Parallel and Sequential Data Structures and Algorithms — Lecture 1 15-210 (Fall 2011)

Lecture 1 — Overview and Sequencing the Genome
Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2011)
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1 Administrivia

Welcome to 15-210 Parallel and Sequential Data Structures and Algorithms. This course will teach
you methods for designing, analyzing, and programming sequential and parallel algorithms and data
structures, with an emphasis on fundamental concepts that will be applicable across a wide variety of
problem domains, and transferable across a reasonably broad set of programming languages and computer
architectures. There is no textbook for the class. We will (electronically) distribute lecture notes and
supplemental reading materials as we go along. There will be a rough version of the notes posted before
each lecture—with a more polished version made available for download later.

The course web site is located at
http://www.cs.cmu.edu/~15210

Please take time to look around. While you’re at it, we strongly encourage you to read and understand
the collaboration policy.

Instead of spamming you with mass emails, we will post announcements, clarifications, corrections,
hints, etc. on the course web site and on the class bboards—please check them on a regular basis.
The bboards are academic.cs.15-210.announce for announcements from the course staff and
academic.cs.15-210.discuss for general discussions and clarification questions.

There will be weekly assignments (due at 11:59pm on Mondays), 2 exams, and a final. The first
assignment is coming out later today and will be due ar 11:59pm on Tuesday Sept 6, 2011. (Note the
unusual date due to Labor Day)

Since this is the first incarnation of 15-210, we would appreciate feedback any time. Please come talk
to us if you have suggestions and/or concerns.

2 Course Overview

This is a data structures and algorithms course, but it differs from a traditional course in data structures
and algorithms in many ways. In particular, this course centers around the following themes:

e defining precise problem and data abstractions

e designing and programming correct and efficient algorithms and data structures for given problems
and data abstractions
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We will be looking at the following relationship matrix:

Abstraction Implementation
Functions Problem Algorithm
Data Abstract Data Type  Data Structure

A problem specifies precisely the problem statement and the intended input/output behavior in an
abstract form. It is an abstract (precise) definition of the problem but does not describe how it is solved.
Whereas an algorithm is what allows us to solve a problem,; it is an implementation that meets the
intended specification. Typically, a problem will have many algorithmic solutions. For example, sorting
is a problem—it specifies what the input is (e.g., a sequence of numbers) and the intended output (e.g.,
an ordered sequence of numbers)—but quicksort is an algorithm that solves the sorting problem
and insertion sort is another algorithm. The distinction between problems vs. algorithms is standard in
literature.

Similarly, an abstract data type (ADT) specifies precisely an interface for accessing data in an abstract
form without specifying how the data is structured, whereas a data structure is a particular way of
organizing the data to support the interface. For an ADT, the interface is specified in terms of a set of
operations on the type. For example, a priority queue is an ADT with operations that might include
insert, findMin, and 1 sEmpty?. Various data structures can be used to implement a priority queue,
including binary heaps, arrays, and balanced binary trees. The terminology ADTs vs. data structures is
not as widely used as problems vs. algorithms. In particular, sometimes the term data structure is used to
refer to both the interface and the implementation. We will try to avoid such usage in this class.

The crucial differences between this course and a traditional course on data structures and algorithms
lie in our focus on parallelism and our emphasis on functional language implementation. We’ll also put
heavy emphasis on helping you define precise and concise abstractions.

Due to physical and economical constraints, a typical machine we can buy now has 4 to 8 computing
cores, and soon this number will be 16, 32, and 64. While the number of cores grows at a rapid pace, the
per-core speed hasn’t increased much over the past several years. Additionally, graphics processing units
(GPUs) are highly parallel platforms with hundreds of cores readily available in commodity machines
today. This gives a compelling reason to study parallel algorithms. Here are some example timings from a
recent paper:

Serial Parallel
l-core 8-core 32h-core
Sorting 10 million strings 29 2.9 4 .095
Remove duplicates 10M strings .66 1.0 .14 .038
Min spanning tree 10M edges 1.6 2.5 42 .14
Breadth first search 10M edges .82 1.2 2 .046

32h stands for 32 cores with hyperthreading.

In this table, the sorting algorithm used in sequential is not the same as the algorithm used in parallel.
Notice that going from 1 core to 8 core is not quite 8 times faster, as can be expected with overheads
associated with parallelization. The magic is going from 8 core to 32 cores, which is more than four
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times as fast. The reason for this extra speedup is that the 32-core machine uses hyperthreading, which
allows for 64 threads and provides the additional speedup. The other algorithms don’t show quite the
same speedup.

It is unlikely that you will get similar speedup using Standard ML. But maximizing speedup by highly
tuning an implementation is not the goal of this course. That is an aim of 15-213. Functional languages,
however, are great for studying parallel algorithms—they’re safe for parallelism because they avoid
mutable data. They also generally provide a clear distinction between abstraction and implementations,
and are arguably easier to build “interesting” applications quickly.

3 An Example: Sequencing the Genome

Sequencing of a complete human genome represents one of the greatest scientific achievements of the
century. It is also one of the most important contributions of algorithms to date. For a brief history, the
efforts started a few decades ago with the following major landmarks:

1996 sequencing of first living species
2001 draft sequence of the human genome
2007  full human genome diploid sequence

Interestingly, all these achievements rely on efficient parallel algorithms. In this lecture, we will take
a look at some algorithms behind the recent results—and the power of problem abstraction which will
reveal surprising connections between seemingly unrelated problems.

3.1 What makes sequencing the genome hard?

There is currently no way to read long strands with accuracy. Current DNA sequencing machines are
only capable of efficiently reading relatively short strands (e.g. 1000 base pairs). Therefore, we resort to
cutting strands into shorter fragments and then reassembling the pieces. The primer walking” process
cuts the DNA strands into consecutive fragments. But the process is slow because you need the result of
one fragment to ”build” in the wet lab the molecule needed to find the following fragment (inherently
sequential process). Alternatively, there are fast methods to cut the strand at random positions. But this
process mixes up the short fragments, so the order of the fragments is unknown. For example, the strand
cattaggagtat might turn into, say, ag, gag, catt, tat, destroying the original ordering.

If we could make copies of the original sequence, is there something we could do differently to order
the pieces? Let’s look at the shotgun method, which according to Wikipedia is the de facto standard for
genome sequencing today. It works as follows:

1. Take a DNA sequence and make multiple copies. For example, if we are cattaggagtat, we produce
many copies of it:

cattaggagtat
cattaggagtat
cattaggagtat
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2. Randomly cut up the sequences using a “shotgun”, well, actually using radiation or chemicals. For
instance, we could get

{itt[ gagtat
|cat]|tagg |[ag][tat

3. Sequence each of the short fragments, which can be done in parallel with multiple sequencing
machines.

4. Reconstruct the original genome from the fragments.

Steps 1-3 are done in a wet lab, and Step 4 is where algorithms come in. In Step 4, we want to solve
the following problem: Given a set of overlapping genome subsequences, construct the “best” sequence
that includes them all. But what notion of quality are we talking about? What does it mean to be the “best”
sequence? There are many possible candidates. Below is one way to define “best” objectively.

Definition 3.1 (The Shortest Superstring (SS) Problem). Given an alphabet set > and a finite set of finite,
non-empty strings S C X7, return a shortest string  that contains every s € S as a substring of 7.

Note that in this definition, we require each s € S to appear as a contiguous block in . That is, “ag”
is a substring of “ggag” but is not a substring of “attg”.

That is, given sequence fragments, construct a string that contains all the fragments and that is the
shortest string. The idea is that the simplest string is the best. Now that we have a concrete specification
of the problem, we are ready to look into algorithms for solving it.

For starters, let’s observe that we can ignore strings that are contained in other strings. That is, for
example, if we have gagtat, ag, and gt, we can throw out ag and gt. Continuing with the example above,
we are left with the following “snippets”

S = {tagg, catt, gga, tta, gagtat}.

Following this observation, we can assume that the “snippets” have been preprocessed so that none of
the strings are contained in other strings.

The second observation is that each string must start at a distinct position in the result, otherwise there
would be string that is a substring of another. That is, we can find a total ordering of the strings.

We will now consider 3 algorithms.

3.2 Algorithm 1: Brute Force

The first algorithm we will look at is a brute force algorithm, because it tries all permutations of the set of
strings and for each permutation, we remove the maximum overlap between each adjacent pair of strings.
For example, the permutation

catt tta tagg gga gagtat
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will give us cattaggagtat after removing the overlaps (the excised parts are underlined). Note that this
result happens to be the original string and also the shortest superstring.

Does trying all permutations always give us the shortest string? As our intuition might suggest, the
answer is yes and the proof of it, which we didn’t go over in class, hints at an algorithm that we will look
at in a moment.

Lemma 3.2. Given a finite set of finite strings S C X, the brute force method finds the shortest
Superstring.

Proof. Let r* be any shortest superstring of S. We know that each string s € S appears in r*. Let 5
denote the beginning position in r* where s appears. Since we have eliminated duplicates, it must

be the case that all i5’s are distinct numbers. Now let’s look at all the strings in S, s1, s9, . . ., 88|
where we number them such that i, < 75, < -+ < ¢ s)s)" It is not hard to see that the ordering
81,82, ..., 5|5| gives us r* after removing the overlaps. O

The problem with this approach is that, although highly parallel, it has to examine a large number
of combinations, resulting in a super large work term. There are n! permutations on a collection of n
elements. This means that if the input consists of n = 100 strings, we’ll need to consider 100! ~ 1058
combinations, which for a sense of scale, is more than the number of atoms in the universe. As such, the
algorithm is not going to be feasible for large n.

Can we come up with a smarter algorithm that solves the problem faster? Unfortunately, it is unlikely.
As it happens, this problem is NP-hard. But we should not fear NP-hard problems. In general, NP-hardness
only suggests that there are families of instances on which the problem is hard in the worst-case. It doesn’t
rule out the possibility of algorithms that compute near optimal answers or algorithms that perform well
on real world instances.

For this particular problem, we know efficient approximation algorithms that (1) give theoretical
bounds that guarantee that the answer (i.e., the length) is within a constant factor of the optimal answer,
and (2) in practice do even better than the bounds suggest.

3.3 Algorithm 2: Reducing to Another Problem

We now consider converting the shortest superstring problem to another seemingly unrelated problem: the
traveling salespersorﬂ (TSP) problem. This is a canonical NP-hard problem dating back to the 1930s and
has been extensively studied, e.g. see Figure[I] The two major variants of the problem are symmetric TSP
and asymmetric TSP, depending on whether the graph has undirected or directed edges, respectively. The
particular variant we’re reducing to is the asymmetric version, which can be described as follows.

Definition 3.3 (The Asymmetric Traveling Salesperson (aTSP) Problem). Given a weighted directed
graph, find the shortest path that starts at a vertex s and visits all vertices exactly once before returning to
s.

That is, find a Hamiltonian cycle of the graph such that the sum of the edge weights along the cycle is
the minimum of all such cycles.

!This is formerly known as the traveling salesman problem.
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Figure 1: A poster from a contest run by Proctor and Gamble in 1962. The goal was to solve a 33 city
instance of the TSP. Gerald Thompson, a Carnegie Mellon professor, was one of the winners.

Motivated by the observation that the shortest superstring problem can be solved exactly by trying all
permutations, we’ll make the TSP problem try all the combinations for us. For this, we will set up a graph
so that each valid Hamiltonian cycle corresponds to a permutation. Note that in our case, there is always a
Hamiltonian cycle because the graph is a complete graph—there are two directed edges between every
pair of vertices.

Let overlap(s;, s;) denote the maximum overlap for s; followed by s;. This would mean overlap

ERIRT3

(“tagg”,“gga”) = 2.

The Reduction. Now we build a graph D = (V, A).

e The vertex set V' has one vertex per string and a special “source” vertex A where the cycle starts
and ends.

e The arc (directed edge) from s; to s; has weight w; ; = |s;| — overlap(s;, s;). This quantity
represents the increase in the string’s length if s; is followed by s;. As an example, if we have
“tagg” followed by “gga”, then we can generate “tagga” which only adds 1 character—indeed,
|“gga”| — overlap(“tagg”, “gga”) =3 —2 = 1.

e The weights for arcs incident to A are set as follows: (A, s;) = |s;| and (s;, A) = 0. That is, if s; is
the first string in the permutation, then the arc (A, s;) pays for the whole length s;.

To see this reduction in action, the input {catt, acat, tta} results in the following graph (not all edges
are shown).
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As intended, in this graph, a cycle through the graph that visits each vertex once corresponds to a
permutation in the brute force method. Furthermore, the sum of the edge weights in that cycle is equal to
the length of the superstring produced by the permutation. Since TSP considers all Hamiltonian cycles, it
also corresponds to considering all orderings in the brute force method. Since the TSP finds the min cost
cycle, and assuming the brute force method is correct, then TSP finds the shortest superstring. Therefore,
if we could solve TSP, we would be able to solve the shortest superstring problem.

But TSP is also NP-hard. What we have accomplished so far is that we have reduced one NP hard
problem to another, but the advantage is that there is a lot known about TSP, so maybe this helps.

3.4 Algorithm 3: Greedy

The third algorithm we’ll consider is a simple “greedy” algorithm, which finds an “approximate” solution
directly. It is not guaranteed to find the shortest superstring but there are theoretical bounds on how close
it is to the optimal, and it works very well in practice.

Greedy algorithms are popular because of their simplicity. A greedy algorithm works in steps and at
each step it makes a locally optimal choice, in hopes that it will lead to a globally optimal solution, or
a solution that is near optimal. Once it makes a choice, it will never reconsider whether to change that
choice in a later step. We will cover greedy algorithms in more detail later in this course.

To describe the greedy algorithm, we’ll define a function join(s;, s;) that appends s; to s; and

LR INT3

removes the maximum overlap. For example, join(“tagg”, “gga”) = “tagga”.

Note that the algorithms that we will include in the lecture notes will use pseudocode. The pseudocode
will be purely functional and easy to translate in to ML code. Primarily, the difference will be that the
pseudocode will freely use standard mathematical notation, such as subscripts, and set notation (e.g.

{f(z) :x € S}H U, |S)].

The greedy approximation algorithm for the Shortest Superstring Problem is as follows:
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1 fun greedyApproxSs(S) =

2 if |S| =1 then S

3 else let

4 val O = {(overlap(s;,sj), S, s;j) : si € 5,55 €S,5; # 55}
5 val (o,si,s;) = maxval <y O

6 val s; = join(s;,s;)

7 val §' = ({Sk} U S)\{SZ, Sj}

8 in

9 greedyApproxSs(S’)

10 end

Given a set of strings S, the algorithm finds the pair of strings s; and s; in S that are distinct and
have the maximum overlap—the maxval function takes a comparison operator (in this case comparing
the first element of the triple) and returns the maximum element of a set (or sequence) based on that
comparison. The algorithm then replaces s; and s; with s = join(s;,s;) in S. The new set S’ is
therefore one smaller. It recursively repeats this process on this new set of strings until there is only a
single string left. The algorithm is greedy because at every step it takes the pair of strings that when joined
will remove the greatest overlap, a locally optimal decision. Upon termination, the algorithm returns a
single string that contains all strings in the original S. However, the superstring returned is not necessarily
the shortest superstring.

Exercise 1. In the code we remove s;, s from the set of strings but do not remove any strings from S that
are contained within s, = join(s;, ;). Argue why there cannot be any such strings.

Exercise 2. Prove that algorithm greedyRpproxSS indeed returns a string that is a superstring of all
original strings.

Exercise 3. Give an example input S for which greedyApproxSS does not return the shortest super-
string.

Exercise 4. Consider the following greedy algorithm for TSP. Start at the source and always go to the
nearest unvisited neighbor. When applied to the graph described above, is this the same as the algorithm
above? If not what would be the corresponding algorithm for solving the TSP?

bl

Although greedyApproxSS does not return the shortest superstring, it returns an “approximation’
of the shortest superstring. In particular, it is known that it returns a string that is within a factor of 3.5 of
the shortest and conjectured that it returns a string that is within a factor of 2. In practice, it typically does
much better than the bounds suggest. The algorithm also generalizes to other similar problems, e.g., when
we don’t require that the overlap be perfect but allow for single errors.

Of course, given that the SS problem is NP-hard, and greedyApproxSS does only polynomial
work (see below), we cannot expect it to give an exact answer on all inputs—that would imply P = NP,
which is unlikely. In literature, algorithms such as greedyApproxSS that solve an NP-hard problem to
within a constant factor of optimal, are called constant-factor approximation algorithms.
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Truth in advertising. Often when abstracting a problem we can abstract away some key aspects
of the underlying application that we want to solve. Indeed this is the case when using the
Shortest Superstring problem for sequencing genomes. In actual genome sequencing there are
two shortcomings with using the SS problem. The first is that when reading the base pairs using
a DNA sequencer there can be errors. This means the overlaps on the strings that are supposed
to overlap perfectly might not. Don’t fret: this can be dealt with by generalizing the Shortest
Superstring problem to deal with approximate matching. Describing such a generalization is beyond
the scope of this course, but basically one can give a score to every overlap and then pick the best
one for each pair of fragments. The nice thing is that the same algorithmic techniques we dis-
cussed for the SS problem still work for this generalization, only the “overlap” scores will be different.

The second shortcoming of using the SS problem by itself is that real genomes have long repeated
sections, possibly much longer than the length of the fragments that are sequenced. The SS problem
does not deal well with such repeats. In fact when the SS problem is applied to the fragments of an
initial string with longer repeats that the fragment sizes, the repeats or parts of them are removed.
One method that researchers have used to deal with this problem is the so-called double-barrel
shotgun method. In this method strands of DNA are cut randomly into lengths that are long enough
to span the repeated sections. After cutting it up one can read just the two ends of such a strand and
also determine its length (approximately). By using the two ends and knowing how far apart they are
it is possible to build a “scaffolding” and recognize repeats. This method can be used in conjunction
with the generalization of the SS discussed in the previous paragraph. In particular the SS method
allowing for errors can be used to generate strings up to the length of the repeats, and the double
barreled method can put them together.

3.5 Cost Analysis

Let n be the size of the input .S and NV be the total number of characters across all strings in .S, i.e.,

N = sl

seS

Note that n < N. We’ll consider a straightforward implementation, although the analysis is a little tricky
since the strings can vary in length. First we note that calculating overlap(si, s2) and join(s, s2) can
be done in O(|s1||s2|) work and O(log(|s1] + |s2|) spa This is simply by trying all overlap positions
between the two strings, seeing which ones match, and picking the largest. The logarithmic span is needed
for picking the largest matching overlap using a reduce.

Let W,, and S,, be the work and span for calculating all pairs of overlaps (the line {(overlap
(8i,85),8i,55) : 8i € 5,85 €5, 8; # 55}).

2We’ll use the terms span and depth interchangeably in this class.
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We have

We < Z Z W (overlap(si,s;)))

i=1 j=1
= Y > 0(sillss))
i=1 j=1
< YD (k + kalsillss))
i=1 j=1
- 2
= kin®+ ko (Z ]sﬁ)
i=1
e O(N?)

and since all pairs can be done in parallel,

Sov < m%lxm%le(overlap(si,sj)))
=1 j=
€ O(logN)

The maxval can be computed in O(N?) work and O(log N) span using a simple reduce. The other
steps cost no more than computing maxval. Therefore, not including the recursive call each call to
greedyApproxss costs O(N?) work and O(log N) span.

Finally, we observe that each call to greedyApproxSS creates S’ with one fewer element than S,
so there are at most n calls to greedyApproxSS. These calls are inherently sequential because one call
must complete before the next call can take place. Hence, the total cost for the algorithm is O(n.N?) work
and O(n log N) span, which is highly parallel.

Exercise 5. Come up with a more efficient way of implementing the greedy method.

4 What did we learn in this lecture?

Defining a problem precisely is important.

One problem can have many algorithmic solutions.

Depending on the input, we can pick the algorithm that works the best for our needs.

e Surprising mappings between problems can be use to reduce one problem to another.

The ”greedy method” is an important tool in your toolbox

Many algorithms are naturally parallel but also have sequential dependencies
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