Temporal Models

Anthony Gitter
November 15, 2010
How will we spend our final recitation?

- HMM review
- Generalizing HMMs
- PS5 questions
Hidden Markov Models

- Often represented using state transition diagram
- Example for homework grades
- Parameters:
 - Initial state probabilities
 - Transition probabilities
 - Emission probabilities

\[
\begin{align*}
\text{H} & \quad \text{U} \\
0.9 & \quad 0.1 \\
N(90,1) & \quad N(50,10)
\end{align*}
\]
Hidden Markov Models

- Markov assumption allows us to use this compact representation
- What are the nodes in this diagram?
- How many random variables?

Diagram:
- H
- U
- \(N(90,1) \)
- \(N(50,10) \)
- Probabilities:
 - 1
 - 0.9
 - 0.7
 - 0.1
 - 0.3
Unrolling HMMs

- We can “unroll” the HMM and explicitly show the variables
- At each of the 5 time points:
 - One binary variable for state (hidden)
 - One continuous variable for output (observed)
Unrolling HMMs

- We still have shared transition and emission probabilities
- Use $q_t = 0$ to be state U and $q_t = 1$ to be state H

<table>
<thead>
<tr>
<th>q_1 = 0</th>
<th>q_1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>q_{t-1} = 0</th>
<th>q_{t-1} = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_t = 0</td>
<td>0.3</td>
</tr>
<tr>
<td>q_t = 1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>q_t = 0</th>
<th>q_t = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N(o_t</td>
<td>50,10)$</td>
</tr>
</tbody>
</table>
HMM d-separation

- d-separation can be used to read independence assumptions
- \(q_3 \perp q_1 \mid q_2 \) (Markov assumption)
- \(o_5 \not\perp o_3 \mid q_2 \)
- \(o_5 \perp o_1 \mid q_2 \)
The terms we defined for HMM inference using this representation are:

\[\alpha_5(i=1) = P(o_1=81, o_2=97, o_3=92, o_4=44, o_5=88, q_5=1) \]
\[= \sum_k b_1(o_5=88) a_{k,1} \alpha_4(k) \]
\[= \sum_k P(o_5=88|q_5=1) P(q_5=1|q_4=k) P(o_1=81, o_2=97, o_3=92, o_4=44, q_4=k) \]
HMM limitations

• In their simplest form HMMs make strong assumptions
 – State only depends on previous state
 – Discrete state variables
 – Output only depends on hidden state
• These assumptions can be helpful
 – Inference is relatively easy
 – Few parameters needed

• Sometimes these assumptions are too restrictive
• High level overviews of how assumptions are relaxed
• Inference and learning can be much more difficult for some of the following extensions
Second order HMMs

- Hidden state depends on the two previous states
- Useful for natural language processing
- Can be extended to nth order HMM
 - State depends on n previous states
Input-Output HMMs

- Hidden states and output depend on another observed sequence
- Still have $q_3 \perp q_1 | q_2$
Factorial HMMs

- Using a single hidden variable for all hidden states would often lead to huge state space
- Instead use more than one chain of hidden variables
- Output depends on both hidden states
Linear dynamical systems

• Hidden states are multivariate Gaussian distributions
• State q_t is linear function of state q_{t-1} plus noise
 \[q_1 = \mu_0 + u \quad u \sim N(u | 0, V_0) \]
 \[q_t = Aq_{t-1} + w_t \quad w \sim N(w | 0, \Gamma) \]
 \[o_t = Cq_t + v_t \quad v \sim N(v | 0, \Sigma) \]
• A.k.a. Kalman filters
Dynamic Bayesian networks

• All of the previous models are special cases of dynamic Bayesian networks (DBNs)

• At each time point
 – Set of hidden variables
 – Set of observed variables

• Variables can be discrete or continuous

• Two-slice temporal Bayesian network defines the structure and distributions

• Kevin Murphy’s DBN tutorial for much more detail
Two-slice temporal Bayesian network

- Hidden variables at time $t-1$ and t
- Observed variables at time t

A_{t-1} A_t X_t
B_{t-1} B_t Y_t
C_{t-1} C_t
D_{t-1} D_t
Two-slice temporal Bayesian network

- Structure and distributions hold between all consecutive time points
- Only hidden nodes shown here
PS5

• In 5.1 show the state transition diagram not the unrolled probabilistic graphical model

• Any questions?