Boosting

Machine Learning – 10601
Arvind Rao
Carnegie Mellon University
September 22nd, 2010
Fighting the bias-variance tradeoff

- Simple (a.k.a. weak) learners are good
 - e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 - Low variance, don’t usually overfit

- Simple (a.k.a. weak) learners are bad
 - High bias, can’t solve hard learning problems

- Can we make weak learners always good???
 - No!!!
 - But often yes…
Voting (Ensemble Methods)

Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space

Output class: (Weighted) vote of each classifier
- Classifiers that are most “sure” will vote with more conviction
- Classifiers will be most “sure” about a particular part of the space
- On average, do better than single classifier!

But how do you ???
- force classifiers to learn about different parts of the input space?
- weigh the votes of different classifiers?
Boosting

Idea: given a weak learner, run it multiple times on (rewighted) training data, then let learned classifiers vote

On each iteration t:
- weight each training example by how incorrectly it was classified
- Learn a hypothesis – h_t
- A strength for this hypothesis – α_t

Final classifier:

- Practically useful
- Theoretically interesting
Learning from weighted data

- Sometimes not all data points are equal
 - Some data points are more equal than others

- Consider a weighted dataset
 - $D(i)$ – weight of ith training example (x^i, y^i)
 - Interpretations:
 - ith training example counts as $D(i)$ examples
 - If I were to “resample” data, I would get more samples of “heavier” data points

- Now, in all calculations, whenever used, ith training example counts as $D(i)$ “examples”
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)

Initialize \(D_1(i) = 1/m.\)

For \(t = 1, \ldots, T:\)

- Train weak learner using distribution \(D_t.\)
- Get weak classifier \(h_t : X \rightarrow \mathbb{R}.\)
- Choose \(\alpha_t \in \mathbb{R}.\)
- Update:

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is a normalization factor

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
\]

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).
\]

Figure 1: The boosting algorithm AdaBoost.
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)
Initialize \(D_1(i) = 1/m\).
For \(t = 1, \ldots, T\):

- Train base learner using distribution \(D_t\).
- Get base classifier \(h_t : X \rightarrow \mathbb{R}\).
- Choose \(\alpha_t \in \mathbb{R}\).
- Update:

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

\[
\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
\]

\[
\epsilon_t = \mathbb{P}_{i \sim D_t(i)}[h_t(x^i) \neq y^i]
\]

\[
\epsilon_t = \sum_{i=1}^{m} D_t(i) \delta(h_t(x_i) \neq y_i)
\]
What α_t to choose for hypothesis h_t?

[Schapire, 1989]

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i))$$

Where $f(x) = \sum_{t} \alpha_t h_t(x)$; $H(x) = \text{sign}(f(x))$
What α_t to choose for hypothesis h_t?

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = \prod_t Z_t$$

Where $f(x) = \sum_t \alpha_t h_t(x); H(x) = \text{sign}(f(x))$

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

[Schapire, 1989]
What α_t to choose for hypothesis h_t?

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i} \exp(-y_if(x_i)) = \prod_t Z_t$$

Where $f(x) = \sum_t \alpha_t h_t(x); H(x) = \text{sign}(f(x))$

If we minimize $\prod_t Z_t$, we minimize our training error

We can tighten this bound greedily, by choosing α_t and h_t on each iteration to minimize Z_t.

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$
What α_t to choose for hypothesis h_t?

We can minimize this bound by choosing α_t on each iteration to minimize Z_t.

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For binary target function, this is accomplished by [Freund & Schapire ’97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Proof: possible homework problem?
Strong, weak classifiers

If each classifier is (at least slightly) better than random

- $\epsilon_t < 0.5$

AdaBoost will achieve zero training error (exponentially fast):

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t} Z_t \leq \exp \left(-2 \sum_{t=1}^{T} (1/2 - \epsilon_t)^2 \right)$$
Boosting results – Digit recognition

- Robust to overfitting
- Test set error decreases even after training error is zero

[Schapire, 1989]
Boosting generalization error bound

\[\text{error}_{true}(H) \leq \text{error}_{train}(H) + \tilde{O} \left(\sqrt{\frac{Td}{m}} \right) \]

- **T** – number of boosting rounds
- **d** – VC dimension of weak learner, measures complexity of classifier
- **m** – number of training examples

[Freund & Schapire, 1996]
Boosting generalization error bound

$$error_{true}(H) \leq error_{train}(H) + \tilde{O}\left(\sqrt{\frac{Td}{m}}\right)$$

- **Contradicts**: Boosting often
 - Robust to overfitting
 - Test set error decreases even after training error is zero
- **Need better analysis tools**
 - we’ll come back to this later in the semester

- T – number of boosting rounds
- d – VC dimension of weak learner, measures complexity of classifier
- m – number of training examples

[Freund & Schapire, 1996]
Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets

©Carlos Guestrin 2005-2009
Discrete and Real Adaboost. on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]
Boosting and Logistic Regression

Logistic regression assumes:

\[P(Y=-1|X) = \frac{1}{1 + \exp(f(x))} \]

And tries to maximize data likelihood:

\[P(D|H) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_if(x_i))} \]

Equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]
Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss
\[\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i))) \]

Boosting minimizes similar loss function!!
\[\frac{1}{m} \sum_{i} \exp(-y_i f(x_i)) \]

Both smooth approximations of 0/1 loss!
Logistic regression and Boosting

Logistic regression:
- Minimize loss fn
 \[\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i))) \]
- Define
 \[f(x) = \sum_j w_j x_j \]
 where \(x_j \) predefined

Boosting:
- Minimize loss fn
 \[\sum_{i=1}^{m} \exp(-y_i f(x_i)) \]
- Define
 \[f(x) = \sum_t \alpha_t h_t(x) \]
 where \(h_t(x_i) \) defined dynamically to fit data
 (not a linear classifier)
- Weights \(\alpha_j \) learned incrementally
What you need to know about Boosting

- Combine weak classifiers to obtain very strong classifier
 - Weak classifier – slightly better than random on training data
 - Resulting very strong classifier – can eventually provide zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
 - Similar loss functions
 - Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier