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Independence

• In our density estimation class (and in the Naïve 

Bayes classifier class) we discussed at length the 

usefulness of the independence assumption

• However, we also mentioned its drawbacks



Independence

• Independence allows for easier models, learning and 

inference

• For example, with 3 binary variables we only need 3 

parameters rather than 7. 

• The saving is even greater if we have many more 

variables … 

• In many cases it would be useful to assume 

independence, even if its not the case

• Is there any middle ground?



Bayesian networks

• Bayesian networks are directed graphs with nodes representing

random variables and edges representing dependency assumptions

• Lets use our movie example: We would like to determine the joint 

probability for length, liked and slept in a movie

Lo

Li S

Long?

Slept?

Liked?



Bayesian networks: Notations

Le

Li S

P(Lo) = 0.5

P(Li | Lo) = 0.4

P(Li | Lo) = 0.7

P(S | Lo) = 0.6

P(S | Lo) = 0.2

Conditional 

probability tables 

(CPTs)

Conditional 

dependency

Random variables

Bayesian networks are directed acyclic graphs. 



Bayesian networks: Notations

Le

Li S

P(Lo) = 0.5

P(Li | Lo) = 0.4

P(Li | Lo) = 0.7

P(S | Lo) = 0.6

P(S | Lo) = 0.2

The Bayesian network below represents the following joint 

probability distribution:



p(Le,Li,S)  P(Le)P(Li |Le)P(S |Le)

More generally Bayesian network represent the following joint 

probability distribution:



p(x1 xn )  p(xi |Pa(xi))
i



The set of parents of xi

in the graph



Constructing a Bayesian network

• How do we go about constructing a network for a 

specific problem?

• Step 1: Identify the random variables

• Step 2: Determine the conditional dependencies

• Step 3: Populate the CPTs

Can be learned from observation data!



A example problem

• An alarm system

B – Did a burglary occur?

E – Did an earthquake occur?

A – Did the alarm sound off?

M – Mary calls

J – John calls

• How do we reconstruct the network for this problem?



Factoring joint distributions

• Using the chain rule we can always factor a joint 

distribution as follows:

P(A,B,E,J,M) = 

P(A | B,E,J,M) P(B,E,J,M) =

P(A | B,E,J,M) P(B | E,J,M) P(E,J,M) = 

P(A | B,E,J,M) P(B | E, J,M) P(E | J,M) P(J,M)

P(A | B,E,J,M) P(B | E, J,M) P(E | J,M)P(J | M)P(M)

• This type of conditional dependencies can also be 

represented graphically.



A Bayesian network

E

J M

A B

Number of parameters:

A: 2^4

B: 2^3

E: 4 

J: 2

M: 1

A total of 31 parameters

P(A | B,E,J,M) P(B | E, J,M) P(E | J,M)P(J | M)P(M)



A better approach

• An alarm system

B – Did a burglary occur?

E – Did an earthquake occur?

A – Did the alarm sound off?

M – Mary calls

J – John calls

• Lets use our knowledge of the domain!



Reconstructing a network

A

J M

B E
B – Did a burglary occur?

E – Did an earthquake occur?

A – Did the alarm sound off?

M – Mary calls

J – John calls



Reconstructing a network

A

J M

B ENumber of parameters:

A: 4

B: 1

E: 1

J: 2

M: 2

A total of 10 parameters

By relying on domain knowledge 

we saved 21 parameters!



Constructing a Bayesian network: 

Revisited

• Step 1: Identify the random variables

• Step 2: Determine the conditional dependencies

- Select on ordering of the variables

- Add them one at a time

- For each new variable X added select the minimal subset of nodes 

as parents such that X is independent from all other nodes in the 

current network given its parents.

• Step 3: Populate the CPTs

- From examples using density estimation



Reconstructing a network

A

J M

B E

Suppose we wanted to add 

a new variable to the 

network:

R – Did the radio announce 

that there was an 

earthquake? 

How should we insert it?

R



Example: Bayesian networks for 

cancer detection 



Example: Gene expression 

network

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.



Conditional independence

A

J M

B E• Two variables x,y are said to be 

conditionally independent given a third 

variable z if p(x,y|z) = p(x|z)p(y|z) 

• In a Bayesian network a variable is 

conditionally independent of all other 

variables given it Markov blanket

Markov blanket: All parent, children's 

and co-parents of children 



Markov blankets: Examples

A

J M

B E
Markov blanket for B: 

E, A

Markov blanket for A: 

B, E, J, M



Bayesian network: Inference

• Once the network is constructed, we can use algorithms 

for inferring the values of unobserved variables.

• For example, in our previous network the only observed 

variables are the phone call and the radio 

announcement. However, what we are really interested 

in is whether there was a burglary or not.

• How can we determine that?



Inference

• Lets start with a simpler question

- How can we compute a joint distribution from the 

network?

- For example, P(B,E,A,J, M)?

• Answer:

- That’s easy, lets use the network



Computing: P(B,E,A,J, M)

A

J M

B E

P(B)=.05
P(E)=.1

P(A|B,E) =.95

P(A|B,E) = .85

P(A|  B,E) =.5

P(A|  B,  E) = .05

P(J|A) )=.7

P(J|A) = .05
P(M|A) =.8

P(M|A) = .15

P(B,E,A,J, M) = 

P(B)P(E)P(A | B, E) P(J 

| A)P(M | A)

= 0.05*0.9*.85*.7*.2

= 0.005355



Computing: P(B,E,A,J, M)

A

J M

B E

P(B)=.05
P(E)=.1

P(A|B,E) )=.95

P(A|B,E) = .85

P(A|  B,E) )=.5

P(A|  B,  E) = .05

P(J|A) )=.7

P(J|A) = .05
P(M|A) )=.8

P(M|A) = .15

P(B,E,A,J, M) = 

P(B)P(E)P(A | B, E) P(J 

| A)P(M | A)

= 0.05*0.9*.85*.7*.2

= 0.005355
We can easily compute a  

complete joint distribution. 

What about partial 

distributions?  Conditional 

distributions?



Inference

• We are interested in queries of the form:

P(B | J,M)

• This can also be written as a joint:

• How do we compute the new joint?

),,(),,(

),,(
),|(

MJBPMJBP

MJBP
MJBP






A

J M

B E



Inference in Bayesian networks

• We will discuss three methods:

1. Enumeration 

2. Variable elimination

3. Stochastic inference



Computing partial joints

),,(),,(

),,(
),|(

MJBPMJBP

MJBP
MJBP






Sum all instances with these settings (the 

sum is over the possible assignments to the 

other two variables, E and A)



Computing: P(B,J, M)

A

J M

B E

P(B)=.05
P(E)=.1

P(A|B,E) )=.95

P(A|B,E) = .85

P(A|  B,E) )=.5

P(A|  B,  E) = .05

P(J|A) )=.7

P(J|A) = .05
P(M|A) )=.8

P(M|A) = .15

P(B,J, M) = 

P(B,J, M,A,E)+ 

P(B,J, M,  A,E) + P(B,J, 

M,A,  E) + P(B,J, M, 

 A,  E) =

0.0007+0.00001+0.005+0.

0003 = 0.00601



Computing partial joints

),,(),,(

),,(
),|(

MJBPMJBP

MJBP
MJBP






Sum all instances with these settings (the sum is over the 

possible assignments to the other two variables, E and A)

• This method can be improved by re-using calculations 

(similar to dynamic programming)

• Still, the number of possible assignments is exponential in 

the unobserved variables?

• That is, unfortunately, the best we can do. General querying 

of Bayesian networks is NP-complete



Inference in Bayesian networks if 

NP complete (sketch)

• Reduction from 3SAT

• Recall: 3SAT, find satisfying assignments to the 

following problem: (a  b  c)  (d   b   c) …

P(xi=1) = 0.5

P(xi=1) = (x1  x2  x3)

P(Y=1) = (x1  x2  x3  x4) 

What is P(Y=1)?

Y



Inference in Bayesian networks

• We will discuss three methods:

1. Enumeration 

2. Variable elimination

3. Stochastic inference



Variable elimination

Reuse computations 

rather than recompute 

probabilities

A

J M

B E

P(B)=.05
P(E)=.1

P(A|B,E) )=.95

P(A|B,E) = .85

P(A|  B,E) )=.5

P(A|  B,  E) = .05

P(J|A) )=.7

P(J|A) = .05
P(M|A) )=.8

P(M|A) = .15

P(B,J, M) = 

P(B,J, M,A,E)+ 

P(B,J, M,  A,E) + 

P(B,J,M,A,  E) + P(B,J, M, 

 A,  E) =

0.0007+0.00001+0.005+0.0003 

= 0.00601



Computing: P(B,J, M)

A

J M

B E
P(B,J, M) = 

P(B,J, M,A,E)+ 

P(B,J, M,  A,E) + P(B,J, 

M,A,  E) + P(B,J, M, 

 A,  E) =



P(B)P(e)
e


a

 P(a |B,e)P(M | a)P(J | a)

Store as a function of a and use 

whenever necessary (no need to 

recompute each time)



Variable elimination

A

J M

B E


P(B,J,M)  P(B)P(e)
e


a

 P(a |B,e)P(M | a)P(J | a)

Set:



fM (A) 
P(M | A)

P(M |A













fJ (A) 
P(J | A)

P(J |A













 P(B) P(e)
a


e

 P(a |B,e)P(M | a)P(J | a)



Variable elimination

A

J M

B E



P(B,J,M)  P(B)P(e)
e


a

 P(a |B,e)P(M | a)P(J | a)

Set:



fM (A) 
P(M | A)

P(M |A













fJ (A) 
P(J | A)

P(J |A













 P(B) P(e)
a


e

 P(a |B,e)P(M | a)P(J | a)



P(B,J,M)  P(B) P(e)
a


e

 P(a |B,e) fM (a) fJ (a)



Variable elimination

A

J M

B E
Lets continue with these functions:

 P(B) P(e)
a


e

 P(a |B,e) fM (a) fJ (a)



fA ,J ,M (B,e)  fA (a,B,e) fJ (a) fM (a)
a


We can now define the following function:



fA (a,B,e)  P(a |B,e)

And so we can write:



P(B,J,M)  P(B) P(e) fA,J ,M (B,e)
e





Variable elimination

A

J M

B E

Lets continue with another function:

And finally we can write:



fE ,A,J ,M (B)  P(e)
e

 fA,J ,M (B,e)



P(B,J,M)  P(B) P(e) fA,J ,M (B,e)
e





P(B,J,M)  P(B) fE,A,J ,M (B)



Example

J

P(B)=.05
P(E)=.1

P(A|B,E) =.95

P(A|B,¬E) = .85

P(A| ¬ B,E) =.5

P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7

P(J| ¬ A) = .05
P(M|A) =.8

P(M| ¬ A) = .15

M

A

B E

P(B,J,M)  P(B) fE,A,J ,M (B)



 0.05 P(e) fA,J ,M (B,e)  0.05(0.1
e

 fA,J ,M (B,e) 0.9 fA,J ,M (B,e))



0.05(0.1(0.95 fJ (a) fM (a) 0.05 fJ (a) fM (a))

0.9(.85 fJ (a) fM (a) .15 fJ (a) fM (a)))

Calling the same 

function multiple 

times



Final computation 

(normalization)

),,(),,(

),,(
),|(

MJBPMJBP

MJBP
MJBP








Algorithm

• e - evidence (the variables that are known)

• vars - the conditional probabilities derived from the 

network in reverse order (bottom up)

• For each var in vars

- factors <- make_factor (var,e)

- if var is a hidden variable then create a new factor by 

summing out var

• Compute the product of all factors

• Normalize



Computational complexity

• We are reusing computations so we are reducing the 

running time.

• However, there are still cases in which this algorithm we 

lead to exponential running time.

• Consider the case of fx(y1 … yn). When factoring x out 

we would need to account for all possible values of the 

y’s.

Variable elimination can lead 

to significant costs saving but 

its efficiency depends on the 

network structure



Inference in Bayesian networks

• We will discuss three methods:

1. Enumeration 

2. Variable elimination

3. Stochastic inference



Stochastic inference

• We can easily sample the joint 

distribution to obtain possible 

instances 

1. Sample the free variable

2. For every other variable:

- If all parents have been sampled,

sample based on conditional 

distribution

We end up with a new set of 

assignments for B,E,A,J and M 

which are a random sample from 

the joint

A

J M

B E

P(B)=.05
P(E)=.1

P(A|B,E) )=.95

P(A|B,E) = .85

P(A|  B,E) )=.5

P(A|  B,  E) = .05

P(J|A) )=.7

P(J|A) = .05
P(M|A) )=.8

P(M|A) = .15



Stochastic inference

• We can easily sample the joint 

distribution to obtain possible 

instances 

1. Sample the free variable

2. For every other variable:

- If all parents have been sampled,

sample based on conditional 

distribution A

J M

B E

P(B)=.05
P(E)=.1

P(A|B,E) )=.95

P(A|B,E) = .85

P(A|  B,E) )=.5

P(A|  B,  E) = .05

P(J|A) )=.7

P(J|A) = .05
P(M|A) )=.8

P(M|A) = .15

Its always possible to 

carry out this sampling 

procedure, why?



Using sampling for inference

• Lets revisit our problem: Compute P(B | J,M)

• Looking at the samples we can count:

- N: total number of samples

- Nc : total number of samples in which the condition holds (J,M)

- NB: total number of samples where the joint is true (B,J,M)

• For a large enough N

- Nc / N  P(J,M)

- NB / N  P(B,J,M)

• And so, we can set

P(B | J,M) = P(B,J,M) / P(J,M)  NB / Nc



Using sampling for inference

• Lets revisit our problem: Compute P(B | J,M)

• Looking at the samples we can cound:

- N: total number of samples

- Nc : total number of samples in which the condition holds (J,M)

- NB: total number of samples where the joint is true (B,J,M)

• For a large enough N

- Nc / N  P(J,M)

- NB / N  P(B,J,M)

• And so, we can set

P(B | J,M) = P(B,J,M) / P(J,M)  NB / Nc

Problem: What if the condition rarely 

happens?

We would need lots and lots of 

samples, and most would be wasted



Weighted sampling

• Compute P(B | J,M)

• We can manually set the value of J to 

1 and M to 0

• This way, all samples will contain the 

correct values for the conditional 

variables

• Problems? A

J M

B E



Weighted sampling

• Compute P(B | J,M)

• Given an assignment to parents, we 

assign a value of 1 to J and 0 to M.

• We record the probability of this 

assignment (w = p1*p2) and we weight 

the new joint sample by w

A

J M

B E



Weighted sampling algorithm for 

computing P(B | J,M)

• Set NB,Nc = 0

• Sample the joint setting the values for J and M, 

compute the weight, w, of this sample 

• Nc = Nc+w

• If B = 1, NB = NB+w

• After many iterations, set

P(B | J,M) = NB / Nc



Important points

• Bayes rule

• Joint distribution, independence, conditional 

independence

• Attributes of Bayesian networks

• Constructing a Bayesian network

• Inference in Bayesian networks



Other inference methods

• Convert network to a polytree

- In a polytree no two nodes have 

more than one path between them

- We can convert arbitrary networks to 

a polytree by clustering (grouping) 

nodes. For such a graph there is a 

algorithm which is linear in the number 

of nodes

- However, converting into a polytree 

can result in an exponential increase 

in the size of the CPTs

A

J M

B E

A

J M

B E



d-separation
• In some cases it would be useful for us to know under which 

conditions two variables are independent of each other

- Helps when trying to do inference

- Can help determine causality from structure 

• Two variables x and y are d-separated given a set of variables Z 

(which could be empty) if x and y are conditionally independent 

given Z

• We denote such conditional independence as I(x,y|Z)



d-separation
• We will give rules to identify d-connected variables. Variables 

that are not d-connected are d-separated. 

• The following three rules can be used to determine if x and y are 

d-connected given Z:

1. If Z is empty then x and y are d-connected if there exists a path 

between them does not contain a collider.

2. x and y are d-connected given Z if there exists a path between them 

that does not  contain a collider and does not contain any member of Z

3. If Z contains a collider or one of its descendents then if a path between 

x and y contains this node they are d-connected 

X Y

A collider node:


