Parallel and Sequential Data Structures and Algorithims — Lecture 6 15-210 (Fall 2011)

Lecture 6 — Collect, Sets and Tables
Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)

Lectured by Guy Blelloch — September 15, 2011

Today:
- Collect, and example of Google map-reduce
- Sets
- Tables, and example of web searching

1 Collect

In many applications it is useful to collect all items that share a common key. For example we might want
to collect students by course, documents by word, or sales by date. More specifically let’s say we had a
sequence of pairs each consisting of a student’s name and a course they are taking, such as

("jack sprat", "15-210"),
("jack sprat", "15-213"),
("mary contrary", "15-210"),
("mary contrary", "15-251"),
("mary contrary", "15-213"),
("peter piper", "15-150"),
("peter piper", "15-251"),
.o

and we want to collect all entries by course number so we have a list of everyone taking each course.
Collecting values together based on a key is very common in processing databases, and in relational
database languages such as SQL it is referred to as “Group by”. More generally it has many applications
and furthermore it is naturally parallel.

We will use the function collect for this purpose, and it is part of the sequence library. Its interface
is:
collect : (o X o« — order) — (a x 3) seq — (a X [3 seq) seq
The first argument is a function for comparing keys of type o, and must define a total order over the keys.
The second argument is a sequence of key-value pairs. The collect function collects all values that share

the same key together into a sequence. If we wanted to collect the entries of D given above by course
number we could do the following:

fun swap (x,y) = (y,x)
val rosters = collect String.compare (map swap D)

This would give something like:

1 Version 1.2

Parallel and Sequential Data Structures and Algorithims — Lecture 6 15-210 (Fall 2011)

rosters = <("15-150", < "peter piper", ... >),
("15-210", < "jack sprat", "mary contrary", ... >)
("15-213", < "jack sprat", ... >)
("15-251", < "mary contrary", "peter piper", ...>)
>

The swap is used to put the course number in the first position in the tuple. It is often the case that the key
needs to be extracted before applying collect.

You might find collect useful in your current assignment.

Collect can be implemented by sorting the keys based on the given comparison function, and then
partitioning the resulting sequence. In particular, the sort will move all the equal keys so they are adjacent.
A partition function can then identify the positions where the keys change values, and pull out all pairs
between each change. Doing this partitioning is relatively easy and very similar to the fields function
described at the end of the last class. The dominant cost of collect is therefore the cost of the sort.
Assuming the comparison has complexity bounded above by W, work and S, span then the costs of
collect are O(W,nlogn) work and O(S. log? n) span. It is also possible to implement a version of
collect that runs in linear work using hashing. But hashing would require that a hash function is also
supplied and would not return the keys in sorted order. Later in the lecture we discuss tables which
also have a collect function. However tables are specialized to the key type and therefore neither a
comparison nor a hash function need to be passed as arguments.

1.1 Using Collect in Map Reduce

Some of you have probably heard of the map-reduce paradigm first developed by Google for programming
certain data intensive parallel tasks. It is now widely used within Google as well as by many others to
process large data sets on large clusters of machines—sometimes up to tens of thousands of machines in
large data centers. The map-reduce paradigm is often used to analyze various statistical data over very
large collections of documents, or over large log files that track the activity at web sites. Outside Google
the most widely used implementation is the Apache Hadoop implementation, which has a free license
(you can install it at home). The paradigm is different from the mapReduce function you used in 15-150
which just involved a map then a reduceE] The map-reduce paradigm actually involves a map followed by
a collect followed by a bunch of reduces, and therefore might be better called the map-collect-reduces.But
we are stuck with the standard terminology here.

The map-reduce paradigm processes a collection of documents based on mapF and reduceF functions
supplied by the user. The mapF function must take a document as input and generate a sequence of
key-value pairs as output. This function is mapped over all the documents. All key-value pairs across all
documents are then collected based on the key. Finally the reduceF function is applied to each of the keys
along with its sequence of associated values to reduce to a single value.

In ML the types for map and reduce functions are the following:

mapF : (document — (key x «) seq)
reduceF : (key x (v seq) — 3)

"However, there was a question on the 15-150 final about the map-reduce paradigm.

2 Version 1.2

Parallel and Sequential Data Structures and Algorithims — Lecture 6 15-210 (Fall 2011)

In most implementations of map-reduce the document is a string (just the contents of a file) and the key
is also a string. Typically the « and 3 types are limited to certain types. Also, in most implementations
both the mapF and reduceF functions are sequential functions. Parallelism comes about since the mapF
function is mapped over the documents in parallel, and the reduceF function is mapped over the keys with
associated values in parallel.

In ML map reduce can be implemented as follows

fun mapCollectReduce mapF reduceF S =

let

val pairs = flatten (map mapF 3)

val groups = collect String.compare pairs
in

map reduceF groups
end

The function f1latten simply flattens a nested sequence into a flat sequence, e.g.:

flatten < < a, b, ¢c>, < d, e> >
=< a, b, ¢, d, e >

We now consider an example application of the paradigm. Suppose we have a collection of documents,
and we want to know how often every word appears across all documents. This can be done with the
following mapF and reduceF functions.

fun mapF D = map (fn w => (w,1)) (tokens spaceF D)
fun reduceF (w,s) = (w, reduce opt+ 0 s)

Now we can apply mapCollectReduce to generate a countWords function, and apply this to an
example case.

val countWords = mapCollectReduce mapF reduceF

countWords < "this is a document",
"this is is another document",
"a last document" >

=< ("a", 2), ("another", 1), ("document" 3), ("is", 3),
("last", 1), ("this", 2) >

2 Sets

Sets play an important role in mathematics and often needed in the implementation of various algorithms. It
is therefore useful to have an abstract data type that supports operations on sets. Indeed most programming
languages either support sets directly (e.g., python) or have libraries that support them (e.g., in the C STL
library and Java collections framework). Such languages sometimes have more than one implementation

3 Version 1.2

Parallel and Sequential Data Structures and Algorithims — Lecture 6 15-210 (Fall 2011)

of sets. Java, for example, has sets bases on hash tables and balanced trees. We should note, however, that
the set interface in different libraries and languages differ in subtle ways. Consequently, when using one
of these interfaces you should always read the documentation carefully.

We now define an abstract data type for sets. The definition follows the mathematical definition of
sets from set theory and is purely functional. In particular, when updating a set (e.g. with insert or delete)
it returns a new set rather than modifying the old set.

Definition 2.1. For a universe of elements U (e.g. the integers or strings), the Set abstract data type is a
type S representing the powerset of U (i.e., all subsets of U) along with the following functions:

empty N =0

size(S) : S—- 7 = |9]

singleton(e) : U->S = {e}

filter(f,S5) : ((U—-B)xS)—S = {seS|f(s)}
find(S,e) : SxU—-B = |{seSls=e} =1
insert(S,e) : SxU—-S = SuU{e}
delete(S,e) : SxU—-S = S\ {e}
intersection(S1,5) : SxS—S = S1NSy
union(Sl,Sg) i SxS—S = S1US5,
difference(St, S2) : SxS—S = 51\ 95

where B = {true, false} and Z* are the non-negative integers.

This definition is written to be generic and not specific to SML. In the SML Set library we supply, the
type S is called set and the type U is called key, the arguments are not necessarily in the same order,
and some of the functions are curried. For example the interface for find is find : set — key — set.
Please refer to the documents for details. In the pseudocode we will give in class and in the notes we will
use standard set notation as in the right hand column of the table above.

Note that the interface does not contain a map function. A map function does not make sense in the
context of a set, or at least if we interpret map to take in a collection, apply some function to each element
and return a collection of the same structure. Consider a function that always returns zero. Mapping this
over a set would return a bunch of zeros, which would then be collapsed into a set of size one. Therefore
such a map would reduce the set of arbitrary size to a singleton, which doesn’t match the map paradigm.

In addition to the semantic interface, we need a cost model. The most common efficient ways to
implement sets are either using hashing or balanced trees. These have various tradeoffs in cost, but
dealing with hash tables in a functional setting where data needs to be persistent is somewhat complicated.
Therefore here we will specify a cost model based on a balanced-tree implementation. For now, we won’t
describe the implementation in detail, but will later in the course. Roughly speaking, however, the idea is
to use a comparison function to keep the elements in sorted order in a balanced tree. Since this requires
comparisons inside the various set operations, the cost of these comparisons affects the work and span. In
the table below we assume that the work and span of a comparison on the elements is bounded by C', and
C; respectively.

4 Version 1.2

Parallel and Sequential Data Structures and Algorithims — Lecture 6 15-210 (Fall 2011)

Work Span
size(S)
singleton(e) o) o)
filter(f,S) O(ZW(f(e))) O(log]5|+121€a§<5'(f(e)))
ecS
find(S,e)
insert(S,e) O(Cylog|S|) O(Cslog|S|)

delete(S,e)

intersection(Sy, S2)
union(Si, S2) O(Cymlog(™tm)) O(Cslog(n +m))
difference(S,52)

where n = max(|S1],]52|) and m = min(|S1],|S2|). The work for intersection, union, and
difference might seem a bit funky, but the bounds turn out to be both the theoretical upper and lower
bounds for any comparison-based implementation of sets. We will get to this later, but for now you
should observe that in the special case that the two input lengths are within a constant, the work is simply
O(n). This bound corresponds to the cost of merging two approximately equal length sequences, which is
effectively what these operations have to do. You should also observe that in the case that one of the sets
is a singleton, then the work is O(logn).

On inspection, the three functions intersection, union, and difference have a certain symme-
try with the functions find, insert, and delete, respectively. In particular intersection can be
viewed as a version of find where we are searching for multiple elements instead of one. Similarly union
can be viewed as a version of insert that inserts multiple elements, and difference as a version of
delete that deletes multiple elements. In fact it is easy to implement find, insert, and delete in
terms of the others.

find(S,e) = size(intersection(S,singleton(e))) =1
insert(S,e) = union(S,singleton(e))
delete(S,e) = difference(S,singleton(e))

Since intersection, union, and di fference can operate on multiple elements they are well suited
for parallelism, while find, insert, and delete have no parallelism. Consequently, in designing
parallel algorithms it is good to think about how to use intersection, union, and difference
instead of £ind, insert, and delete if possible. For example, one way to convert a sequence to a set
would be to insert the elements one by one, which can be coded as

fun fromSeq(S) = Seqg.iter (fn (S’,e) => Set.insert e S’) Set.empty S

However, the above is sequential. To do it in parallel we could instead do

fun fromSeg(S) = Seqg.reduce Set.union Set.empty (Seg.map Set.singleton S)
Exercise 1. What is the work and span of the first version of fromSegq.

Exercise 2. Show that on a sequence of length n the second version of fromSeq does O(Cynlogn)
work and O(log® n) span.

5 Version 1.2

Parallel and Sequential Data Structures and Algorithims — Lecture 6 15-210 (Fall 2011)

3 Tables

A table is an abstract data type for storing data associated with keys. They are similar to sets, but along
with each element (key) we store some data. The table ADT supplies operations for finding the value
associated with a key, for inserting new key-value pairs, and for deleting keys and their associated value.
Tables are also called dictionaries, associative arrays, maps, mappings, or, in set theory, functions. For the
purpose of parallelism the interface we will discuss also supplies “parallel” operations that allow the user
to insert multiple key-value pairs, to delete multiple keys, and to find the values associated with multiple
keys.

As with sets, tables are very useful in many applications. Most languages have tables either built in
(e.g. dictionaries in python), or have libraries to support them (e.g. map in the C STL library and the
Java collections framework). We note that the interfaces for these languages and libraries have common
features but typically differ in some important ways, so be warned. Most do not support the “parallel”
operations we discuss. Here we will define tables mathematically in terms of set theory before committing
to a particular language.

Formally, a table is set of key-value pairs where each key appears only once in the set. Such sets are
called functions in set theory since they map each key to a single value. We will avoid this terminology so
that we don’t confuse it with functions in a programming language. However, note that the (find T) in
the interface is precisely the “function” defined by the table T. In fact it is a partial function since the
table might not contain all keys and therefore the function might not be defined on all inputs. Here is the
definition of a table.

Definition 3.1. For a universe of keys K, and a universe of values V, the Table abstract data type is a type
T representing the powerset of K x V restricted so that each key appears at most once (i.e., any set of
key-value pairs where a key appears just once) along with the following functions:

empty T =0

size(T) : T—2Z* = |7

singleton(k,v) : KxV—->T = {(k,v)}

filter(f,T) : (V—=B)xT)—-T = {(k,v) €T|f(v)}
map(f,T) (V=V)xT)—T = A, f)I((k,v) € T)}

insert(f,T,(k,v)) : (VXV-V)xTx(KxV)—-T =

(k. f(o,)} (ko) €T
e G (k) ¢ T
delete(T,k)) : TxK—-T = {(K,v)eT|k#FK}
,) B v (k,v)eT
find(T, k) : TxK—(VUl) = { 1 otherwise
merge(f,T1,T?) D (VxV—-V)xTxT—T =
(k‘, f(’Ul,’UQ)) (k,vl) SN AWA (k‘,’Uz) €Ty
Vk € K, (k,vl) (k,vl) el
(k,vg) (k,vg) €Ty
extract(T,S) : TxS—T = {(k,v) €Tk € S}
erase(T,95) : TxS—T = {(k,v)eT|k ¢S}

where S is the powerset of K (i.e., any set of keys), B = {true, false} and Z* are the non-negative
integers.

6 Version 1.2

Parallel and Sequential Data Structures and Algorithims — Lecture 6 15-210 (Fall 2011)

Distinct from sets, the £ind function does not return a Boolean, but instead it returns the value
associated with the key k. As it may not find the key in the table, its result may be bottom (). For this
reason, in the Table library, the interface for find is find : “a table — key — 'a option, where ' a
is the type of the values.

Note that the insert function takes a function f : (V x V — V) as an argument. The purpose of f
is to specify what to do if the key being inserted already exists in the table; f is applied to the two values.
This function might simply return either its first or second argument, or it can be used, for example, to add
the new value to the old one. The merge takes a similar function since it also has to consider the case that
an element appears in both tables.

Technically a table is a set of pairs and can therefore be written as

{(]{71,’01), (k)g,’l}g), ey (kn, Un)} y

as long as the keys are distinct. However, to better identify when tables are being used, we will use the
notation k — v in pseudocode to indicate we are using a table, where the key k£ maps to the value v. For
example we will use:
{(k1 — v1), (k2 — v2),...,(kn—vy)}.
The set notation
{(k+— f(v):(k—wv)eT}
is equivalent to maps(f,T) and

{(k—=wv) €T|f(v)}

is equivalent to filter(f,T).

The costs of the table operations are very similar to sets.

Work Span

size(T)

singleton(k,v) oa

~—

o(1)

filter(f,T) O<(k%:ETW(f(v))> O(log|T\ +(£11]E)ié<TS(f(v)))
rap(f.T) 0<(k%:ETW(f(v))> 0 max (7))
f£ind(S, k)

insert(T, (k,v)) O(Cylog |T]) O(Cslog |T)

delete(T,k)

extract(T1,T3)
merge(Ty,T5) O(Cpymlog(™Em)) O(Cslog(n +m))
erase(T1,T»)

where n = max(|7T1|, |T2|) and m = min(|T4|, |T2|).

As with sets there is a symmetry between the three operations extract, merge, and erase, and the
three operations find, insert, and delete, respectively, where the prior three are effectively “parallel”
versions of the earlier three.

7 Version 1.2

Parallel and Sequential Data Structures and Algorithims — Lecture 6 15-210 (Fall 2011)

We note that, in the SML Table library we supply, the functions are polymorphic (accept any type)
over the values but not the keys. In particular the signature starts as:

signature TABLE =

sig
type 'a table
type 'a t = 'a table
structure Key : EQKEY
type key = Key.t
structure Seqg : SEQUENCE
type a seq = "a Seq.seq
type set = unit table

val find : 'a table -> key -> ’'a option

The "ain " a table refers to the type of the value. The key type is fixed to be key. Therefore there
are separate table structures for different keys (e.g. IntTable, StringTable). The reason to do this is
because all the operations depend on the key type since keys need to be compared for a tree implementation,
or hashed for a hash table implementation. Also note that the signature defines set tobe a unit table.
Indeed a set is just a special case of a table where there are no values.

In the SML Table library we supply a collect operation that is analogous to the collect described at
the beginning of the class. It takes a sequence S of key-value pairs and generates a table mapping every
key that appears in S to all the values that were associated with it in S. It is equivalent to using a sequence
collect followed by a Table. fromSeq. Alternatively it can be implemented as

1 fun collect(S)=

2 let

3 val 7 = ({k— (v)}:(k,v)€S)

4 in

5 Seq.reduce (Table.merge Seq.append) {} S’
6 end

Exercise 3. Figure out what this code does.

4 Building and searching an index

[This material will be covered in lecture 7]

Here we consider an application of sets and tables. In particular, the goal is to generate an index of the
sort that Google or Bing create so that a user can make word queries and find the documents in which
those words occur. We will consider logical queries on words involving and, or, and andnot. For example
a query might look like

“CMU” and “fun” and (“courses” or “clubs”)

8 Version 1.2

Parallel and Sequential Data Structures and Algorithims — Lecture 6 15-210 (Fall 2011)

and it would return a list of web pages that match the query (i.e., contain the words “CMU”, “fun” and
either “courses” or “clubs”). This list would include the 15-210 home page, of course.

These kinds of searchable indexes predate the web by many years. The Lexis system, for searching
law documents, for example, has been around since the early *70s. Now searchable indexes are an integral
part of most mailers and many operating systems. By default Google supports queries with and and
adjacent to but with an advanced search you can search with or as well as andnot.

Let’s imagine we want to support the following interface

signature INDEX = sig
type word = string
type docId = string
type ’'a seq
type index
type docList

val makeIndex : (docId * string) seq —-> index
val find : index -> word —-> docList

val And : docList % docList -> docList

val AndNot : docList *x docList -> docList

val Or : docList % docList -> docList

val size : docList -> int
val toSeq : docList —-> docId seq
end

The input to makeIndex is a sequence of pairs each consisting of a document identifier (e.g. the URL)
and the contents of the document. So for example we might want to index recent tweets, that might
include:

T = ((“jack”, “chess club was fun”),
(“mary”, “I had a fun time in 210 class today”),
“nick”, “food at the cafeteria sucks”),
“sue”, “In 217 class today I had fun reading my email”),
(“peter”, “I had fun at nick’s party”),

(“john”, “tidliwinks club was no fun, but more fun than 218),

We can make an index from these tweets:
1 val f= find (makeIndex(T))

In addition to making the index, this partially applies £ind on it. We can then use this index for various
queries, for example:

1 toSeg(And(f "fun", Or(f "class", f "club"))
2 i("jack", nmary", "sue", "jOhl’l">

3 size(f "fun")
4 -5

9 Version 1.2

Parallel and Sequential Data Structures and Algorithims — Lecture 6 15-210 (Fall 2011)

We can implement this interface very easily using sets and tables. The makeIndex function can be
implemented as follows.

1 fun makeIndex(docs) =

2 et

3 fun tagWords(name, str) = ((w,name): w € tokens(str))
4 val Pairs = flatten(taghords(d):d € docs)

5 in

6 {w > Set.fromSeq(d): (w+ d) € Table.collect(Pairs)}
7 end

Assuming that all tokens are constant length, the cost of makeIndex is dominated by the collect,
which is basically a sort. It therefore has O(n log n) work and O(log® n) span assuming the words have
constant length. The rest of the interface can be implemented as

fun find(T,v) = Table.find(T,v)
fun And(si,s2) = s1 M s9

fun Or(si,s2) = s1 U s

fun AndNot(sy,s2) = s1\ S2

fun size(s)=|s|

fun toSeg(s) = Set.toSeq(s)

AN N AW =

Note that if we do a size (f "red") the cost is only O(logn) work and span. It just involves a
search and then a length.

If we do And (f "fun", Or(f "courses", f "classes")) the worst case cost is

e work=O(size (f "fun") + size(f "courses") + size(f "classes"))

e span = O(log |index|)

5 SML Code

5.1 Indexes

functor TableIndex (Table : TABLE where type Key.t = string) : INDEX =
struct

structure Seqg = Table.Seq
structure Set = Table.Set

type word = string

type doclId = string

type 'a seq = "a Seq.seq

type doclList = Table.set

type index = docList Table.table

10 Version 1.2

Parallel and Sequential Data Structures and Algorithims — Lecture 6 15-210 (Fall 2011)

fun makeIndex docs =

let
fun toWords str = Seqg.tokens (fn ¢ => not (Char.isAlphaNum c)) str
fun tagWords (docId,str) = Seqg.map (fn t => (t, docId)) (toWords str)

(» generate all word-documentid pairs x)
val allPairs = Seqg.flatten (Seqg.map tagWords docs)

(* collect them by word x)
val wordTable = Table.collect allPairs

in
(# convert the sequence of documents for each word into a set
which removes duplicatesx)
Table.map Set.fromSeq wordTable
end

fun find Idx w =
case (Table.find Idx w) of
NONE => Set.empty
| SOME (s) => s

val And = Set.intersection
val AndNot = Set.difference
val Or = Set.union

val size = Set.size

val toSeqg = Set.toSeq

end

11 Version 1.2

	Collect
	Using Collect in Map Reduce

	Sets
	Tables
	Building and searching an index
	SML Code
	Indexes

