10601
Machine Learning
Model and feature selection
Occam’s Razor

• William of Ockham (1285-1349) *Principle of Parsimony*:
 – “One should not increase, beyond what is necessary, the number of entities required to explain anything.”

• Regularization penalizes for “complex explanations”

• Alternatively (but pretty much the same), use *Minimum Description Length (MDL) Principle*:
 – minimize \(\text{length(misclassifications)} + \text{length(hypothesis)} \)

\[\text{length(misclassifications)} \] – e.g., #wrong training examples

\[\text{length(hypothesis)} \] – e.g., size of decision tree
Minimum Description Length Principle

- MDL prefers small hypothesis that fit data well:
 \[h_{MDL} = \arg \min_h L_{C_1}(D \mid h) + L_{C_2}(h) \]

 - \(L_{C_1}(D|h) \) – description length of data under code \(C_1 \) given \(h \)
 - Only need to describe points that \(h \) doesn’t explain (classify correctly)
 - \(L_{C_2}(h) \) – description length of hypothesis \(h \)

- Decision tree example
 - \(L_{C_1}(D|h) \) – #bits required to describe data given \(h \)
 - If all points correctly classified, \(L_{C_1}(D|h) = 0 \)
 - \(L_{C_2}(h) \) – #bits necessary to encode tree
 - Trade off quality of classification with tree size
What you need to know about Model Selection, Regularization and Cross Validation

• Cross validation
 – (Mostly) Unbiased estimate of true error
 – LOOCV is great, but hard to compute
 – k-fold much more practical
 – Use for selecting parameter values!

• Model selection
 – Search for a model with low cross validation error

• Regularization
 – Penalizes for complex models
 – Select parameter with cross validation
 – Really a Bayesian approach

• Minimum description length
 – Information theoretic interpretation of regularization
Bayesian approach

• Start with a simple model
• As data comes, increase the complexity as necessary

• My research area: Nonparametric Bayes
• The complexity of the model is unbounded
• Select the correct complexity from data (posterior)
• For ex: the number of clusters
Feature selection

- Choose an optimal subset from the set of all N features
 - Only use a subset of a possible words in a dictionary
 - Only use a subset of genes

- Why?
- Can we do model selection to solve this? – 2^n models
Two approaches: 1. Filter

- Independent of classifier used
- Rank features using some criteria based on their relevance to the classification task
- For example, mutual information:

\[I(X; Y) = \sum_{y \in Y} \sum_{x \in X} p(x, y) \log \left(\frac{p(x, y)}{p_1(x) p_2(y)} \right), \]

- Choose a subset based on the sorted scores for the criteria used
2. Wrapper

• Classifier specific
• Greedy (large search space)
• Initialize $F = \text{null set}$
 – At each step, using cross validation or an information theoretic criteria, choose a feature to add to the subset [training should be done with only features in $F + \text{new feature}$]
 – Add the chosen feature to the subset
• Repeat until no improvement to CV accuracy
Problem Set 4

Q1.3:
• Take derivatives w.r.t to α first then w,b.
Q. 1.6

• Minimize the violations as much as possible.

• Assume C is large but not ∞.
Q. 2

- Either explain why some algorithm does not work well.
- Or draw the final result of the algorithms.
Q. 3

The contour of the distribution in 2-D:

- **Spherical Gaussian**: concentric circles
- **Diagonal Gaussian**: concentric eclipses with axes parallel to the coordinate axes.
- **Unrestricted covariance Gaussian**: concentric eclipses
Q. 4

- Cutting the tree by thresholding