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1 Abstract Data Types and Data Structures

So far in class we have defined several “problems” and discussed algorithms for solving them. The idea is
that the problem is an abstract definition of what we want in terms of a function specification, and the
algorithms are particular ways to solve/implement the problem. In addition to abstract functions we also
often need to define abstractions over data. In such an abstraction we define a set of functions (abstractly)
over a common data type. As mentioned in the first lecture, we will refer to the abstractions as abstract
data types and their implementations as data structures.

An example of an abstract data type you should have seen before (in 15-122) is a priority queue. Lets
consider a slight extension where in addition to insert, and deleteMin, we will add a function that joins two
heaps into a single heap. For historical reasons, we will call such a join a meld, and the ADT a ”meldable
priority queue”.

Definition 1.1. Given a totally ordered set S, a Meldable Priority Queue (MPQ) is a type T representing
subsets of S along with the following values and functions:

empty : T = {}
insert(S, e) : T× S→ T = S ∪ {e}

deleteMin(S) : T→ T× (S ∪ {⊥}) =
{

(S,⊥) S = ∅
(S \ (minS),minS) otherwise

meld(S1, S2) : T× T→ T = S1 ∪ S2

Note that deleteMin returns the special element ⊥ when empty. When translated to SML this
corresponds to a signature of the form:

signature MPQ
sig
struct S : ORD
type T
val empty = T
val insert : T * S.t -> T
val deleteMin : T -> T * S.t option
val meld : T * T -> T

end

Note that the type T is abstracted (i.e. it is not specified to be sets of elements of type S.t) since we
don’t want to access the queue as a set but only through its interface. Note also that the signature by itself
does not specify the semantics but only the types (e.g., it could be insert does nothing with its second
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argument). To be an ADT we have to add the semantics as written on the righthand side of the equations
in Definition 1.1.

In general SML signatures for ADTs will look like:

sig
struct S1 : ADT1
...
type t
helper types
val v1 : ... t ...
val v2 : ... t ...
...

end

Now the operations on a meldable priority queue might have different costs depending on the particular
data structures used to implement them. If we are a ”client” using a priority queue as part of some algorithm
or application we surely care about the costs, but probably don’t care about the specific implementation.
We therefore would like to have abstract cost associated with the interface. For example we might have
for work:

I1 or I2 or I3
insert(S, e) O(|S|) O(log |S|) O(log |S|)
deleteMin(S) O(1) O(log |S|) O(log |S|)
meld(S1, S2) O(|S1|+ |S2|) O(|S1|+ |S2|) O(log(|S1|+ |S2|))

You have already seen data structures that match the first two bounds. For the first one maintaining a
sorted array will do the job. You have seen a couple that match the second bounds. What are they? We
will be covering the third bound later in the course.

In any case these cost definitions sit between the ADT and the specific data structures used to
implement them. We will refer to them as cost specifications. We therefore have three levels: the
abstract data type (specifying the interface), the cost specification (specifying costs), and the data structure
(specifying the implementation).

2 Sequences

The first ADT we will go through in some detail is the sequence ADT. You have used sequences in 15-150
but we will add some new functionality and will go through the cost specifications in more detail. There
are two cost specifications for sequences we will consider, one based on an array implementation, and
the other based on a tree implementation. However in this course we will mostly be using the array
implementation. In the lecture we will not go through the full interface, it is available in the documentation,
but here are some of functions you should be familiar with:

nth, tabulate, map, reduce, filter, take, drop, showt,

and here are some we will discuss in the next couple lectures.
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scan, inject, collect, tokens, fields

2.1 Scan Operation

We mentioned the scan function during the last lecture and you covered it in recitation. It has the interface:

scan f I S : α→ (α× α→ α)→ α seq → (α seq × α)

When the function f is associative, i.e., f(f(x, y), z) = f(x, f(y, z)), the scan function returns the
sum with respect to f of each prefix of the input sequence S , as well as the total sum of S. Hence the
operation is often called the prefix sums operation. For associated f , it can be defined as follows:

1 fun scan f I S =
2 (〈reduce f I (take(S, i)) : i ∈ 〈 0, . . . n− 1 〉 〉 ,
3 reduce f I S)

In this code the notation 〈reduce f I (take(S, i)) : i ∈ 〈 0, . . . , n− 1 〉 〉 indicates that for each i
in the range from 0 to n− 1 apply reduce to the first i elements of S. For example,

scan + 0 〈 2, 1, 3 〉 = (〈 reduce + 0 〈 〉 , reduce + 0 〈 2 〉 , reduce + 0 〈 2, 1 〉 〉
reduce + 0 〈 2, 1, 3 〉)

= (〈 0, 2, 3 〉 , 6)

Using a bunch of reduces, however, is not an efficient way to calculate the partial sums.

Exercise 1. What is the work and span for the scan code shown above. You can assume f takes constant
work.

In the next lecture we will discuss how to implement a scan with the following bounds:

W (scan f I S) = O(|S|)
S(scan f I S) = O(log |S|)

assuming that the function f takes constant work. For now we will consider why the operation is useful
by giving a set of examples. You should have already seen how to use it for parenthesis matching and the
stock market problem in recitation.

The MCSS problem : Algorithm 4 (using scan)

Lets consider how we might use scan operations to solve the MCSS problem. Any ideas? What if we
do a scan on our input S using addition starting with 0? Lets say it returns X . Now for a position j lets
consider all positions i < j. To calculate the sum from i (inclusive) to j (exclusive) all we have to consider
is Xj −Xi. This represents the total sum between the two. So how do we calculate the maximum sum
Rj ending at j (exclusive).
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Well this is

Rj =
j−1
max
i=0

j−1∑
k=i

Sk =
j−1
max
i=0

(Xj −Xi) = Xj +
j−1
max
i=0

Xi = Xj −
j−1

min
i=0

Xi

What is the last term? It is just the minimum value of X up to j (exclusive). Now we want to calculate
it for all j, so we can use a scan. This gives the following algorithm

1 fun MCSS(S) =
2 let
3 val X = scan + 0 S
4 val M = scan min ∞ X
5 in
6 max 〈Xj −Mj : 0 ≤ j < |S| 〉
7 end

the work of each of the steps (two scans, map and reduce) is O(n) and the span is O(logn). We
therefore have a routine that is even better than any of our divide and conquer routines.

Copy Scan

We will go through one more example that will be helpful in your homework. Lets say you are given a
sequence of type α option seq. For example

〈NONE, SOME(7), NONE, NONE, SOME(3), NONE 〉

and your goal is to return a sequence of the same length where each element receives the previous SOME
value. For the example:

〈NONE, NONE, SOME(7), SOME(7), SOME(7), SOME(3) 〉

Anyone see how they could do this with a scan? If we are going to use a scan directly, the combining
function f must have type

α option× α option→ α option

How about

1 fun copy(a, b) =
2 case b of
3 SOME( )⇒ b
4 | NONE ⇒ a

What this function does is basically pass on its right argument if it is SOME and otherwise it passes on
the left argument.

There are many other applications of scan in which more involved functions are used. One important
case is to simulate a finite state automata.
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2.2 Analyzing the Costs of Higher Order Functions

We already covered map where we have:

W (map f S) = 1 +
∑
s∈S

(map f s)

S(map f S) = 1 + max
s∈S

(map f s)

Tabulate is similar. But what about functions such as reduce and scan when the combining function
does not take constant time. For example for an integer sequence consider the following reduction:

reduce mergeint 〈 〉 〈 〈 a 〉 : a ∈ A 〉

What does this return?
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