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Lecture 7 — Introduction to Graphs
Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)

Lectured by Guy Blelloch — September 20, 2011

Today:
- Example of using tables and sets for web searching (in the Lecture 6 notes)
- Introduction to Graphs

1 Graphs

Certainly one of the most important abstractions in the study of algorithms is that of a graph, also called a
network. Graphs are an abstraction for expressing connections between pairs of items. Graphs can be very
important in modeling data, and a large number of problems can be reduced to known graph problem:s.
We already saw this in the case of reducing the shortest superstring problem to the traveling salesperson
problem on graphs. A graph consists of a set of vertices with connections between them. Graphs can
either be directed, with the directed edges (arcs) pointing from one vertex to another, or undirected, with
the edges symmetrically connecting vertices. Graphs can have weights or other values associated with
either the vertices and/or the edges.

16 Graph Applications. Here we outline just some of the many applications of graphs:

1. Road networks. Vertices are intersections and edges are the road segments between them. Such
networks are used by google maps, Bing maps and other map programs to find routes between
locations. They are also used for studying traffic patterns.

2. Utility graphs. The power grid, the Internet, and the water network are all examples of graphs
where vertices represent connection points, and edges the wires or pipes between them. Analyzing
properties of these graphs is very important in understanding the reliability of such utilities under
failure or attack, or in minimizing the costs to build infrastructure that matches required demands.

3. Document link graphs. The best known example is the link graph of the web, where each web
page is a vertex, and each hyperlink a directed edge. Link graphs are used, for example, to analyze
relevance of web pages, the best sources of information, and good link sites.

4. Protein-protein interactions graphs. Vertices represent proteins and edges represent interactions
between them that carry out some biological function in the cell. These graphs can be used, for
example, to study molecular pathways—chains of molecular interactions in a cellular process.
Humans have over 120K proteins with millions of interactions among them.

5. Neural networks. Vertices represent neurons and edges the synapses between them. Neural networks
are used to understand how our brain works and how connections change when we learn. The
human brain has about 10! neurons and close to 10'® synapses.
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Network traffic graphs. Vertices are IP (Internet protocol) addresses and edges are the packets that
flow between them. Such graphs are used for analyzing network security, studying the spread of
worms, and tracking criminal or non-criminal activity.

. Social network graphs. Graphs that represent who knows whom, who communicates with whom,

who influences whom or other relationships in social structures. An example is the twitter graph of
who tweeted whom. These can be used to determine how information flows, how topics become
hot, how communities develop, or even who might be a good match for who, or is that whom.

. Graphs in quantum field theory. Vertices represent states of a quantum system and the edges the

transitions between them. The graphs can be used to analyze path integrals and summing these up
generates a quantum amplitude (yes, I have no idea what that means).

Semantic networks. Vertices represent words or concepts and edges represent the relationships
among the words or concepts. These have been used in various models of how humans organize
their knowledge, and how machines might simulate such an organization.

Scene graphs. In graphics and computer games scene graphs represent the logical or spacial
relationships between objects in a scene. Such graphs are very important in the computer games
industry.

Finite element meshes. In engineering many simulations of physical systems, such as the flow
of air over a car or airplane wing, the spread of earthquakes through the ground, or the structural
vibrations of a building, involve partitioning space into discrete elements. The elements along with
the connections between adjacent elements forms a graph that is called a finite element mesh.

Robot planning. Vertices represent states the robot can be in and the edges the possible transitions
between the states. This requires approximating continuous motion as a sequence of discrete steps.
Such graph plans are used, for example, in planning paths for autonomous vehicles.

Graphs in epidemiology. Vertices represent individuals and directed edges the transfer of an
infectious disease from one individual to another. Analyzing such graphs has become an important
component in understanding and controlling the spread of diseases.

Graphs in compilers. Graphs are used extensively in compilers. They can be used for type inference,
for so called data flow analysis, register allocation and many other purposes. They are also used in
specialized compilers, such as query optimization in database languages.

Constraint graphs. Graphs are often used to represent constraints among items. For example the
GSM network for cell phones consists of a collection of overlapping cells. Any pair of cells that
overlap must operate at different frequencies. These constraints can be modeled as a graph where
the cells are vertices and edges are placed between cells that overlap.

Dependence graphs. Graphs can be used to represent dependences or precedences among items.
Such graphs are often used in large projects in laying out what components rely on other components
and used to minimize the total time or cost to completion while abiding by the dependences.

There are many other applications of graphs.
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1.1 Formalities
Formally a directed graph or (digraph) is a pair G = (V, ') where

e V is a set of vertices (or nodes), and

o L CV x Visasetof directed edges (or arcs).

Each arc is an ordered pair e = (u,v) and a graph can have self loops (u, ). Directed graphs represent
asymmetric relationships. An undirected graph is a pair G = (V, E)) where E is a set of unordered pairs
over V. Each edge can be written as e = {u, v}, which is the same as {v,u}, and self loops are not
allowed. Undirected graphs represent symmetric relationships.

Note that directed graphs are in some sense more general than undirected graphs since we can easily
represent an undirected graph by a directed graph by placing an arc in each direction. Indeed this is often
the way we represent directed graphs in data structures.

Graphs come with a lot of terminology. Fortunately most of it is intuitive once you understand the
concept. At this point we will just talk about graphs that do not have any data associated with edges, such
as weights. We will later talk about weighted graphs.

e A vertex u is a neighbor of or equivalently adjacent to a vertex v if there is an edge between them.
For a directed graph we use the terms in-neighbor (if the arc points to u) and out-neighbor (if the
arc points from w).

e The degree of a vertex is its number of neighbors and will be denoted as d¢ (v). For directed graphs
we use in-degree (dg,(v)) and out-degree (d5(v)) with the presumed meanings.

e For an undirected graph G = (V, E)) the neighborhood N¢g(v) of a vertex v € V is its set of
neighbors, i.e. N(v) = {u | {u,v} € E}. For a directed graph we use N, (v) to indicate the set of
out-neighbors and N, (v) to indicate the set of in-neighbors of v. If we use Ng(v) for a directed
graph, we mean the out neighbors. The neighborhood of a set of vertices U C V is the union of
their neighborhoods, e.g. Ng(V) = Upey N (v), or N (V) = Upey N (v).

e A path in a graph is a sequence of adjacent vertices. More formally for a graph G = (V| E),
Paths(G) = {P e VT |1<i<|P|,(P;,Pi+1) € E} is the set of all paths in G, where V'
indicates all positive length sequences of vertices (allowing for repeats). The length of a path is one
less than the number of vertices in the path—i.e., it is the number of edges in the path.

e A vertex v is reachable from a vertex u in G if there is a path starting at v and ending at v in G. An
undirected graph is connected if all vertices are reachable from all other vertices. A directed graph
is strongly connected if all vertices are reachable from all other vertices.

e A simple path is a path with no repeated vertices. Often, however, the term simple is dropped,
making it sometimes unclear whether path means simple or not (sorry). In this course we will
almost exclusively be talking about simple paths and so unless stated otherwise our use of path
means simple path.
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e A cycle is a path that starts and ends at the same vertex. In a directed graph a cycle can have length
1 (i.e. a self loop). In an undirected graph we require that a cycle must have length at least three.
In particular going from v to u and back to v does not count. A simple cycle is a cycle that has
no repeated vertices other than the start vertex being the same as the end. In this course we will
exclusively talk about simple cycles and hence, as with paths, we will often drop simple.

e An undirected graph with no cycles is a forest and if it is connected it is called a free. A directed
graph is a forest (or tree) if when all edges are converted to undirected edges it is undirected forest
(or tree). A rooted tree is a tree with one vertex designated as the root. For a directed graph the
edges are typically all directed toward the root or away from the root.

e Fora graph G = (V, E) the (unweighted) shortest path length between two vertices is the minimum
length of a path between them : SPg(u,v) = min {|P| | P € Paths(G), Py = u, Pp| = v}.

e The diameter of a graph is the maximum shortest path length over all pairs of vertices: Dia(G) =
max {SPg(u,v) : u,v € V}.

Sometimes graphs allow multiple edges between the same pair of vertices, called multi-edges. Graphs
with multi-edges are called multi-graphs. We will allow multi-edges in a couple algorithms just for
convenience.

By convention we will use the following definitions:

n = |V|
m = |E|

Note that a directed graph can have at most n? edges (including self loops) and an undirected graph at
most n(n — 1)/2. We informally say that a graph is sparse if m < n? and dense otherwise. In most
applications graphs are very sparse, often with only a handful of neighbors per vertex when averaged
across vertices, although some vertices could have high degree. Therefore the emphasis in the design of
graph algorithms is typically on algorithms that work well when the graph is sparse.

1.2 Representation

Traditionally when discussing graphs three representations are used. All three assume that vertices are
numbered from 1,2,...,n (or0,1,...,n — 1). These are:

e Adjacency matrix. An n x n matrix of boolean values in which location (4, j) is true if (i, j) € E
and false otherwise. Note that for an undirected graph the matrix is symmetric and false along the
diagonal.

e Adjacency list. An array A of length n where each entry A[i] contains a pointer to a linked list of
all the out-neighbors of vertex i. In an undirected graph with edge {u, v} the edge will appear in
the adjacency list for both u and v.

e Edge list. A list of pairs (i,j) € E.
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However, since lists are inherently sequential, in this course we are going to raise the level of abstraction
so that parallelism is more natural. At the same time we can also loosen the restriction that vertices need
to be labeled from 1 to n and instead allow for any labels. Conceptually, however, the representations
we describe are not much different from adjacency lists and edge lists. We are just asking you to think
parallel and rid yourself of the idea of lists.

When discussing the implementation of graphs it is important to consider the costs of various basic
operations on graphs that are needed in various graph algorithms. In particular common useful operations
include: finding the degree of a vertex, finding if an edge is in the graph, mapping or iterating over
all edges in the graph, and mapping or iterating over all neighbors of a given vertex. In a dynamically
changing graph we might also want to insert and delete edges.

Our first representation directly follows the mathematical definition of a graph and simply uses a
set of edges £ C V x V. Such an edge set representation can be implemented with the set interface
described in lecture 6. The representation is similar to an edge list representation mentioned above, but it
abstracts away from the particular data structure used for the set—the set could be based on a list, an array,
a tree, or a hash table. If we use the balance tree cost model for sets, for example, then determining if an
edge is in the graph requires much less work than with an edge list — only O(log n) instead of O(n) (i.e.
following the list until the edge is found). The problem with edge sets, as with edge lists, is that they do
not allow for an efficient way to access the neighbors of a given vertex v. Selecting the neighbors requires
considering all the edges and picking out the ones that have v as an endpoint. Although with and edge set
(but not an edge list) this can be done in parallel with O(log m) span, it requires ©(m) work even if the
vertex has only a few neighbors.

To allow for more efficient access to the neighbors of a vertex our second representation uses a table
of sets, which we will refer to as an adjacency table. The table simply maps every vertex to the set of
its neighbors. Now accessing the neighbors of a vertex v is cheap, it just requires a lookup in the table.
Assuming the balanced-tree cost model for tables, this can be done in O(logn) work and span. Once the
neighbor set has been pulled out, mapping a constant work function over the neighbors can be done in
O(dg(v)) work and O(1) span. Looking up if an edge is in the graph requires the same work and span as
with edge sets: O(logn). This is because we can first look up one side of the edge in the table and then
the second side in the set that is returned. We note that an adjacency list is a special case of adjacency
table where the table of vertices is represented as an array and the set of neighbors is represented as a list.

The costs assuming the tree cost model for sets and tables can be summarized in the following table
assuming the function being mapped uses constant work and span:

edge set adjacency table
Work Span Work Span
isEdge(G, (u,v)) O(logn) | O(logn) O(logn) O(logn)
map over all edges O(m) | O(logn) O(m) O(logn)
map over neighbors of v| O(m) | O(logn) | O(log(n)+ dg(v)) | O(logn)
dg(v) O(m) | O(logn) O(logn) O(logn)
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