
Parallel and Sequential Data Structures and Algorithms — Lecture 5 15-210 (Fall 2011)

Lecture 5 — More on Sequences

Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)

Lectured by Guy Blelloch — September 13, 2011

Today, we’ll continue our discussion of sequence operations. In particular, we’ll take a closer look at
reduce, how many divide-and-conquer algorithms can be naturally implemented using reduce, and
how to implement Seq.scan and Seq.fields.

1 Divide and Conquer with Reduce

Let’s look back at divide-and-conquer algorithms you have encountered so far. Many of these algorithms
have a “divide” step that simply splits the input sequence in half, proceed to solve the subproblems
recursively, and continue with a “combine” step. This leads to the following structure where everything
except what is in boxes is generic, and what is in boxes is specific to the particular algorithm.

1 fun myDandC(S) =
2 case showt(S) of
3 EMPTY ⇒ emptyVal

4 | ELT(v)⇒ base (v)
5 | NODE(L, R)⇒ let
6 val L′ = myDandC(L)
7 val R′ = myDandC(R)
8 in
9 someMessyCombine (L′, R′)

10 end

Algorithms that fit this pattern can be implemented in one line using the sequence reduce function.
You have seen this in Homework 1 in which we asked for a reduce-based solution for the stock market
problem. Turning such a divide-and-conquer algorithm into a reduce-based solution is as simple as
invoking reduce with the following parameters:

reduce someMessyCombine emptyVal (map base S)

Let’s take a look at two examples where reduce can be used to implement a relatively sophisticated
divide-and-conquer algorithm.

Stock Market Using Reduce. The first example is taken from your Homework 1. Given a sequence S
of stock values the stock market problem returns the largest increase in price from a low point to a future
high point—more formally:

1 Version 1.2

Parallel and Sequential Data Structures and Algorithms — Lecture 5 15-210 (Fall 2011)

stock(S) =
|S|

max
i=1

(
|S|

max
j=i

(Sj − Si)
)

Recall that the divide-and-conquer solution involved returning three values from each recursive call
on a sequence S: the minimum value of S, the maximum value of S, and the desired result stock(S).
We will denote these as ⊥, >, and δ, respectively. To solve the stock markert problem we can then use the
following implementations for combine, base, and emptyVal:

fun combine((⊥L,>L, δL), (⊥R,>R, δR)) =
(min(⊥L,⊥R), max(>L,>R), max(max(δL, δR),>R −⊥L))

fun base(v) = (v, v, 0)

val emptyVal = (0, 0, 0)

and then solve the problem with:

reduce combine emptyVal (map base S)

Merge Sort. As you have seen from previous classes, merge sort is a popular divide-and-conquer sorting
algorithm with optimal work. It is based on a function merge that takes two already sorted sequences
and returns a sorted sequence that combines all inputs from the input. It turns out to be possible to merge
two sequences S1 and S2 in O(|S1|+ |S2|) work and O(log(|S1|+ |S2|) span. We can use our reduction
technique to implement merge sort with a reduce. On particular, we use

val combine = merge

val base = singleton

val emptyVal = empty

Stylistic Notes. We have just seen that we could spell out the divide and conquer steps in details
or condense our code into just a few lines that take advantage of the almighty reduce. So which is
preferable, using the divide and conquer code or using the reduce? We believe this is a matter of taste.
Clearly, your reduce code will be (a bit) shorter, but the divide-and-conquer code exposes more clearly the
inductive structure of the code.

You should realize, however, that this pattern does not work in general for divide-and-conquer
algorithms. In particular, it does not work for algorithms that do more than a simple split that partition
their input in two parts in the middle. For example, in the Euclidean Traveling Salesperson algorithm we
briefly discussed, each split step splits the space along the larger dimension. This requires checking which
is the larger dimension, finding the median line along that dimension, and then filtering the points based
on that line. A similar construct can be used for the closest-pair problem from Homework 2. Neither of
these algorithms fits the pattern.

2 Version 1.2

Parallel and Sequential Data Structures and Algorithms — Lecture 5 15-210 (Fall 2011)

2 Reduce: Cost Specifications

Thus far, we made the assumption that the combine function has constant cost (i.e., both its work and span
are constant), allowing us to state the cost specifications of reduce on a sequence of length n simply as
O(n) work and O(log n). While this bound applies readily to problems such as the one for stock market,
we cannot apply it to the merge sort algorithm because the combine step, which we run merge, does more
than constant work.

As a running example, we’ll consider the following algorithm:

fun reduce_sort s = reduce merge< (Seq.empty) (map singleton s)

where we use merge< to denote a merge function that uses an (abstract) comparsion operator < and we
further assume that if s1 and s2 are sequences of lengths n1 and n2, then

W (merge<(s1, s2)) = O(n1 + n2)
S(merge<(s1, s2)) = O(log(n1 + n2))

What do you think the cost of reduce_sort is? We want to analyze the cost of reduce sort.
But as we begin to analyze the cost, we quickly realize that the reduce function is underspecified: we
don’t know the reduction order and for that reason, we don’t know what merge is called with. This begs
the question: does the reduction order matter? Or is it in fact doesn’t matter because any order will be
equally good?

To answer this question, let’s consider the following reduction order: the function reduce divides
the input into 1 and n − 1 elements, recurse into the two parts, and run a merge. Thus, on input
x = 〈x1, x2, . . . , xn〉, the sequence of merge calls looks like the following:

merge(〈x1〉, merge(〈x2〉, merge(〈x3〉, . . .)))

A closer look at this sequence shows that merge is always called with a singleton sequence as
its left argument but the right argument is of varying sizes between 1 and n − 1. The final merge
combines 1-element with (n− 1)-element sequences, the second to last merge combines 1-element with
(n− 2)-element sequences, so on so forth. Therefore, the total work of merge is

W (reduce_sort x) ≤
n−1∑
i=1

c · (1 + i) ∈ O(n2)

since merge on sequences of lengths n1 and n2 has O(n1 + n2) work.

As an aside, this reduction order is essentially the order that the iter function uses. Furthermore,
using this reduction order, the algorithm is effectively working backwards from the rear, “inserting”
each element into a sorted suffix where it is kept at the right location to maintain the sorted order. This
corresponds roughly to the well-known insertion sort.

Notice that in the reduction order above, the reduction tree was extremely unbalanced. Would the cost
change if the merges are balanced? For ease of exposition, let’s suppose that the length of our sequence is

3 Version 1.2

Parallel and Sequential Data Structures and Algorithms — Lecture 5 15-210 (Fall 2011)

a power of 2, i.e., |x| = 2k. Now we lay on top the input sequence a “full” binary tree1 with 2k leaves and
merge according to the tree structure. As an example, the merge sequence for |x| = 23 is shown below.

x1 x2 x3 x4 x5 x6 x7 x8

= merge

How much does this cost? At the bottom level where the leaves are, there are n = |x| nodes with
constant cost each (these were generated using a map). Stepping up one level, there are n/2 nodes, each
corresponding to a merge call, each costing c(1 + 1). In general, at level i (with i = 0 at the root), we
have 2i nodes where each node is a merge with input two sequences of length n/2i+1. Therefore, the
work of reduce_sort using this reduction order is the familar sum

W (reduction_sort x) ≤
log n∑
i=0

2i · c
(n

2i+1
+

n

2i+1

)

=
log n∑
i=0

2i · c
(n

2i

)
This sum, as you have seen before, evaluates to O(n log n). In fact, this algorithm is essentially the merge
sort algorithm.

From these two examples, it is clearly important to specify the order of a reduction. These two
examples illustrate how the reduction order can lead to drastically different cost. Moreover, there is a
second reason to specify the reduction order: to properly deal with combining functions that are non-
associative. In this case, the order we perform the reduction determines what result we get; because the
function is non-associative, different orderings will lead to different answers. While we might try to apply
reduce to only associative operations, unfortunately even some functions that seem to be associative are
actually not. For instance, floating point addition and multiplication are not associative. In SML/NJ,
integer addition is not associative either because of the overflow exception.

For this reason, we define a specific combining tree, which is defined quite carefully in the library
documentation for reduce. But basically, this tree is the same as if we rounded up the length of the
input sequence to the next power of two, and then put a perfectly balanced binary tree over the sequence.
Wherever we are missing children in the tree, we don’t apply the combining function. An example is
shown in the following figure.

1This is simply a binary tree in which every node other than the leaves have exactly 2 children.

4 Version 1.2

Parallel and Sequential Data Structures and Algorithms — Lecture 5 15-210 (Fall 2011)

x1 x2 x3 x4 x5 x6

= combine = "dummy" elements

x1 x2 x3 x4 x5 x6

How would we go about defining the cost of reduce? Given a reduction tree, we’ll define
R(reduce f I S) or simplyR(f, S) for brevity,

R(reduce f I S) =
{

all function applications f(a, b) in the reduction tree
}
.

Following this definition, we can state the cost of reduce as follows:

W (reduce f I S) = O

n +
∑

f(a,b)∈R(f,S)

W (f(a, b))


S(reduce f I S) = O

(
log n max

f(a,b)∈R(f,S)
S(f(a, b))

)
The work bound is simply the total work performed, which we obtain by summing across all combine
operations. The span bound is more interesting. The log n term expresses the fact that the tree is at most
O(log n) deep. Since each node in the tree has span at most maxf(a,b) S(f(a, b) thus, any root-to-leaf
path, including the “critical path,” has at most O(log nmaxf(a,b) S(f(a, b)) span.

This can be used to prove the following lemma:

Lemma 2.1. For any combine function f : α× α→ α and a monotone size measure s : α→ R+, if for
any x, y,

1. s(f(x, y)) ≤ s(x) + s(y) and

2. W (f(x, y)) ≤ cf (s(x) + s(y)) for some universal constant cf depending on the function f ,

then

W (reduce f I S) = O

(
log |S|

∑
x∈S

s(x)

)
.

Applying this lemma to the merge sort example, we have

W (reduce mergeI 〈〉 〈〈a〉 : a ∈ A〉) = O(|A| log |A|)

5 Version 1.2

Parallel and Sequential Data Structures and Algorithms — Lecture 5 15-210 (Fall 2011)

3 Contraction and Implementing Scan

Beyond the wonders of what it can do, a surprising fact about scan is that it can be accomplished in
parallel although on the surface, the computation it carries out appears to be sequential in nature. How
can an operation that computes all prefix sums possibly be parallel? At first glance, we might be inclined
to believe that any such algorithms will have to keep a cumulative “sum,” computing each output value
by relying on the “sum” of the all values before it. In this lecture, we’ll see a technique that allow us to
implement scan in parallel.

Let’s talk about another algorithmic technique: contraction. This is another common inductive
technique in algorithms design. It is inductive in that such an algorithm involves solving a smaller instance
of the same problem, much in the same spirit as a divide-and-conquer algorithm. In particular, the
contraction technique involves the following steps:

1. Reduce the instance of the problem to a (much) smaller instance (of the same sort)

2. Solve the smaller instance recursively

3. Use the solution to help solve the original instance

For intuition, we’ll look at the following analogy, which might be a stretch but should still get the
point across. Imagine designing a new car by building a small and greatly simplified mock up of the
car in mind. Then, the mock-up can be used to help build the actual final car, which probably involve a
number of refining iterations that add in more and more details. One could even imagine building multiple
mock-ups each smaller and simpler than the previous to help build the final car.

The contraction approach is a useful technique in algorithms design, whether it applies to cars or
not. For various reasons, it is more common in parallel algorithm than in sequential algorithms, usually
because the contraction and expansion can be done in parallel and the recursion only goes logarithmically
deep because the problem size is shrunk by a constant fraction each time.

We’ll demonstrate this technique by applying it to the scan problem. To begin, we have to answer the
following question: How do we make the input instance smaller in a way that the solution on this smaller
instance will benefit us in constructing the final solution? Let’s look at an example for motivation.

Suppose we’re to run plus_scan (i.e. scan (op +)) on the sequence 〈2, 1, 3, 2, 2, 5, 4, 1〉. What
we should get back is

(〈0, 2, 3, 6, 8, 10, 15, 19〉, 20)

Thought Experiment I: At some level, this problem seems like it can be solved using the divide-and-
conquer approach. Let’s try a simple pattern: divide up the input sequence in half, recursively solve each
half, and “piece together” the solutions. A moment’s thought shows that the two recursive calls are not
independent—indeed, the right half depends on the outcome of the left one because it has to know the
cumulative sum. So, although the work is O(n), we effectively haven’t broken the chain of sequential
dependencies. In fact, we can see that any scheme that splits the sequence into left and right parts like this
will essentially run into the same problem.

Thought Experiment II: The crux of this problem is the realization that we can easily generate a
sequence consisting of every other element of the final output, together with the final sum—and this is

6 Version 1.2

Parallel and Sequential Data Structures and Algorithms — Lecture 5 15-210 (Fall 2011)

enough information to produce the desired final output with ease. Let’s say we are able to somehow
generate the sequence

(〈0, 3, 8, 15〉, 20).

Then, the diagram below shows how to produce the final output sequence:

Input = h2, 1, 3, 2, 2, 5, 4, 1i
Partial Output = (h0, 3, 8, 15i, 20)

Desired Output = (h0, 2, 3, 6, 8, 10, 15, 19i, 20)
+ + + +

But how do we generate the “partial” output—the sequence with every other element of the desired
output? The idea is simple: we pairwise add adjacent elements of the input sequence and recursively run
scan on it. That is, on input sequence 〈2, 1, 3, 2, 2, 5, 4, 1〉, we would be running scan on 〈3, 5, 7, 5〉,
which will generate the desired partial output.

This leads to the following code. We’ll first present scan in pseudocode for when n is a power of two
and then show an actual implementation of scan in Standard ML.

1 % implements: the Scan problem on sequences that have a power of 2 lenngth
2 fun scanPow2 f i s =
3 case |s| of
4 0⇒ (〈〉, i)
5 | 1⇒ (〈i〉, s[0])
6 | n⇒
7 let
8 val s′ = 〈f(s[2i], s[2i+ 1]) : 0 ≤ i < n/2〉
9 val (r, t) = scanPow2 f i s′

10 in

11 (〈pi : 0 ≤ i < n〉, t), where pi =

{
r[i/2] if even(i)
f(r[i/2], s[i− 1]) otherwise.

12 end

4 How to Parse Text in Parallel 101

One of the most common tasks in your career as a computer scientist is that of parsing text files. For
example, you might have some large text file and you want to break it into words or sentences, or you
might need to parse a program file, or perhaps you have a web log that lists all accesses to your web pages,
one per line, and you want to process it in some way.

The basic idea of parsing is to take a string and break it up into parts; exactly how the string is split
up depends on the “grammar” of what’re parsing. For this reason, there are many variants of parsing.
You probably have come across regular expressions, a class which is reasonably general and powerful
enough for most simple text-processing needs. You may have wondered how Standard ML or your favorite
compilers are capable of recognizing thousands of lines of code so quickly.

7 Version 1.2

Parallel and Sequential Data Structures and Algorithms — Lecture 5 15-210 (Fall 2011)

In this lecture, we are only going to talk about two particularly simple, but quite useful, forms of
parsing. The first which we call tokens is used to break a string into a sequence of tokens separated
by one or more whitespaces (or more generally a set of delimiters). A token is a maximal nonempty
substring of the input string consisting of no white space (delimiter). By maximal, we mean that it cannot
be extended on either side without including a white space. There are multiple characters we might regard
as a white space, including the space character, a tab, or a carriage return. In general, the user should be
able to specify a function that can be applied to each character to determine whether or not it is a space.
Specifially, the tokens function, as provided by the sequence library, has type

val tokens : (char -> bool) -> string -> string seq

where the first argument to tokens is a function that checks whether a given character is a white space
(delimiter). As an example, we’ll parse the string "thististttattshorttstring" (the symbol
t denotes a white space),

tokens (fn x => (x = #"t")) "thististttattshorttstring"

which would return the sequence

〈"this", "is", "a", "short", "string"〉.

More formally, we can define the string tokenizer problem as follows:

Definition 4.1 (The String to Token Problem). Given a string (sequence) of characters S = Σ∗ from
some alphabet σ and a function f : Σ→ {True, False}, the string to token problem is to return a sequence
of tokens from S in the order as they appear in S, where a token is a nonempty maximal substring of S
such that f evaluates to False for all its characters.

This function appears in the sequence library and is often used to break up text into words. The
second useful parsing routine is fields and is used to break up text into a sequence of fields based on a
delimiter. A field is a maximal possibly empty string consisting of no delimiters. Like in tokens, the
input string might consist of multiple consecutive delimiters. The key difference here is that a field can be
empty so if there are multiple delimiters in a row, each creates a field. For example, we’ll parse a line
from a comma-separated values (CSV) file.

val fields : (char -> bool) -> string -> string seq
tokens (fn x => (x = #",")) "a,,,line,of,a,csv,,file"

which would return

〈"a", "", "", "line", "of", "a", "csv", "", "file"〉.

The fields function is useful for separating a file that has fields delimited by certain characters.
As mentioned before, a common example is the so-called CSV files that are often used to transfer data
between spreadsheet programs.

8 Version 1.2

Parallel and Sequential Data Structures and Algorithms — Lecture 5 15-210 (Fall 2011)

Traditionally, tokens and fields have been implemented in a sequential fashion, starting at the
front end and processing it one character at a time until reaching the end. During the processing, whenever
a whitespace or delimiter is found, the algorithm declares the current token or field finished and starts a
new one. Part of the reason for this sequential nature probably has to do with how strings are loaded from
external storage (e.g. tape/disk) many years ago. Here, we’ll assume that we have random access to the
input string’s characters, a common assumption now that a program tends to load a big chuck of data into
main memory at a time. This makes it possible to implement fields and tokens in parallel.

In the rest of this lecture, we will discuss a parallel implementation of fields. You will think about
implementing tokens in parallel in your homework.

How do we go about implementing fields in parallel? Notice that we can figure out where each
field starts by looking at the locations of the delimiters. Further, we know where each field ends—this is
necessarily right before the delimiter that starts the next field. Therefore, if there is a delimiter at location
i and the next delimiter is at j ≥ i, we have that the field starting after i contains the substring extracted
from locations (i+ 1)..(j − 1), which may be empty. This leads to the following code, in which delims
contains the starting location of each field. We use the notation ⊕ to denote sequence concatenation.

fun fields f s = let
val delims = 〈0〉 ⊕ 〈i+ 1 : i ∈ [0, |s|) ∧ f(s[i])〉 ⊕ 〈|s|+ 1〉

in
〈s[delims[i], delims[i+1]-1) : i ∈ [0, |delims|]〉

end

To illustrate the algorithm, let’s run it on our familiar example.

fields (fn x => (x = #",")) "a,,,line,of,a,csv,,file"

delims = 〈0, 2, 3, 4, 9, 12, 14, 18, 19, 24〉

result = 〈 s[0, 1), s[2, 2), s[3, 3), s[4, 8), s[9, 11), s[12, 13), . . . 〉

result = 〈"a", "", "", "line", "of","a", . . . 〉.

5 SML Code

5.1 Scan

functor Scan(Seq : SEQUENCE) =
struct

open Seq

fun scan f i s =
case length s
of 0 => (empty(), i)
| 1 => (singleton i, f(i, nth s 0))
| n =>

9 Version 1.2

Parallel and Sequential Data Structures and Algorithms — Lecture 5 15-210 (Fall 2011)

let
val s’ = tabulate (fn i => if (2*i = n - 1)

then nth s (2*i)
else f(nth s (2*i), nth s (2*i + 1)))

(((n-1) div 2)+1)
val (r, t) = scan f i s’

in
(tabulate (fn i => case (i mod 2) of

0 => nth r (i div 2)
| _ => f(nth r (i div 2), nth s (i-1)))

n, t)
end

end

10 Version 1.2

	Divide and Conquer with Reduce
	Reduce: Cost Specifications
	Contraction and Implementing Scan
	How to Parse Text in Parallel 101
	SML Code
	Scan

