nodes:

3
Qo

s 1 1
a b

In this example, BFS would visit b then a. This means when we visit b, we assign it an incorrect weight of
3. Since BFS never visit it again, we’ll never update it to the correct value. Note that we cannot afford to
visit it again as it will be much more expensive. This problem still persists even if the graph is geometric
(and satisfies the triangle inequality), as the following example shows:

The crux of Dijkstra’s algorithm is the following lemma, which suggests prioritiy values to use and
guarantees that such a priority setting will lead to the weighted shortest paths.

Lemma 3.2. Consider a (directed) weighted graph G = (V, E), w: E — R U{0} with no negative edge
weights, a source vertex s and an arbitrary distance value d € R, U{0}. Let X = {v € V : d(s,v) < d}
be the set of vertices that are at most d from s and d' = min{d(s,u) : u € V'\ X} be the nearest distance
strictly greater than d. Then, if V' \ X # (), there must exist a vertex u such that §(s,u) = d' and a
shortest path to u that only goes through vertices in X.

Proof. LetY = {v € V : d(s,v) = d'} be all vertices at distance exactly d’. Note that the set Y is
nonempty by definition of d’ and since V' \ X # ().

y

6 Version 1.2



Farallel and Sequential Data Structures and Algorithms — Lecture 9 15-210 (Fall 2011)

Pick any y € Y. We’ll assume for a contradiction that that all shortest paths to y go through some vertex
inZ=V\(XUY) (ie., outside of both X and Y. But for all z € Z, d(s,z) > d'. Thus, it must be
the case that d(s,y) > d(s,z) > d’ because all edge weights are non-negative. This is a contradiction.
Therefore, there exists a shortest path from s to y that uses only the vertices in X U Y. Since s € X and
the path ends at y € Y, it must contain an edge v € X and u € Y. The first such edge has the property
that a shortest path to u only uses X’s vertices, which proves the lemma. O

This suggests an algorithm that by knowing X, derives d’ and one such vertex u. Indeed, X is the set
of explored vertices, and we can derive d’ and a vertex u attaining it by computing min{d(s, z) + w(zu) :
x € X,u € Ng(z)}. Notice that the vertices we’re taking the minimum over is simply Ng(X). The
following algorithm uses a priority queue so that finding the minimum can be done fast. Furthermore, the
algorithm makes use of a dictionary to store the shortest path distance, allowing for efficient updates and
look-ups. We show the algorithm’s pseudocode below.

fun dijkstra(G,u) =
let fun dijkstra’(D,Q) =
case (PQ.deleteMin(Q))

of (PQ.empty, _) =D

I ((dv), Q) =
if ((v,_) € D) Dijkstra’(D,Q)
else let

fun relax (Q,(u,w)) = PQ.insert (d+w,u) Q
val @' = iterate relax Q (Ng(v))
in dijkstra’(DU{(v,d)},Q’") end

in dijkstra’({}, PQ.insert (empty, (0.0,u)))
end

This version of Dijkstra’s algorithm differes somewhat from another version that is sometimes used.
First, the relax function is often implemented as a decreaseKey operation. In our algorithm, we
simply add in a new value in the priority queue. Although this causes the priority queue to contain more
entries, it doesn’t affect the asympotic complexity and obviates the need to have the decreaseKey
operation, which can be tricky to support in many priority queue implementations.

Second, since we keep multiple distances for a vertex, we have to make sure that only the shortest-path
distance is registered in our answer. We can show inductively through the lemma we proved already that
the first time we see a vertex v (i.e., when deleteMin returns that vertex) gives the shortest path to v.
Therefore, all subsequence occurences of this particular vertex can be ignored. This is easy to support
because we keep the shortest-path distances in a dictionary which has fast lookup.

4 SML code

Here we present the SML code for DFS and Dijkstra.

7 Version 1.2



Farallel and Sequential Data Structures and Algorithms — Lecture 9 15-210 (Fall 2011)

4.1 DFS with Enter and Exit Functions

functor TableDFS (Table : TABLE)
struct

open Table

type vertex = key

type graph = set table

fun N(G : graph, v : vertex) =
case (Table.find G v) of
NONE => Set.empty
| SOME (ngh) => ngh

fun DFS (S0, enter, exit) (G : graph, s : vertex) =
let
fun DFS’ ((X : set, S), v : vertex) =
if (Set.find X v) then (X, 3)
else
let
val S’ = enter (S, v)
val (X’,S’’) = Set.iter DFS’ (Set.insert v X, S’) (N(G,v))
val S'’' = exit (S’''",v)
in (X',S8"’"'7")
end
in
DES’ ((Set.empty, SO0), s)
end
end

4.2 Topological Sort with DFS

functor TableTopSort (Table : TABLE) =
struct

structure dfs = TableDFS (Table);

fun topSort (G, v) =
let
val SO = nil
fun enter(s, v) = S
fun exit (S, wv) v::S
val (X, S) = dfs.DFS (S0, enter, exit) (G, V)

in

end
end

4.3 Dijkstra

functor TableDijkstra(Table : TABLE) =
struct

8 Version 1.2



Farallel and Sequential Data Structures and Algorithms — Lecture 9 15-210 (Fall 2011)

structure PQ = Default.RealPQ
type vertex = Table.key

type 'a table = 'a Table.table
type weight = real

type 'a pq = "a PQ.pq

type graph = (weight table) table

(x» Out neighbors of vertex v in graph G x)
fun N(G : graph, v : vertex) =
case (Table.find G v) of
NONE => Table.empty ()
| SOME (ngh) => ngh

fun Dijkstra(u : vertex, G : graph) =
let

val insert = Table.insert (fn (x,_) => x)

fun Dijkstra’ (Distances : weight table,

Q : vertex pq) =
case (PQ.deleteMin(Q)) of
(NONE, _) => Distances

| (SOME(d, wv), Q) =>
case (Table.find Distances v) of

(+ 1f distance already set, then skip vertex x)

SOME (_) => Dijkstra’ (Distances, Q)
| NONE =>
let
val Distances’ = insert (v, d) Distances
fun relax (Q, (u,l)) = PQ.insert (d+1, u) Q

(» relax all the out edges x)
val Q' = Table.iter relax Q (N(G,vV))

in
Dijkstra’ (Distances’, Q')
end
in
Dijkstra’ (Table.empty (), PQ.singleton (0.0, u))
end

end

9 Version 1.2



	Depth-First Search (DFS)
	Beefing Up DFS
	Topological Sorting

	Priority First Search
	Shortest Weighted Paths and Dijkstra's Algorithm
	SML code
	DFS with Enter and Exit Functions
	Topological Sort with DFS
	Dijkstra


