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Machine Learning

Graphical models and Bayesian
networks



Independence

In our density estimation class (and in the Naive
Bayes classifier class) we discussed at length the
usefulness of the independence assumption

However, we also mentioned its drawbacks



Independence

Independence allows for easier models, learning and
Inference

For example, with 3 binary variables we only need 3
parameters rather than 7.

The saving is even greater if we have many more
variables ...

In many cases it would be useful to assume
iIndependence, even if its not the case

Is there any middle ground?



Bayesian networks

Bayesian networks are directed graphs with nodes representing
random variables and edges representing dependency assumptions

Lets use our movie example: We would like to determine the joint
probability for length, liked and slept in a movie

« Long?

@ h Slept?

Liked?



Bayesian networks: Notations

Bayesian networks are directed acyclic graphs.

Conditional — P(Lo)=0.5

probability tables Conditional

(CPTs) ‘< dependency
P(Li| Lo) = 0.4 @ P(S | Lo) = 0.6
P(Li | —Lo) = 0.7 \ / P(S | -Lo) = 0.2

Random variables



Bayesian networks: Notations

The Bayesian network below represents the following joint
probability distribution:

p(Le, Li,S)=P(Le)P(Li|Le)P(S|Le)

More generally Bayesian network represent the following joint
probability distribution:

pxi---x,) =] L p(x, | Pat)

P(Lo) =0.5

The set of parents of x;

@/ \@

P(S|Lo)=0.6
P(S | —Lo) = 0.2

P(Li| Lo) = 0.4
P(Li | —Lo) = 0.7



Constructing a Bayesian network

How do we go about constructing a network for a
specific problem?

Step 1: Identify the random variables

Step 2: Determine the conditional dependenciesi%

Step 3: Populate the CPTs

Can be learned from observation data!



A example problem

« An alarm system
B — Did a burglary occur?
E — Did an earthquake occur?
A — Did the alarm sound off?
M — Mary calls
J — John calls

« How do we reconstruct the network for this problem?



Factoring joint distributions

« Using the chain rule we can always factor a joint
distribution as follows:

P(A,B,E,J,M) =
P(A|B,E,J,M) P(B,E,J,M) =
P(A|B,E,JM)PB|E,JM)P(E,JM) =
P(A|B,E,J,M) PB|E, JM)P(E|IM)P(I,M)
P(A|B,E,J,M) PB|E, JM)P(E|IMPI]|MP(M)
« This type of conditional dependencies can also be
represented graphically.




A Bayesian network

P(A|B,E,JM) PB | E, JM)P(E |IMP(I|M)P(M)

(W)e—Ae)
Number of parameters: 1 ‘

A: 2N \

B: 2”3 \@
E: 4

J:2 /
M: 1

A total of 31 parameters @ ) \I\D




A better approach

« An alarm system
B — Did a burglary occur?
E — Did an earthquake occur?
A — Did the alarm sound off?
M — Mary calls
J — John calls

« Lets use our knowledge of the domain!



Reconstructing a network

B — Did a burglary occur?

E — Did an earthquake occur?
A — Did the alarm sound off?

M — Mary calls
J —John calls

W)



Reconstructing a network

Number of parameters:
A: 4
B:1l

E: 1

AN
o)

A total of 10 parameters

By relying on domain knowledge
we saved 21 parameters!



Constructing a Bayesian network:
Revisited

Step 1: Identify the random variables
Step 2: Determine the conditional dependencies

- Select on ordering of the variables
- Add them one at a time

- For each new variable X added select the minimal subset of nodes
as parents such that X is independent from all other nodes in the
current network given its parents.

Step 3: Populate the CPTs

- From examples using density estimation



Reconstructing a network

Suppose we wanted to add

a new variable to the

network:

R — Did the radio announce

that there was an @
earthquake?

How should we insert it? @



Example: Bayesian networks for
cancer detection

[Bot-ade 2101 %)
Visit To Asia Smoking
Visit of | 1] Smoker 0 je=p
No Visit “© ‘ : NonSmo!cer 50.0}
l prd N
Tuberculosis Lung Cancer Bronchitis
Present @ - [ [ r Present =~ 0| ( } Present = Tl ]
Absent 990 Absent 45| ‘ Absent 5 ,
\‘1 s ’
Tuberculosis or Cancer
True 3.48 Wl
7 ~ 4 Chest Clinic
» A »
XRay Result Dyspnea
Abnormal | [ l ' Present ¢ ; i
Normal 39.0 [ Absent °©
o




Example: Gene expression
network

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.



Conditional independence

» Two variables x,y are said to be
conditionally independent given a third

variable z if p(x,y|z) = p(X|2)p(y|z)

* In a Bayesian network a variable is

conditionally independent of all other @

variables given it Markov blanket

Markov blanket: All parent, children's
and co-parents of children



Markov blankets: Examples

I I I I
I I I I
Markov blanket for B:
= — 1
E,A - \ ;)
Markov blanket for A: s

B, E, J, M



Bayesian network: Inference

« Once the network is constructed, we can use algorithms

for inferring the values of unobserved variables.

For example, in our previous network the only observed
variables are the phone call and the radio
announcement. However, what we are really interested
In Is whether there was a burglary or not.

How can we determine that?



Inference

« Lets start with a simpler question

- How can we compute a joint distribution from the
network?

- For example, P(B,—E,A,J, —=M)?
* Answer:
- That's easy, lets use the network



Computing: P(B,—E,A,J, —=M)

P(B,—E,A,J, —=M) = p(B):_05 ()1
P(B)P(=E)P(A | B, —E) P(J
| A)P(=M [ A)
= 0.05*0.9*.85*.7*.2 \
P(A|B,E) =.95
= 0.005355 P(A|B,—E) = 85
P(A| - B,E) =
P(A| - B, ﬁE)_ 05 / \
PJIA) )=.7
PUJ|-A) = o

P(M|A) =.8
P(M|—A) = .15



Computing: P(B,—E,A,J, —=M)

P(B,—E,A,J, —M) = P(B)=.05 e
P(B)P(—E)P(A | B, —=E) P(J B

| A)P(=M [ A) \

= 0.05*0.9*.85*.7* ?

We can easily compute a
complete joint distribution.

What about partial /
distributions? Conditional \
distributions?
PUIA))=7 (3 @
P(J|-A) = .05U
P(MJA) )=.8
P(M|—A) = .15

= 0.005355



Inference

We are interested in queries of the form:
PB|J,—-M)

This can also be written as a joint:
P(B|J,—M)= P8 M) \
P(B,J,—-M)+P(-B,J,—M) @

How do we compute the new joint? / \




Inference In Bayesian networks

 We will discuss three methods:
. Enumeration

. Variable elimination

. Stochastic inference



Computing partial joints

P(B,J,—M)
P(B,J,—M)+P(=B,J,—M)

P(B|J,—M) =

Sum all instances with these settings (the
sum is over the possible assignments to the
other two variables, E and A)



Computing: P(B,J, —=M)

P(B,J, —-M) =
P(B,J, -M,AE)+

P(B,J, —M, - A,E) + P(B,J,

“M,A, — E) + P(B,J, =M,
—|A, — E) =

0.0007+0.00001+0.005+0.

0003 = 0.00601

P(B)= 05

- P(E)=.1
P(A|B,E) )=.95 \ /

P(A|B,—E) = .85
P(A| — B,E) )=.5

P(A| - B, = E)=.05 / \

P(J|A) )=7

P(J|-A) = o
P(M|A) )=.8
P(M|—A) = .15



Computing partial joints

P(B,J,—M)

P(B|J,—M) = P(B,J,—M)+P(—B,J,—M)

Sum all instances with these settings (the sum is over the
possible assignments to the other two variables, E and A)

» This method can be improved by re-using calculations
(similar to dynamic programming)

« Still, the number of possible assignments is exponential in
the unobserved variables?

 That is, unfortunately, the best we can do. General querying
of Bayesian networks is NP-complete



Inference Iin Bayesian networks If
NP complete (sketch)

* Reduction from 3SAT
* Recall: 3SAT, find satisfying assignments to the

following problem: (avbvc)a(dv—=bv—=cC)...

What is P(Y=1)?

O

o SRR

P(Xi=1) = (X1 Vv X, Vv X3) Q

P(Y=1) = (X; A X5 A Xg A Xy) \\®//



Inference In Bayesian networks

 We will discuss three methods:
. Enumeration

. Variable elimination

. Stochastic inference



Variable elimination

P(B,J, ﬁlvll_
P(B, J\—M A)E)+

P(B,J, aw,.ﬁ AE) +
P(B, IM, A E) + P(B,J, —M,
— A, ﬁ’E)-

0.0007+0.00001+0.005+0.0003
= 0.00601

Reuse computations
rather than recompute
probabilities

P(B):.OS P(E)- 1
P(A|B,E) )=.95 \ /

P(A|B,—E) = .85
P(A| — B,E) )=.5

P(A| = B, = E)=.05 / \

P(J|A) )=7

P(J|-A) = o
P(M|A) )=.8
P(M|—A) = .15



Computing: P(B,J, ﬁl\/l)

P(B,J, —=M) =
P(B,J, —=M,AE)+ \
P(B,J, =M, = A,E) + P(B,J,

“M,A, — E) + P(B,J, =M,
—|A, — E) -

ZZP(B)P(e)P(a | B,e)P(M \ a)?.] a) / \

Store as a function of a and use
whenever necessary (no need to
recompute each time)



Variable elimination
P(B,J,M) = ZZP(B)P(e)P(a | B,e)P(M | a)P(J | a)
= P(B)ZP(e)Z P(a|B,e)P(M | a)P<J| a)

(M| 4)
{01 \ $

) _[P<J|A>]
fi(A)= P |t

@



Variable elimination
P(B,J,M) = ZZP(B)P(e)P(a | B,e)P(M | a)P(J | a)
= P(B)ZP(e)Z P(a|B,e)P(M | a)P(J| a)

(M| 4) 9
Set f1,(4)= (P(MHJ \
(PWJ]4)
f,m_[PW]

P(B,J,M) = P(B)ZP(e)Z P(a|B.e)f, (a)f,(a) @ @



Variable elimination
=P(B)Y_P(e)), P(a|B.e)f, (a)f (a)

Lets continue with these functions:
We can now define the following function:
Sron(B)=2 1 (@B.e)f ()], (a) /
a
And so we can write:

P(BaJaM):P(B)ZP(e)fA,J,M (B,e) @ @



Variable elimination

P(B,J,M)=P(B))_P(e)f,, ., (Be)

Lets continue with another function:

fE,A J.M (B) = ZP(e)fA JM (B,e)

And finall ite: @

n Inally we can write:

P(BJ.M)=P(B)f, , . (B) \ /
() (m)



Example

P(BaJaM) :P(B)fE,A,J,M (B)
=0. OSZP(e)fAJM(B e)=0.05(0.1f, , ,,(B,e) +0.9f, , ,,(B—e))

P(B)=.05 P(E)=.1

0.05(0.100:95/,(@) i, (@) + 0.05 £, (=) f, () + B (e
0.9(851,(a) f,, (@) + 151,a) f,, ))) % /
P(A|B,E) =.95

P(A|B,-E) = .85
P(A| - B,E) =5
P(A| - B, = E) .05 \
Calling the same
I i PIA) )= 7
function multiple POl-mo o5 PMM=8

times



Final computation

(normalization)

P(B|J,—M) = P(8,J,5M)

P(B,J,—M)+P(=B,J,—M)



Algorithm

e - evidence (the variables that are known)

vars - the conditional probabilities derived from the
network in reverse order (bottom up)

For each var in vars
- factors <- make_factor (var,e)

- If var is a hidden variable then create a new factor by
summing out var

Compute the product of all factors
Normalize



Computational complexity

« We are reusing computations so we are reducing the
running time.

« However, there are still cases in which this algorithm we
lead to exponential running time.

» Consider the case of f,(y, ... y,,). When factoring x out
we would need to account for all possible values of the

y's.

Variable elimination can lead

/ Q
to significant costs saving but Q—' Q
\

its efficiency depends on the

network structure Q/



Inference In Bayesian networks

« We will discuss three methods:
. Enumeration

. Variable elimination
. Stochastic inference



Stochastic inference

« We can easily sample the joint
distribution to obtain possible

instances P(E)=.1

P(B):.OS

1. Sample the free variable
2. For every other variable:
- If all parents have been sampled, \
sample based on conditional P(AB,E) )=.95

attipie P(A|B,—E) = .85
distribution P(A| — B,E) )=.5

P(A| - B, — E) = .05
We end up with a new set of
assignments for B,E,A,J and M

which are a random sample from PJ|A) )=.7

the joint PJ|-A) = 05
P(M|A) )—.8
P(M|-A) = .15



Stochastic inference

« We can easily sample the joint
distribution to obtain possible

instances P(B):_OS P(E)=.1

1. Sample the free variable
2. For every other variable:
- If all parents have been sampled, \
sample based on conditional P(AB,E) )=.95

S P(A|B,—E) = .85
distribution P(A| — B,E) )=.5

P(A| - B, — E) =.05
Its always possible to / \

carry out this sampling
P(JIA) )=.7
procedure, why? POIA) ~ 05

P(M|A) )—.8
P(M|—A) = .15



Using sampling for inference

* Lets revisit our problem: Compute P(B | J,—M)
» Looking at the samples we can count:
- N: total number of samples

- N, : total number of samples in which the condition holds (J,—M)
- Ng: total number of samples where the joint is true (B,J,—M)
 Foralarge enough N
-N./ N~ P(J,—M)
-Ng /N = P(B,J,—M)
* And so, we can set

P(B | J,—~M) = P(B,J,—~M) / P(J,—~M) ~ N, / N.



Using sampling for inference

* Lets revisit our problem: Compute P(B | J,—M)

PY Looklng at the carmmnlac win nqn.nnl inA - N
Problem: What if the condition rarely

- N: total number o
happens?

- N, : total number
_Nj: total number V€ would need lots and lots of

For a large enoug S@mples, and most would be wasted
- N,/ N = P(J,—M)

-Ng /N =~ P(B,J,—M)

And so, we can set

P(B | J,—~M) = P(B,J,—~M) / P(J,—~M) ~ N, / N.



Weighted sampling

Compute P(B | J,—M)
We can manually set the value of J to

land Mto O
This way, all samples will contain the ;
correct values for the conditional \
variables
Problems? @
G )



Weighted sampling

« Compute P(B | J,—M)
« Given an assignment to parents, we

assign a value of 1 to J and O to M.
« We record the probability of this
assignment (w = p,*p,) and we weight \

the new joint sample by w



Weighted sampling algorithm for
computing P(B | J,—=M)

« SetNgN.=0

« Sample the joint setting the valuesforJand M, % = = === ==
compute the weight, w, of this sample

* N.=N.+w
e« IfB=1,Ng=Ngtw —mmm————— |

« After many iterations, set
P(B|J,—M) =Ng /N,



Important points

Bayes rule

Joint distribution, independence, conditional
Independence

Attributes of Bayesian networks
Constructing a Bayesian network
Inference in Bayesian networks



Other inference methods

« Convert network to a polytree

- In a polytree no two nodes have
more than one path between them °

- We can convert arbitrary networks to /
a polytree by clustering (grouping) @
nodes. For such a graph there is a
algorithm which is linear in the number
of nodes

- However, converting into a polytree
can result in an exponential increase

In the size of the CPTs



d-separation

* In some cases it would be useful for us to know under which
conditions two variables are independent of each other

- Helps when trying to do inference
- Can help determine causality from structure

« Two variables x and y are d-separated given a set of variables Z
(which could be empty) if x and y are conditionally independent
given Z

* We denote such conditional independence as I(X,y|Z)



d-separation

 We will give rules to identify d-connected variables. Variables
that are not d-connected are d-separated.

« The following three rules can be used to determine if x and y are
d-connected given Z:

1. If Zis empty then x and y are d-connected if there exists a path
between them does not contain a collider.

2. xandy are d-connected given Z if there exists a path between them
that does not contain a collider and does not contain any member of Z

3. If Z contains a collider or one of its descendents then if a path between
x and y contains this node they are d-connected

A collider node: A'O\@




