10-601
Machine Learning

Markov decision processes (MDPs)
What’s missing in HMMs

• HMMs cannot model important aspects of agent interactions:
 - No model for rewards
 - No model for actions which can affect these rewards
• These are actually issues that are faced by many applications:
 - Agents negotiating deals on the web
 - A robot which interacts with its environment
Example: No actions

- Graduate student (20)
- Asst. prof (40)
- Tenured prof (100)
- Google (200)
- On the street (0)
- Dead (0)
Formal definition of MDPs

- A set of states \(\{s_1 \ldots s_n\} \)
- A set of rewards \(\{r_1 \ldots r_n\} \)
- A set of actions \(\{a_1 \ldots a_m\} \)
- Transition probability

\[
P_{i,j}^k = P(q_{t+1} = s_j \mid q_t = i \& h_t = a_k)
\]
Questions

• What is my expected pay if I am in state i
• What is my expected pay if I am in state i and perform action a?
Solving MDPs

• No actions: Value iteration

• With actions: Value iteration, Policy iteration
Value computation

• An obvious question for such models is what is combined expected value for each state
• What can we expect to earn over our life time if we become Asst. prof.?
• What if we go to industry?

Before we answer this question, we need to define a model for future rewards:

• The value of a current award is higher than the value of future awards
 - Inflation, confidence
 - Example: Lottery
Discounted rewards

• The discounted rewards model is specified using a parameter γ

• Total rewards = current reward +

 γ (reward at time $t+1$) +
 γ^2 (reward at time $t+2$) +
 ...
 γ^k (reward at time $t+k$) + ...

 infinite sum
Discounted rewards

- The discounted rewards model is specified using a parameter γ
- Total rewards = current reward +
 \[\gamma \text{ (reward at time } t+1) + \gamma^2 \text{ (reward at time } t+2) + \ldots + \gamma^k \text{ (reward at time } t+k) + \ldots \]
 Converges if $0 < \gamma < 1$
Determining the total rewards in a state

- Define \(J^*(s_i) \) = expected discounted sum of rewards when starting at state \(s_i \)
- How do we compute \(J^*(s_i) \)?

\[
J^*(s_i) = r_i + \gamma X
\]

\[
= r_i + \gamma (p_{i1}J^*(s_1) + p_{i2}J^*(s_2) + \cdots p_{in}J^*(s_n))
\]

Factors expected pay for all possible transitions for step \(i \)

How can we solve this?
Computing $j^*(s_i)$

\[
J^*(s_1) = r_1 + \gamma(p_{11}J^*(s_1) + p_{12}J^*(s_2) + \cdots p_{1n}J^*(s_n))
\]

\[
J^*(s_2) = r_2 + \gamma(p_{21}J^*(s_1) + p_{22}J^*(s_2) + \cdots p_{2n}J^*(s_n))
\]

\[
J^*(s_n) = r_n + \gamma(p_{n1}J^*(s_1) + p_{n2}J^*(s_2) + \cdots p_{nn}J^*(s_n))
\]

- We have n equations with n unknowns
- Can be solved in closed form
Iterative approaches

- Solving in closed form is possible, but may be time consuming.
- It also doesn’t generalize to non-linear models
- Alternatively, this problem can be solved in an iterative manner
- Let’s define $J^t(s_i)$ as the expected discounted rewards after t steps
- How can we compute $J^t(s_i)$?

$$J^1(s_i) = r_i$$

$$J^2(s_i) = r_i + \gamma \left(\sum_k p_{i,k} J^1(s_k) \right)$$

$$J^{t+1}(s_i) = r_i + \gamma \left(\sum_k p_{i,k} J^t(s_k) \right)$$
Iterative approaches

- We know how to solve this!
- Let’s fill the dynamic programming table
- Let’s define \(J^t(s_i) \) as the expected discounted awards after \(t \) steps
- But wait …

This is a never ending task!

\[
J^2(S_i) = r_i + \gamma \left(\sum_k p_{i,k} J^1(s_k) \right)
\]

\[
J^{t+1}(S_i) = r_i + \gamma \left(\sum_k p_{i,k} J^t(s_k) \right)
\]
When do we stop?

\[J^1(S_i) = r_i \]

\[J^2(S_i) = r_i + \gamma \left(\sum_k p_{i,k} J^1(s_k) \right) \]

\[J^{t+1}(S_i) = r_i + \gamma \left(\sum_k p_{i,k} J^t(s_k) \right) \]

Remember, we have a converging function

We can stop when \(|J^{t-1}(s_i) - J^t(s_i)|_\infty < \varepsilon \)

Infinity norm selects maximal element
Example for $\gamma=0.9$

$$J^2(\text{Gr})=20+0.9*(0.6*20+0.2*40+0.2*200)$$

<table>
<thead>
<tr>
<th>t</th>
<th>$J^t(\text{Gr})$</th>
<th>$J^t(\text{P})$</th>
<th>$J^t(\text{Goo})$</th>
<th>$J^t(\text{D})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>40</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>74</td>
<td>87</td>
<td>362</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>141</td>
<td>135</td>
<td>493</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>209</td>
<td>182</td>
<td>600</td>
<td>0</td>
</tr>
</tbody>
</table>
Solving MDPs

• No actions: Value iteration ✓

• With actions: Value iteration, Policy iteration
Adding actions

A Markov Decision Process:
• A set of states \{s_1 \ldots s_n\}
• A set of rewards \{r_1 \ldots r_n\}
• A set of actions \{a_1 \ldots a_m\}
• Transition probability

\[P_{i,j}^k = P(q_{t+1} = s_j \mid q_t = i \& h_t = a_k) \]
Example: Actions

Action A: Leave to Google
Action B: Stay in academia
Questions for MDPs

• Now we have actions
• The question changes to the following:

Given our current state and the possible actions, what is the best action for us in terms of long term payment?
Example: Actions

Action A: Leave to Google
Action B: Stay in academia

So should you leave now (right after class) or should you stay at CMU?
Policy

- A policy maps states to actions.
- An optimal policy leads to the highest expected returns.
- Note that this does not depend on the start state.

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr</td>
<td>B</td>
</tr>
<tr>
<td>Go</td>
<td>A</td>
</tr>
<tr>
<td>Asst. Pr.</td>
<td>A</td>
</tr>
<tr>
<td>Ten. Pr.</td>
<td>B</td>
</tr>
</tbody>
</table>
Solving MDPs with actions

- It could be shown that for every MDP there exists an optimal policy (we won’t discuss the proof).
- Such policy guarantees that there is no other action that is expected to yield a higher payoff.
Computing the optimal policy:

1. Modified value iteration

- We can compute it by modifying the value iteration method we discussed.
- Define p_{ij}^k as the probability of transitioning from state i to state j when using action k
- Then we compute:

$$ J^{t+1}(S_i) = \max_k r_i + \gamma \left(\sum_j p_{i,j}^k J^t(S_j) \right) $$

Also known as Bellman’s equation

Use probabilities associated with action k
Computing the optimal policy: 1. Modified value iteration

- We can compute it by modifying the value iteration method we discussed.
- Define p_{ij}^k as the probability of transitioning from state i to state j when using action k.
- Then we compute:

$$J^{t+1}(S_i) = \max_k r_i + \gamma \left(\sum_j p_{i,j}^k J^t(s_j) \right)$$

Run until convergence
Computing the optimal policy:
1. Modified value iteration

- We can compute it by modifying the value iteration method we discussed.
- Define p_{ij}^k as the probability of transitioning from state i to state j when using action k.
- Then we compute:

$$J^{t+1}(S_i) = \max_k r_i + \gamma \left(\sum_j p_{i,j}^k J^t(s_j) \right)$$

- When the algorithm converges, we have computed the best outcome for each state.
- We associate states with the actions that maximize their return.
Value iteration for $\gamma=0.9$

$$J_2(\text{Gr}) = 20 + 0.9\times\max \{0.2\times20 + 0.8\times200, 0.7\times20 + 0.3\times40\}$$

<table>
<thead>
<tr>
<th>t</th>
<th>$J_t(\text{Gr})$</th>
<th>$J_t(P)$</th>
<th>$J_t(\text{Goo})$</th>
<th>$J_t(D)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>40</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>168(A) 51(B)</td>
<td>87</td>
<td>362</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>311(A) 120(B)</td>
<td>135</td>
<td>493</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>431(A) 189(B)</td>
<td>182</td>
<td>600</td>
<td>0</td>
</tr>
</tbody>
</table>
Computing the optimal policy:

2. Policy iteration

• We can also compute optimal policies by revising an existing policy.
• We initially select a policy at random (mapping from states to actions).
• We re-compute the expected long term reward at each state using the selected policy.
• We select a new policy using the expected rewards and iterate until converges.
Policy iteration: algorithm

- Let $\pi_t(s_i)$ be the selected policy at time t
 1. Randomly chose π_0; set $t = 0$
 2. For each state s_i compute $J^*(s_i)$, the long term expected reward using policy π_t.
 3. Set $\pi_t(s_i) = \max_k r_i + \gamma \left(\sum_j p^k_{i,j} J^*(s_j) \right)$
Policy iteration: algorithm

- Let $\pi_t(s_i)$ be the selected policy at time t

1. Randomly chose π_0; set $t = 0$
2. For each state s_i compute $J^*(s_i)$, the long term expected reward using policy π_t.
3. Set $\pi_t(s_i) = \max_k r_i + \gamma \left(\sum_j p_{i,j} J^*(s_j) \right)$

Once the policy is fixed we are back to rewards only models, so this can be computed using value iteration.

Can be computed using $J^*(s_i)$ for all states.
Value iteration vs. policy iteration

- Depending on the model and the information at hand:
 - If you have a good guess regarding the optimal policy then policy iteration would converge much faster
 - Similarly, if there are many possible actions, policy iteration might be faster
 - Otherwise value iteration is a safer way
Demo

• http://www.cs.cmu.edu/~awm/rlsim/
What you should know

• Models that include rewards and actions
• Value iteration for solving MDPs
• Policy iteration
Partially Observed Markov Decision Processes (POMDPs)

- Same model as MDP except we do not observe the states we are in.
- Thus, we have a distribution over states
- There is an initial distribution for states (initial belief)
- Once we reach a new state and receive a reward we can re-compute a new belief regrading the possible set of states
Example

• If we see 1, we can be in any of several locations.

• However, based on past and future observations we can increase or decrease our belief at a given state.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

POMDPs can be solved by extending the MDP methods to solve for a belief state vector rather than for the original single state MDP.