

CARNEGIE MELLON UNIVERSITY

Balancing Batteries, Power, and Performance:
System Issues in CPU Speed-Setting for

Mobile Computing

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL AND COMPUTER ENGINEERING

by

Thomas L. Martin

Advisor: Professor Daniel P. Siewiorek

Pittsburgh, Pennsylvania

August, 1999

 Thomas L. Martin, 1999

Typographical corrections, January, 2001

iii

Abstract
This thesis studies the problem of balancing power and performance in mobile computers,

specifically, trading off power for performance by CPU speed-setting. The traditional

approach to power-performance trade-offs assumes that batteries and memory bandwidth

are ideal and focuses on lowering the energy per operation. This research, however, shows

that non-ideal battery and performance behavior must be considered to properly balance

power and performance, and that computations per battery life is a better metric for power-

performance trade-offs than energy per operation.

The thesis begins with a description of non-ideal battery properties that can affect power-

performance trade-offs and then presents models for those properties. The models delin-

eate regions where batteries can be treated ideally and where their non-ideal behavior must

be considered. Furthermore, the models show that peak power rather than average power

determines the available battery capacity. Thus, the first major result is that decreasing a

mobile computer’s active power will increase the battery life more than decreasing its idle

power, even if both reduce the average power by the same amount.

The thesis then shows that the memory system also has an impact on CPU speed-setting.

Because of limits in memory bandwidth, code performance will not scale with CPU speed

when there are a considerable number of accesses to main memory. The second major

result is to show that, because of non-ideal memory performance and non-ideal battery

capacity, the results of some experiments are nearly a factor of four less for a real system

than what would be expected using the ideal assumptions. For those experiments, the com-

putations per discharge is expected to increase by 230%, but instead the measured results

show a 37% decrease.

Consequently, a system-level approach to CPU speed-setting should account for the non-

idealities of both the memory and the battery. The final major result is an outline of a real-

istic method for CPU speed-setting, one that accounts for non-ideal memory and battery

behavior by using performance-monitoring registers and battery “gas gauge” integrated

circuits.

iv

Acknowledgments

My advisor and committee were the people most directly involved with the completion of my dis-

sertation. Dan Siewiorek patiently shaped this work as it developed through a series of false starts

and dead ends. I benefited greatly from his ability to approach problems from many different

directions. Dan’s sense of the importance of personal relations over research concerns will be

something for me to live up to as I set out on my own. As for my committee, Don Thomas gave

me a great deal of latitude when I was his teaching assistant, and gave me a fine example of how

to blend zest and humor in the classroom with high standards for his students. Phil Koopman sent

me a steady stream of related work, prodded me with questions, and answered my questions, both

technical and professional. Mootaz Elnozahy always had an open door when he was on campus,

and his questions while I was writing helped me remember that there was a big picture and what it

looked like.

A dissertation is the culmination of years of work, not just at the institution where the degree is

granted, and not just by the person writing it. My graduate studies would not have been possible

without the able teaching of Dennis Cornelius, Gary Weiss, Ranga Vemuri, and Phil Wilsey. Mr.

C. drove me over most of Ohio for science fairs and lectures, and taught me that where there’s

smoke there’s science; Gary whipped up a pile of recipes in his calculus kitchen that whetted my

mental appetite; Ranga designed a new VLSI curriculum and taught most of it to me; and Wilsey

first introduced me to computer architecture and gave me sound advice over the years.

My work could not have been completed without a substantial amount of funding, hardware, and

software from outside sources, for which I am grateful. The National Science Foundation funded

my studies for three years with a fellowship, and funded the Engineering Design Research Center

which was a home to me and the wearable computing project of which I was a member. Compaq’s

v

Western Research Lab donated two Itsy computers to me, without which I could not have com-

pleted this work, and the members of the Itsy team provided technical support, especially Bill

Hamburgen, Marc Viredaz, and Debby Wallach. Marc Doyle of the Department of Chemical

Engineering at U.C. Berkeley provided the Li-ion battery model described in Chapter 3. Mark

Weiser and Brent Welch of Xerox PARC gave me their software and traces for low power CPU

scheduling.

A number of people at Carnegie Mellon provided advice and support over the years, both techni-

cal and personal. Gennady Neplotnik gave me a detailed etymology of the Russian saying in

Chapter 3. Randy Casciola helped me with hardware and equipment, Rhonda Moyer solved my

procurement problems, and Laura Forsyth found Dan for me when I needed him; all became my

good friends over the years. Matt Weiss and Josh Silverman were always ready to roll up their

sleeves and go to the archives with me for research, a necessary complement to my practical work

in the lab. A string of office mates answered my questions and put up with my (sugar and writing

induced) ramblings: Jim Beck, Forrest Chamberlain, and Jason Lee in the early days, and later

Grace McNally, LeMonté Green, John Dorsey, and Jolin Warren. The late Mrs. Lydia Gugliotta

gave me the pen that I used while filling notebooks over the years and writing the rough drafts of

the dissertation.

My parents and siblings began my education by teaching me to talk, much to their later chagrin.

They also bought me a telescope, took me to Cape Kennedy, and looked the other way when I dis-

mantled clocks and radios, teaching me lessons that I could not have learned in a classroom. They

smiled when I told them repeatedly for over a year that I needed only two more months to finish,

smiling as only people who love me could.

Finally, Karen O’Kane became the love of my life when I came to graduate school. I would not

have finished without her. We were a two-dissertation household, not always an easy situation, but

she helped me through it with laughter, fortitude, and love.

Thank you, all of you.
TLM
March 13, 1999

Contents

Abstract...iii
Acknowledgments...iv

1. Introduction..1
1.1. Scope of this research...3
1.2. Organization..5
1.3. Research Contributions...5

2. Related Work...7
2.1. Low power software...7
2.2. Low power hardware..10
2.3. Battery models..12

2.3.1. Constant load model..13
2.3.2. Variable load models...13
2.3.3. Kinetic Battery Model (KiBaM)..14
2.3.4. SPICE model..15
2.3.5. Battery Energy Storage Test (BEST) model..16
2.3.6. Doyle’s model..17

2.4. Crossing the boundary between battery and hardware/software....................................18

3. Battery behavior and modeling..19
3.1. Ideal battery properties and discharge time estimates..19
3.2. Non-ideal battery properties...21
3.3. Regions of operation...23
3.4. Battery-related Assumptions to Be Used Throughout the Dissertation..........................27

3.4.1. Type of load..27
3.4.2. Type of battery...29

3.5. Results with Doyle’s variable load model...29
3.6. Summary...38

4. A system approach to CPU speed-setting..40
4.1. Work ratio...41
4.2. Work ratio results..46

4.2.1. Navigator 1 results...47
4.2.2. Simple circuit results..48

4.3. Non-ideal performance effects..50
4.3.1. Details of changing the clock speed on the Itsy...51
4.3.2. Experimental set up..52
4.3.3. Itsy results..53

4.4. Total system power with variable-voltage CPU...58
4.5. Summary...61

5. Towards A General Purpose CPU Speed-setting Policy...64
5.1. Goals of a CPU speed-setting policy..65
5.2. Determining the lower bound on speed..67

5.3. Interactions of the three factors...69
5.4. A general purpose method for finding the lower bound...71
5.5. System features for implementing a speed-setting policy..77
5.6. Summary...78

6. Conclusion...80
6.1. Summary...80
6.2. Summary of contributions...81
6.3. Future work...82

Appendix A. Derivation of the work ratio...85

Appendix B. Comparison of the work ratio to existing metrics..87

Appendix C. Brief review of the properties of batteries..89

Appendix D. Glossary..103

Appendix E. Source code listings..106

Bibliography ...116

1

Chapter 1

Intr oduction

“Energy is eternal delight.”

William Blake

The ongoing miniaturization of electronic components has fueled the growth of the mobile

computing industry over the last decade [9]. Hand-held and wearable computers are now

available with computing performance comparable to desktop systems of only a few years

ago. A major design constraint of the designers of mobile systems is the size and weight of

batteries [65]. The size and weight limitations are mainly due to two factors. The first is

the relatively slow growth of the specific energy and energy density of the battery technol-

ogies [9], which are within a factor of 2-3 of their theoretical limits [15][52]. The second

is the increasing power consumption of the hardware [9]. Mobile system designers have

typically approached the problem by attempting to reduce the power consumption for a

given level of performance or to increase the performance for a given level of power con-

sumption, as exemplified by [9]. The result has been that a typical high-end notebook

computer had a battery life of less than 3 hours in both 1991 and 1999: 25 out of 27 note-

books in a 1991 review had battery lives of less than 3 hours [64], as did 25 out of 51 note-

books tested in a 1999 review [57]. (45 out of 51 had lives of less than 4 hours.) Users of

portable systems find that there is not enough energy available for them to have eternal

delight.

The goal of this work is to incorporate models of power source behavior into existing sys-

Chapter 1: Introduction 2

tem models in order to better understand the trade-offs between power and performance.

The motivating observation is that the capacity of a battery, the amount of energy deliv-

ered before the battery must be recharged, tends to decrease as the power of the battery

load increases. Currently, designers of mobile computers implicitly assume that the bat-

tery capacity is constant for all loads, i.e. that the energy delivered by the battery does not

depend on the rate at which the energy is delivered, by using energy per operation to eval-

uate power-performance trade-offs. If battery capacity were taken into account, these

trade-offs would sometimes be made differently. This thesis introduces the idea that, once

the system response time is adequate, the number of computations performed in a dis-

charge cycle is the major concern of users. The computations per discharge is the metric

by which power-performance trade-offs should be judged, as it captures important aspects

of both battery capacity and system performance.

The computations per discharge is essentially the battery’s capacity divided by the energy

per operation for a given computation. When evaluating a proposed modificationx from a

system perspective, the three major factors in the computations per discharge are system

power as a function of the modification,SystemPower(x); battery capacity as a function of

system power, BatteryCapacity(SystemPower(x)); and application performance as a func-

tion of the modification,Performance(x). The relationship between these factors and the

computations per discharge is given by

where the battery capacity is given in Watt-hours per discharge, the power in Watts, and

the performance in computations per hour. Then the units of

BatteryCapacity(SystemPower(x))/SystemPower(x) is hours per discharge, which when

multiplied byPerformance(x)gives units of computations per discharge.

Computations per Disch e x()arg
BatteryCapaci ty SystemPower x()()

SystemPower x()
--- Per formance x()×=

Chapter 1: Introduction 3

This dissertation will focus mainly on the battery capacity function, describing the regions

of operation where it is ideal and where it is non-ideal, providing analytical models and

practical rules for mobile system designers. This dissertation will also discuss typical

assumptions about system power and performance, and when these assumptions may be

invalid. The three factors will be used to consider the problem of CPU speed-setting, first

showing that previous approaches have been simplistic, and then outlining the elements of

a more realistic approach.

CPU speed-setting has been chosen as the example for the dissertation because assuming

ideal battery behavior results in a much different solution than if battery behavior is non-

ideal. All of the previous work on the problem has stated that it is “useless” to set the CPU

speed at less than its maximum frequency if the CPU voltage is not also reduced. This dis-

sertation will show simple cases where setting the CPU speed is not useless, even with a

fixed voltage, because of non-ideal battery and performance behavior. Finally, the disserta-

tion proposes a realistic policy for CPU speed-setting, one that takes into account both

non-ideal battery and performance behavior.

1.1 Scope of this research

This research spans several areas of interest to designers of mobile systems. Figure 1.1

shows the hierarchy of those areas. The areas above the shaded line are concerned with

power consumers. A common feature of the previous work in these areas is the emphasis

on lowering average power. The areas below the shaded line are related to thepower

sources.

The top level of the consumers hierarchy is low power software, which includes reducing

power consumption by changing algorithms, reducing performance needs, and re-compil-

ing to use lower power instructions. The bottom level of the consumer hierarchy, low

power hardware, includes providing new mechanisms for power savings to the higher lev-

els and implementing novel circuit structures or devices. Power management, the explicit

Chapter 1: Introduction 4

scheduling of device accesses and shutdowns to save power, may be implemented in hard-

ware, software, or some combination of the two.

The upper level of the power sources hierarchy, battery modeling, deals mainly with

abstracting from the behavior of batteries to predict their discharge times. Most battery

models have been created to aid battery designers in optimizing cell parameters. The lower

level of the source hierarchy is electrochemistry. Here new battery families are created,

increasing the energy per mass and energy per volume available for mobile systems. The

research at this level also includes safety and environmental issues, cyclability (the num-

ber of charge-discharge cycles a battery can withstand), and manufacturability.

This dissertation bridges the boundary between sources and consumers, incorporating

knowledge of the source behavior into the behavior of the consumers where appropriate.

This differs from the most of the previous work in the area, which, with the exception of

battery monitoring hardware [4][24] and some recent work in setting operating voltage

levels for CMOS integrated circuits [10][58], failed to make a connection between con-

sumers and sources.

Power Management
Low Power Hardware

Battery Models

Electrochemistry

Low Power Software

 Figure 1.1 Hierarchy of Areas of Related Work

P
o

w
e

r
C

o
n

su
m

e
rs

P
o

w
e

r
S

o
u

rc
e

s

Chapter 1: Introduction 5

1.2 Organization

The dissertation takes a “bottom-up” approach, treating each of the factors of computa-

tions per discharge separately before dealing with them together. The organization of the

remainder of the dissertation is as follows:

Chapter 2 covers the related work in low power hardware and software and in battery

modeling.

Chapter 3 discusses the power sources, including battery behavior and models for simulat-

ing that behavior. The models are then used to show that peak power rather than average

power determines battery capacity.

Chapter 4 explores the performance and power of a system as a function of its CPU clock

frequency using an analytical expression called thework ratio and presents the results of

continuous discharge experiments using a variety of systems.

Chapter 5 presents a generalized form of the work ratio, discusses useful system features

to support CPU speed-setting, and describes an operating system policy for setting the

CPU speed dynamically.

Chapter 6 summarizes the contributions of the thesis and discusses avenues for future

work in the area. The latter includes investigating the relationship between bounds on

computing power and power sources, creating a framework for profiling application power

usage, and incorporating models of battery behavior in other areas, such as autonomous

mobile robotics.

1.3 Research Contributions

The major contribution of this research is to show that non-ideal battery and system

behavior must be considered when making power-performance trade-offs in mobile com-

Chapter 1: Introduction 6

puting. The specific contributions to the areas of low power and mobile computer system

design include the following:

• Regions of ideal/non-ideal battery behavior are delineated, allowing system design-
ers to understand when measuring only average power is adequate, and when
dynamic power must also be considered.

• Typical bounds on the approximate effect of battery capacity loss are given.

• Continuous discharge behavior is shown to be a better estimate of the computations
completed during an intermittent discharge than average power.

• Reducing idle power is found to have less of an effect than reducing active power
when the active power lies in the non-ideal range of battery behavior.

• It is the only system level power research to use battery discharge experiments to
verify predictions.

• The memory hierarchy is shown to be an important consideration when setting the
CPU speed.

• A realistic policy for dynamically setting the CPU speed is described.

7

Chapter 2

Related Work

“In making the handle of an axe,

By cutting wood with an axe

The model is indeed near at hand.”

--Lu Ji, as translated by Gary Snyder

The three areas most closely related to the topic of this thesis are low power software, low

power hardware, and battery modeling. Low power software and hardware lie in the upper

portion of the hierarchy shown in Chapter 1 (power consumers), while battery modeling

lies in the lower portion (power sources). The last section of the chapter covers work that

spans the gap between the consumers and sources.

2.1 Low power software

The work in the area of low power software includes power-savings and awareness in

applications, compilation, and operating systems. The consensus is that the potential for

power savings in software is greater than the potential for savings in hardware, but that the

software savings are more difficult to achieve [40]. Hence, what is evident in the following

sections is that more work has been done in saving power at the lower levels of the soft-

ware, i.e. at the operating systems and compilation levels.

The potential for algorithmic changes to save power is considered to be large. The choice

of algorithm constrains the hardware and power savings achieved in hardware in two

ways: First, if one algorithm takes longer to execute than another, then the system will

Chapter 2: Related Work 8

consume more energy because it is active longer. Second, if an algorithm blindly uses

resources, those resources cannot be put into low power idle modes. A trivial example of

this is a routine which polls a device rather than using interrupts. The related work at the

algorithmic level thus looks to reduce performance and resource requirements. At this

time, researchers are still trying to gain an understanding of how application software

affects power consumption. To that end, Flinn and Satyanarayanan describe a tool for pro-

filing the energy usage of applications for mobile computing and correlating dynamic

power traces to procedure call traces [23], Ong and Yan analyze the memory usage of

basic searching and sorting algorithms and the usage’s effect on power consumption [54],

and Wuytack et al. discuss memory transformations to lower communications costs [73].

Most of the work in low power software has been in the operating system (OS), specifi-

cally, utilizing power management features of the underlying hardware. The OS is in a bet-

ter position to judge whether a device should be put into a low power mode than the device

itself is, because it has a view of the overall state of the system. The OS is also in a better

position to judge than an application because it can balance the needs of several applica-

tions. Furthermore, if the OS makes the power management decisions then the applica-

tions do not need to be modified. The Advanced Power Management specification allows

the OS to manage low power hardware, especially in Microsoft Windows [36]. Lorch and

Smith consider transition strategies for a number of different subsystems, especially

within the constraints of the design philosophy of MacOS [45]. Paleologo et al. consider

the overhead requirements of making a transition from one power management state to

another and introduce a stochastic model for evaluating power management policies [55].

Hardware aspects of power management will be considered in Section 2.2.

Most of the work in power issues of the operating system has been concerned with power

management; very little has considered power-performance trade-offs. The major power-

performance trade-off under OS control to be treated previously is CPU speed-setting, a

topic central to this dissertation.

Chapter 2: Related Work 9

The previous work in CPU speed-setting [59][72][74] makes the following assumptions:

• Performance is proportional to clock frequency f.

• Power is proportional tofCV2, whereC is capacitance andV is voltage.

Given these two assumption, the previous work shows that if the voltageV is held constant

while the clock frequency is changed, then the energy per operation is constant for all fre-

quencies. If there are other subsystems besides the CPU, then the energy per operation

decreases as the frequency increases and the CPU should be run as fast as possible. There-

fore, according to the previous work, reducing the CPU frequency will not save energy if

the voltage is held constant while the frequency is changed. For speed-setting to be useful,

the CPU must decrease the voltage as well as the frequency [72]. If both are changed by a

factors, then the energy per operation will change by a factor ofs2. Thus running as

slowly as possible will minimize the energy per operation. The previous work describes

policies for setting the speed based upon these assumptions [31][72]. Each of the policies

looks at windows of time in the range of 10 ms to 100 ms, and in each window of time

tries to run as slowly as possible, i.e. to reduce the idle time to zero. If the speed is set too

slow to complete all the work for the current window, then the speed is increased to com-

plete that work in the next window of time. In this way, latency can only increase by the

window size. The major differences between the policies is in the prediction of the work

for the next window of time. The common feature of all the policies is that the idle time is

the only variable they consider when determining the CPU speed, which neglects several

practical aspects of the problem, as this dissertation will show.

Weiser et al. introduce several policies for setting CPU speed [72]. The major problem for

them is predicting the amount of work to be completed in the next window. Any work left

over from the current window because of running too slowly has to be completed in the

next window, thus maintaining the response time as seen by the user. Running too slowly

is found to increase the energy consumption because of the faster speed required in the

Chapter 2: Related Work 10

next window to complete any leftover cycles. Weiser et al. uses trace-driven simulation to

judge the quality of the predictions for several policies, showing savings of up to 70% for

CPU energy consumption. The set of traces was collected from engineering workstations.

Several other groups have since offered improvements to the policies of Weiser et al.

Govil et al. use the same traces and assumptions as Weiser et al. to present several new

policies for making more accurate predictions about activity [31]. Improvements on the

results of Weiser et al. are on the order of 10% of CPU energy consumption. Yao et al.

prove the minimum schedule is to run as slowly as possible given that the energy per oper-

ation varies ass2 [74]. They do not consider the general case where there are lower order

terms in the function for energy per operation. Pering and Brodersen examine speed-set-

ting policies in from a real-time perspective [59]. Their scheduling approach is not signifi-

cantly different than Weiser’s. Their main contribution is to look at a set of software that

they consider to be more typical of the mobile environment than Weiser’s traces were.

The final area of low power software is compilation for reduced power consumption.

Tiwari et al. examine instruction-level power consumption for both the Intel x86 architec-

ture and a Fujitsu RISC architecture [68][69]. The power consumption for each instruction

is measured, as are the inter-instruction and data contributions. The compiler is modified

to take into account the power consumption as well as the timing cost of each instruction.

The major energy savings come from reducing the time to complete a computation, not

from using lower power instructions. The peak power for their test cases typically

increases, but the cycle count for the programs is reduced by a much larger amount, so that

the overall energy consumption is reduced.

2.2 Low power hardware

While a great deal of work has been done in low power software, by far the largest amount

of low power research has been in the hardware area.

Chapter 2: Related Work 11

The power management software described in the previous section requires hardware sup-

port. Examples of hardware power management are detailed in [8], [11], [29], and [47].

Bhattacharya gives an overview of power management techniques to educate designers

using Intel’s 386SL processor [8]. Child draws parallels between low power techniques

used by hand calculator manufacturers in the 1970’s and those used by the notebook com-

puter makers of the 1990’s [11]. Glass gives an excellent subsystem-by-subsystem over-

view of power management techniques [29]. Martin provides a case study in reducing

power consumption via a systematic evaluation of the subsystems [47].

The low-power hardware area most closely related to this thesis is the design and imple-

mentation of variable-voltage CPU’s. Kuroda et al. describe their implementation of a

variable-voltage RISC processor [42]. They implemented the voltage modification by rep-

licating the critical path of the CPU and adding several gate delays to it. When the speed

and voltage change, this replicated path is checked for failure. When lowering the voltage,

the replicated critical path fails before the real critical path because of the additional gate

delays. When the replicated circuit fails, the voltage is raised a step to make sure both crit-

ical paths work. When raising the voltage and frequency, as soon as the replicated circuit

begins working the voltage is no longer increased. The interesting point of the implemen-

tation from the viewpoint of this thesis is that the plot of the CPU’s power consumption

versus frequency, shown in Figure 2.1, has a large y-intercept, about 10% of the total

power at the CPU’s highest speed. As will be shown later in this thesis, having a large y-

intercept significantly limits the total savings a speed-setting policy can achieve and deter-

mines which policies will be effective for the system.

Another area of low power hardware is reversible and adiabatic computing. Theories of

reversible computing are tangential to this thesis, but are noted here because of the possi-

ble implications that fundamental limits on computing may have for power-performance

trade-offs. Bennett and Landauer argue that there is no fundamental lower limit on the

amount of energy needed to create information [5][6]. Destroying information does

Chapter 2: Related Work 12

require energy, however. One of the noteworthy points of Bennett’s arguments is that in

order to create information without consuming energy, the computation must proceed

arbitrarily slowly. He cites the need for a “driving force” to make the computation proceed

in the correct direction. The harder the computation is driven (e.g. the faster it is executed)

the more energy it must consume. Thus there may be a fundamental trade-off between per-

formance and power. Several other works look at the fundamental limits on computation

[22][38][39][50] and implementations of reversible computing circuits and CPU’s using

adiabatic techniques [3][41][75]. None of the work in fundamental limits of computing

have considered limits in the human-computer interface such as the minimum power for a

sound to be heard or a display to be seen, an oversight if those limits are to be applied to

mobile computing.

2.3 Battery models

There are two main classes of battery models, constant load and intermittent load. All of

the intermittent load models can handle constant loads, and so only the earliest constant

load model will be presented. The models report either the battery’s charge capacity or its

energy capacity. (The charge capacity is the amount of charge the battery delivers in a dis-

charge cycle, while the energy capacity is the amount of energy delivered [43]. Both are

more fully described in Chapter 3.)

 Figure 2.1 Power versus frequency for variable-voltage CPU
(after [42])

Chapter 2: Related Work 13

2.3.1 Constant load model

Peukert determined the nonlinearity of batteries for constant loads in the late 1800’s.

Peukert’s formula for the charge capacityQ of a battery isQ = k/Iα, wherek is a constant

determined by the materials and physical design of the battery andI is the load current.

For an ideal battery, α = 0, i.e. the capacity is constant, but for real batteries,α ranges

between 0.2 and 0.7 for most loads, and likek is determined by the chemical family and

physical design of the battery [43]. Given this relationship between charge capacity and

load current, the relation between discharge time and load power isT = k’/P(1+α), whereT

is the discharge time,k’ is a constant, andP is the load power. Peukert’s formula may not

hold for intermittent loads. The conditions under which Peukert’s formula may be used for

intermittent loads is described in Chapter 3.

2.3.2 Variable load models

Four variable-load models were considered:

• Kinetic Battery Model (KiBaM) [46]

• SPICE model [33]

• Battery Energy Storage Test (BEST) model [35]

• Doyle’s low-level electrochemical model of lithium-ion (Li-ion) cells [15][16]

The majority of the variable load models have been created for either lead-acid storage

battery facilities or for low-level cell design. With the exception of the SPICE model, none

had been created for use by mobile system designers. And the SPICE model was not cre-

ated for Li-ion cells.

Doyle’s model will be the only one used to study intermittent operation in this disserta-

tion. However, the others will be described briefly as they could form the groundwork of a

“black box” model in the future. For determining whether or not battery properties can

Chapter 2: Related Work 14

affect power-performance trade-offs, Doyle’s model inspired more confidence, having

been correlated to a variety of Li-ion cell families from several battery manufacturers and

having been used by one of them to explore cell design parameters [18] and another to ver-

ify a method for determining capacity versus discharge rate [19]. In comparison, KiBaM,

the SPICE model, and the BEST model seemed ad hoc and possibly untrustworthy, espe-

cially since they had not been intended to be used with Li-ion cells.

The only drawback of Doyle’s model is the large number of parameters needed, the major-

ity of which are trade secrets and cannot be measured by the user. For the purposes of this

thesis, KiBaM, the SPICE model, and the BEST model have elements that may be the

basis of a phenomenological model more suitable to the needs of mobile system designers

than Doyle’s low-level model. Consequently, a description of each is included here.

2.3.3 Kinetic Battery Model (KiBaM)

The Kinetic Battery Model, KiBaM, was intended for use with large lead-acid storage bat-

teries [46]. It models the battery as two wells of charge, as shown in Figure 2.2. The avail-

able-charge well supplies electrons directly to the load; the bound-charge well supplies

electrons only to the available-charge well. The rate of charge flow between the two wells

is set byk’ and the difference in the heights of the two wells,h1 and h2. The state of charge

of the battery ish1, i.e., whenh1 is unity the battery is fully charged and when it is zero the

battery is fully discharged. The internal resistance of the battery is represented by R0.

KiBaM needs a number of additions to be useful for the types of batteries used in mobile

computing. For example, it used a simple linear relation between the state of charge of the

battery and the battery’s open-circuit voltage, which is sufficient for lead-acid batteries

with their flat discharge profiles. To adequately model many families of Li-ion batteries,

with their sloped discharge profiles, KiBaM needs a more complex relation between the

state of charge and open-circuit voltage.

Chapter 2: Related Work 15

But KiBaM is useful for an intuitive sense of why the recovery effect can occur. (Recovery

is explained in Section 3.2.) Suppose a load is attached andI is large. The available-charge

well will quickly be reduced, and the difference inh1 andh2 will be large. Now the loadI

is removed. Charge flows from the bound-charge well to the available-charge well untilh1

andh2 are equal. The battery’s open-circuit voltage increases, and more charge is available

to the load than would have been if it had been connected continuously untilh1 went to

zero.

2.3.4 SPICE model

The SPICE model simulates alkaline, nickel-cadmium (NiCd), and lead-acid batteries

[33]. The elements of the model are shown in Figure 2.3. The output voltage of the battery

is determined by a table lookup of the battery’s state of charge. The state of charge is

determined by the charge remaining on the capacitorC_Capacityand the current dis-

charge rate. The elementsR2 and C1 model the delay of the battery in responding to a

changing load. Because the SPICE model did not include Li-ion parameters and because

some of its elements (notablyR2 andC1) seemed ad hoc and difficult to determine, it was

deemed untrustworthy for exploring intermittent operation. But like KiBaM, it could serve

as the basis for a model in the future with some modification.

c1 - c

“bound charge” “available charge”

q1
q2

k’ R0 I

h1
h2

dq1/dt = -I - k’(h1 - h2)
dq2/dt = k’(h1 - h2)

 Figure 2.2 The Kinetic Battery Model, KiBaM, models a battery as
two wells of charge, available and bound. After [46].

Chapter 2: Related Work 16

2.3.5 Battery Energy Storage Test (BEST) model

The Battery Energy Storage Test (BEST) model, like KiBaM, is intended for use with

large lead-acid storage batteries. BEST is based upon the curves of the voltage versus cur-

rent at different levels of depth of discharge shown in Figure 2.4. BEST assumes these

curves are parallel, which may be true of lead-acid batteries with their relatively flat volt-

 Figure 2.3 Elements of the SPICE model

+-

+
-

+OUT

-OUT

E_bat =

+
-

R_Cell

V_Sense = 0 V

E_Lostrate = [table lookup(V(Rate))]]

R1
C_Capacity

I_Discharge =
I(V_Sense)

R2

C1

State_of_charge

+
-

E_Rate =
I(V_Sense)/C_Capacity

Rate

[table lookup(V(State_of_charge))]

 Figure 2.4 Voltage versus current at different depths of discharge,
after [35]

Current (I)

V
ol

ta
ge

 (
V

)

q/Q(I) = value 1

q/Q(I) = value 2

q/Q(I) = value 3

Chapter 2: Related Work 17

age discharge curves and when the cutoff voltage is a function of the discharge rate. But in

general, these curves are not parallel [44] and the BEST model will fail. But one interest-

ing features of the BEST model is that it represents a normalized depth of discharge as a

function of both the amount of charge delivered and the rate of the discharge,

X(q, I) = q/Q0 + qI/Q0I0

whereX is the normalized depth of discharge,q is the amount of charge delivered,I is the

rate of the discharge,Q0 is the limiting charge capacity at very low rates, andI0 deter-

mines the loss of capacity with increasing load. Hence the state of charge depends not only

on how much charge has been delivered but also on how quickly it is being delivered.

Another interesting feature is that for variable loads the dynamic response of the voltage

increases as the depth of discharge approaches unity, approximating the apparent increase

in internal resistance near the end of discharge displayed by many types of batteries. Both

of these features could perhaps be combined with the table-lookup representation of volt-

age from the SPICE model to create a model which could handle batteries with flat voltage

profiles and those with sloped voltage profiles.

2.3.6 Doyle’s model

Doyle’s model is a first-principles electrochemical model, unlike the ones above. The

model uses concentrated solution theory [52], and solves a set of six equations describing

the current, mass transport, reactant concentrations, and potentials using finite difference

methods [16]. (For a brief review of battery properties modeled by Doyle, see Appendix

C.) Similar models have been created for NiCd [13] and alkaline batteries [61]. Doyle’s

model is intended to aid battery designers, not battery users.

Chapter 2: Related Work 18

2.4 Crossing the boundary between battery and hardware/software

This chapter has described the related work in low power software, low power hardware,

and battery modeling. Before closing, it should be noted that none of the work described

above crosses the boundary between the battery and the software/hardware, which is the

central topic of this thesis. The earliest efforts to cross the boundary were probably by the

manufacturers of battery “gas-gauge” integrated circuits [4]. These limited themselves to

providing information to notebook computers about the charge remaining in the batteries,

and only lately have added features to predict the time remaining at a given rate of dis-

charge. The earliest known work to emphasize the importance at looking at computations

per discharge rather than energy per operation and to make a tie between loss of battery

capacity and power-performance trade-offs was the published form of the proposal for this

thesis [48]. Pedram’s group has begun to look at loss of battery capacity and VLSI design

[10][58]. There are three major differences between their work and the work described in

this thesis. First, they make assumptions similar to those of Weiser et al. about the system

power being proportional tofCV2 in order to find the optimal voltage for a CMOS IC. Sec-

ond, they use linear and quadratic approximations of battery capacity that are apparently

not based on experimental data. Finally, they do not consider possible intermittent battery

phenomena. In the area of mobile computer networking, Zorzi and Rao look at the energy

consumption of wireless communication protocols and point out that the loss of battery

capacity could have an impact on the protocols [76]. However, they propose a Markov

model that does not include the battery effects, but leave it for future work to include states

to account for the loss of battery capacity. Thus they have recognized that the battery prop-

erties must be considered but have not considered them in their current approach.

19

Chapter 3

Battery behavior and modeling

In principle, yes; in practice, no.

Russian saying

This chapter describes the behavior of batteries and simulation results generated by

Doyle’s first-principles battery model. The first part of the chapter deals with the charac-

teristics of an ideal battery and how these characteristics are used in sizing batteries and

estimating discharge times. Then the chapter discusses typical non-ideal characteristics

and gives a description of the regions of operation where they occur. Assumptions about

batteries to be used throughout the dissertation are then given. The second part of the

chapter covers results from Doyle’s battery model, showing likely areas for exploiting bat-

tery behavior in mobile computing.

3.1 Ideal battery properties and discharge time estimates

The two most important properties of batteries from the viewpoint of someone using them

are voltage and capacity. An ideal battery has a constant voltage throughout a discharge,

which drops instantaneously to zero when the battery is fully discharged, and has constant

capacity no matter what the rate of the load, as shown in Figure 3.1.

For sizing batteries, the battery voltage should be in the allowable range of the power sup-

ply of the device in question. The battery voltage is considered to be the rated voltage of

the battery, e.g. 1.2V per cell for nickel-cadmium (NiCd) and nickel-metal hydride

Chapter 3: Battery behavior and modeling 20

(NiMH) batteries and 3.6V per cell for most lithium-ion (Li-ion) batteries. The charge

capacity of the battery is typically given in terms of Amp-hours or milliAmp-hours and is

called the battery’s “C” rating. The C rating is used in the battery industry to normalize the

load current to the battery’s capacity [33][43]. For example, a load current of 1C for a bat-

tery with a C rating of 500 mA-hours is 500 mA, while a load current of 1C for a battery

with a C rating of 1000 mA-hours would be 1000 mA. A load current of 0.1C is 50 mA for

the former and 100 mA for the latter. The advantage of C ratings is that it allows battery

manufacturers to present one graph of discharge curves for batteries of similar construc-

tion but different capacities. The C rating is specified as the capacity for a given time of

discharge.

Two methods are used to estimate discharge time, depending on the type of load. If the

load is a constant current load, then the discharge timeT is estimated to be the charge

capacityC divided by the load currentI, or T = C/I. If the load is a constant power load,

then the discharge timeT is estimated to be the battery’s rated voltageV multiplied by the

charge capacityC, divided by the average powerP of the load, orT = (C×V)/P. The rated

V
ol

ta
ge

Depth of discharge0% 100% Rate of load

C
ha

rg
e

ca
pa

ci
ty

 Figure 3.1 Characteristics of an ideal battery:
Constant voltage and constant capacity

Chapter 3: Battery behavior and modeling 21

voltage multiplied by the charge capacity is the battery’s nominal energy capacity, typi-

cally given in Watt-hours (1 Wh = 3600 J). As Section 3.5 will show, these methods will

overestimate the battery life if the load has a large peak value.

3.2 Non-ideal battery properties

While ideally a battery has constant voltage and capacity, in practice both vary widely.

Figure 3.2a shows the battery voltage as a function of discharge time for two different

loads. The load on the battery for discharge curve 1 is smaller than load for discharge

curve 2. Because of resistance and other losses, the voltage throughout the discharge is

lower for curve 2 than curve 1. The voltage for each load also drops over the course of the

discharge due to changes in the active materials and reactant concentrations [43].

The capacity also varies with the value of the load. The two major ways in which it varies

are loss of capacity with increasing load, and an effect called recovery where an intermit-

tent load may have a larger capacity than a continuous load. Figure 3.2b shows the loss of

capacity with increasing load current for a typical NiCd battery [43]. The capacity

decreases by about 40% over a range of discharge times of 10 hours (0.1C discharge rate)

to 0.1 hours (10C discharge rate). As stated previously, the C rating is specified as the

capacity for a given time of discharge. The capacity in Figure 3.2b was measured at the 2

hour rate, since 100% capacity occurs at 0.5C. If the capacity had been measured at the 10

hour rate, 100% would have occurred at 0.1C.

The second non-ideal capacity property, recovery, is shown in Figure 3.2c [43]. A reduc-

tion of the load for periods of time results in an increase in battery capacity. The voltage

rises while the load is reduced, and the overall time of discharge increases. This phenome-

non occurs because, during the time when load is reduced, reactants in the battery diffuse

to the reaction location, allowing more of them to be used during the life of the battery.

The degree to which the battery recovers depends on the discharge rate and the length of

time the load is reduced, as well as the details of the battery construction.

Chapter 3: Battery behavior and modeling 22

It is widely known that the battery voltage varies during discharge. For example, power

supplies are usually rated over a range of input voltages. When a power supply is used

with a battery, it is necessary to ensure that the range of the supply’s input voltage includes

the range of the battery voltage during discharge. Since the voltage variation is widely

known, this dissertation will not focus on it. The non-ideal capacity properties, on the

other hand, are not widely known, and so will be one of the main subjects of the remainder

of this work. Given how a battery’s discharge time is estimated using ideal values of volt-

age and capacity, the loss of capacity can lead to an overestimate of the discharge time for

large loads. While using a chart such as Figure 3.2b allows accounting for the loss of

capacity for loads that are constant and continuously on, in general loads are variable and

b. c.

 Figure 3.2 Non-ideal battery properties: (a) voltage change, (b)
loss of capacity, and (c) recovery (after [43])

V
ol

ta
ge

Time of discharge

Curve 1

Curve 2

a.

Chapter 3: Battery behavior and modeling 23

intermittent. If recovery occurs, then the duration of the off times of the load must be con-

sidered in addition to the duration of its on times and its value while on. Models that

account for both capacity loss and recovery are needed to properly simulate the loads

encountered in mobile computing. But before examining results from Doyle’s model for

non-ideal battery behavior, it is beneficial to describe some general regions of operation.

3.3 Regions of operation

Figure 3.3 shows the battery capacity versus the load over a broad range of loads. At very

low rates, where the discharge time is measured in weeks (months or years for some types

of batteries), the capacity is reduced because of self-discharge mechanisms. Over the

broad middle range of load power, the capacity is constant. At high rates, the capacity

begins to decrease because of the loss of capacity shown in Figure 3.2b. Table 3.1 lists the

four regions of operation, each requiring a different model of battery behavior, covering

these ranges of load power. The regions shown in Table 3.1 cover most of the cases of

interest for mobile computing. Note that the values given are generalizations, to give the

reader an understanding of the order of magnitude of the characteristics. The exact values

will depend on the battery’s active materials and the details its construction

D
el

iv
er

ed
 C

ap
ac

ity

Load power (log)

 Figure 3.3 Battery capacity versus load power over wide range of
loads. (Note that values given are typical of Li-ion cells but will
vary depending upon the details of the battery construction.)

discharge time > ~month ~month > discharge time > ~10 hours discharge time < ~10 hours

Chapter 3: Battery behavior and modeling 24

[17][26][43][53]. Figure 3.4 shows typical capacity versus power curves for a number of

battery families, showing the wide variation due to the choice of active materials. The

capacity versus power will also vary for two cells with the same active materials but differ-

ent construction, as illustrated by Figure 3.5 [43]. One cell has been optimized for low-rate

discharges, while the other has been optimized for high-rate discharges. Thus the exact

Table 3.1: Regions of operation and corresponding battery models

Type of load Model

I. Average and peak load << self-discharge rate Constant life

II. Self-discharge rate≅ average/peak load < 0.1C Constant energy

III. Constant or variable load with f > 1 Hz, ave. & peak > 0.1C Constant load

IV. Variable load, frequency < 1 Hz Variable load

E
ne

rg
y

ca
pa

ci
ty,

 W
h/

kg

Power, W/kg

50

100

150

200

250

0.01 0.1 1.0 10 100 1000

D

G

E
F

C

B

A

1 h10 h100 h

 Figure 3.4 Capacity versus power for several battery systems. A: Li/MnO2
2/3A cell; B: Zn/alkaline/MnO2 AA cell; C: Li-MnO 2 AA cell; D: Ni-Cd
AA cell; E: Zn/alkaline/MnO 2 AA cell; F: Li-ion AA cell; G: NiMH AA
cell. A and B are primary cells, C-G are secondary cells. Dashed lines

show time of discharge for reference. (After [43].)

Chapter 3: Battery behavior and modeling 25

values of the regions in Table 3.1 will depend on the particular battery in question. The

general values given in Table 3.1 are those of a “typical” Li-ion cell, the battery of choice

for most of the mobile computing market at present, as will be explained in Section 3.4.

In region I of Table 3.1, the load value is much less than the self-discharge rate of the bat-

tery. All batteries have self-discharge mechanisms by which the battery loses charge while

no load is connected to it. The self-discharge rate of a battery depends mainly on the bat-

tery’s chemistry, and partially on the details of its construction. For nickel cadmium batter-

ies, the self-discharge rate is approximately 20-30% of capacity per month. In contrast,

self-discharge rates for lithium watch batteries are much lower, allowing them to be stored

for years with only a 10-20% loss of capacity. When the load is much less than this self-

discharge rate, then the self discharge rate dominates and the battery can be viewed as hav-

ing a constant life. This region is included for completeness but is not encountered often in

practice. When the load is much less than the self-discharge rate, it is usually best to find a

battery with a much lower self-discharge rate if possible.

In region II, the load is of the same order of magnitude or larger than the self-discharge

rate, but less than approximately 0.1C. Then the battery can be viewed as being ideal, with

a constant energy capacity. Most power-performance trade-offs are made using this

 Figure 3.5 Capacity versus power depends on cell design parameters,
even if active materials are the same. (After [43].)

Chapter 3: Battery behavior and modeling 26

assumption, even in systems where the load is much greater than 0.1C. Since the battery

has constant energy, then the discharge time is the energy capacity divided by the average

power of the load.

Region III will be one of the concerns of this dissertation. If the load value is greater than

0.1C, and the load is either constant or variable with a frequency greater than approxi-

mately 1 Hz, then the load can be viewed as being constant and the battery capacity as

being dependent on the load. (Because of the time constants involved in the battery reac-

tions, load frequencies greater than approximately 1 Hz are essentially filtered out and can

be replaced by their average value [33].) One model for this region is Peukert’s model, dis-

cussed in Section 2.3.1.

This dissertation will also focus on region IV, where the load is greater than 0.1C and

slowly varying, at a frequency of less than 1 Hz. A variable-load model must be used for

these types of loads. Several models for variable load operation exist. One of the goals of

this work is to find one appropriate for the types of loads and batteries seen in mobile sys-

tems. Several possible models were presented in Section 2.3.

The details of the underlying mechanisms of these regions vary with battery family, but in

general the mechanisms are related to the rate at which reactions take place in the battery

and the rate at which reactants move to or from the reaction boundaries. Self-discharge

rates are governed by “side” reactions, unintended reactions between materials in the cell.

The loss of capacity for discharge rates above 0.1C is due partly to internal resistance and

partly to the difference between the rate at which the current producing reaction takes

place and the rate at which reactants diffuse to the reaction site. When the concentrations

at the reaction site drop below critical values, the cell voltage decreases abruptly and the

cell cannot be used further without damaging it. For variable loads, the reaction boundary

appears electrically to be a capacitance set up by the charges of the ions, which acts as a

Chapter 3: Battery behavior and modeling 27

low pass filter. Consequently, the average value of a high frequency intermittent load can

be used to predict the discharge time. More detailed information on the electrochemical

mechanisms involved can be found in Appendix C.

3.4 Battery-related Assumptions to Be Used Throughout the Disserta-

tion

Throughout this work there are several assumptions about the type of load and the type of

battery. This section describes the types of loads and types of batteries that are typical of

mobile computing, and then specifies the load and battery types employed for the remain-

der of this dissertation.

3.4.1 Type of load

There are three major types of loads presented to batteries: Constant resistance, constant

current, and constant power [43]. (“Constant” here refers to how the load behaves when it

is of a given value, not to its being a given value continuously.) An example of a constant

resistance load is a flashlight. A constant current load would be one that uses a linear volt-

age regulator. Finally, a constant power load is one that uses a switching power supply

whose efficiency is nearly constant over the range of battery voltage during discharge. The

current, voltage, and power during each of these types of discharge is shown in Figure 3.6,

with each type of discharge having equal power at the beginning of discharge. Because the

voltage decreases as the battery discharges, each type of discharge has different current

and power profiles during the discharge. The charge capacity delivered with each type of

load is roughly the same, so the constant resistance load will have the longest discharge

time as its average current is lowest, and the constant power load will have the shortest

discharge time as its average current is highest. It is necessary to specify which type of

load was used to calculate the capacity rating of a battery. Typically, battery manufacturers

determine the charge capacity of their cells using a constant current load. The energy

Chapter 3: Battery behavior and modeling 28

 Figure 3.6 Properties of different types of loads with the same
power at the beginning of discharge, after [43]

Discharge time

Discharge time

Discharge time

C
ur

re
nt

V
ol

ta
ge

P
ow

er

Constant current

Constant power

Constant resistance

Constant power

Constant current

Constant resistance

Constant resistance

Constant current

Constant power

Chapter 3: Battery behavior and modeling 29

capacity is then estimated by multiplying the nominal voltage by the charge capacity.

More importantly for this dissertation, most mobile systems use switching power supplies,

and so are constant power loads. Therefore, when the equations and simulations in the

remainder of this work assume a constant load, it will be a constant power load.

3.4.2 Type of battery

This dissertation will concentrate on rechargeable Li-ions, the battery of choice for

present-day mobile computers. Two other battery families, NiCd and NiMH, are also very

common in the mobile market, but Li-ion is becoming more common due to its superior

specific energy and energy density. Concerns about safety and difficulty of charging have

been Li-ion’s major drawbacks. These were overcome as the technology matured. Sony

introduced the first Li-ion phone cell in 1990, and several other companies have begun to

offer Li-ion products as well. Barring a breakthrough, Li-ion will remain the power source

of medium to high-end mobile products for the next decade. Only very price sensitive

products and those requiring high discharge rates (discharge time less than 1 hour) will use

NiCd or NiMH. Many of the non-ideal properties discussed in this chapter are true for all

three families. When a statement is made that depends on a property that is true only of Li-

ion, it will be noted.

3.5 Results with Doyle’s variable load model

The typical load of a mobile computer system is not constant, but variable. A model is

needed, then, to estimate the discharge time with variable loads. A variable-load model

will ideally possess the following characteristics:

• Relatively accurate capacity information (i.e. if several loads are simulated, then the
model should correctly predict the relative difference in discharge times, even if the
actual differences are inaccurate.)

• Applicable to a variety of battery types

Chapter 3: Battery behavior and modeling 30

• Intuitive parameters and behavior

• Ease of correlation to actual cells

Of these four criteria, the first is the most important for this dissertation. The last three will

become more important when battery models are more widely used in mobile system

design. Consequently, of the four variable-load models discussed in Chapter 2, this disser-

tation will focus on Doyle’s model. Doyle’s model inspired the most confidence due to its

having been created solely for Li-ion cells and due to its use in industry. The others had

not been created for use with Li-ion cells and hence results with them would have required

lengthy correlation with actual cells before their predictions could have been trusted.

Doyle’s model was used to study the effect of intermittent discharges on the capacity and

demonstrates that peak power predicts battery capacity better than average power. Figure

3.7 shows the model results for battery capacity versus average power for continuous dis-

charges over a range of loads, and for intermittent discharges at duty cycles of 25, 50, and

75% and three values of peak power. The intermittent discharges were square waves with

an off power of 0 W/kg. The two major features of the results are that the capacity

decreases as the load power increases for continuous loads, and that there is a range where

the peak power of an intermittent load rather than the average power is a stronger indicator

of the battery’s capacity. For example, the 300 W/kg continuous load results in a battery

capacity of 90 Wh/kg (point A in the figure) and the 75 W/kg continuous load results in a

battery capacity of 140 Wh/kg (point B), while the intermittent load with a peak power of

300 W/kg and duty cycle of 25% (i.e. an average power of 75 W/kg, point C) results in a

capacity of approximately 100 Wh/kg. Thus using the average power of this intermittent

load would over-estimate the battery capacity by about 40% (i.e., point B’s 140 Wh/kg

would be expected), while using the peak power would under-estimate it by only about

10% (i.e., point A’s 90 Wh/kg would be expected). To put these results in more common

terms, the 75 W/kg continuous load B would have a battery life of about 1.9 hours, while

the intermittent load C, with the same average power, 75 W/kg, would have a battery life

Chapter 3: Battery behavior and modeling 31

of about 1.3 hours. Only when the peak power is below about 50 W/kg (about a 3 hour dis-

charge when continuously on) would the peak and average power give about the same esti-

mate of battery life.

While the amount of capacity lost with increasing load will vary from battery family to

battery family, the general trend will be true across families. To verify that the trends were

not simply a property of the model, intermittent discharge experiments were performed

using a commercially available Li-ion battery, the Sony LIP-2000, with a chemistry simi-

lar to the one of the model [25]. The same general trends were visible, as shown in Figure

3.8. While it is difficult to make one-to-one comparisons between the two figures because

 Figure 3.7 Doyle’s Li-ion model results for capacity versus
average power, showing difference between continuous

and intermittent loads of same average value

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

Average power, W/kg

C
ap

ac
ity

, W
h/

kg

: continuous

A

B

C

<peak power, duty cycle>

<300,75>

<300,50><300,25>

<200,75>
<200,50><200,25>

<100,75><100,50><100,25>

Chapter 3: Battery behavior and modeling 32

the model accounted for only the active materials of the battery (hence the reason for the

model results being given in W/kg and Wh/kg, rather than simply W and Wh), the loss of

capacity for continuous loads and capacity limited by peak power can be observed in both

figures. For example, the capacity delivered by a continuous load of about 10.5 W is about

6 Wh (point D) and the capacity delivered by a continuous load of about 2.5 W is about 8

Wh (point E), but the capacity of an intermittent load with a peak of 10.5W and an average

value of approximately 2.5 W is about 6 Wh (point F). So if one had estimated the battery

 Figure 3.8 Measured Li-ion battery results for capacity
versus average power with Sony LIP-2000 batteries,

showing difference between continuous and intermittent
loads of same average value

0 2 4 6 8 10 12
0

2

4

6

8

10

12

D

E

F

Average power, W

C
ap

ac
ity

, W
h

x: 10W peak

o: 4W peak

+: continuous

Chapter 3: Battery behavior and modeling 33

life for the intermittent load of point F using only its average power, the estimate would

have be wrong by about 25%, even if the loss of capacity at that average power were

accounted for.

To further test the effect of the recovery phenomena, the intermittent load simulations

described above were run with waveforms of different periods. Figure 3.9 shows the simu-

lation results for periods of 10 seconds and 1000 seconds. The largest difference between

the two is about 10%, much less than the loss of capacity. If the difference were due to

recovery, one would expect the load with the 1000s period to have a greater capacity, due

to its longer off-time. The results show that the opposite is true: The load with the shorter

period has greater capacity. The reason for this is that the 1000 second period has a longer

 Figure 3.9 Doyle’s Li-ion model results showing differences
in capacity for intermittent loads with periods of 10s and
1000s. Loss of capacity is a bigger effect than recovery.

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

Average power, W/kg

C
ap

ac
ity

, W
h/

kg

Period=10s
Period=1000s

: continuous

A

B

C

<peak power, duty cycle>

<300,75>

<300,50><300,25>

<200,75>
<200,50><200,25>

<100,75><100,50><100,25>

Chapter 3: Battery behavior and modeling 34

on-time, which allows concentration gradients to become more pronounced, resulting in

larger voltage drops due to concentration overpotential. (See Appendix C for an explana-

tion of concentration overpotential.) The larger voltage drops in turn cause the battery to

reach its cutoff voltage earlier.

The characteristics displayed in Figure 3.7, Figure 3.8, and Figure 3.9 mean that minimiz-

ing energy per operation may not maximize computations per battery life. For example,

suppose a mobile system has a dynamic power profile that is cyclic, having periods of

activity with a high peak power followed by idle periods of low power. If one has a choice

between a 20% reduction in the energy per cycle by reducing the idle power and a 20%

reduction in the energy per cycle by reducing the active power, the average power is

reduced by 20% in both cases. If the battery capacity were constant as is commonly

assumed, one would expect that the battery life would increase by a factor of 1/(1-20%) =

1.25 for both cases. But because the capacity is determined by the peak power, the battery

life will be increased more by reducing the active power than by reducing idle power. Not

only will the average power be reduced but the capacity available will be increased.

Hence, once all the subsystems that can be put into idle mode are put into idle mode, one

should focus on reducing the power during the active time rather than focus on reducing

the power during the idle time.

A second example is if one has a choice between reducing the active time and the active

power by some factor. Both will result in the same decrease in the average power. But

again, reducing the active power will result in a bigger increase in battery life. This means

that the focus should be on reducing peak power rather than reducing duty cycle.

For a more concrete example of each method of reducing average power, consider the

dynamic power profile as shown in Figure 3.10. The average power, Pave, is equal to

(Pactive× tactive + Pidle × tidle)/tcycle. To reduce the average powerPave, the active power

can be reduced (A), the idle power can be reduced (B), or the active duty cycle can be

Chapter 3: Battery behavior and modeling 35

reduced (C). Table 3.2 shows the results from Doyle’s model for the waveform of Figure

3.10. The waveform was simulated for three different values of initial average power, and

the desired reduction in average power for each case was 20%. As expected, reducing

active power (A) results in the greatest increase in battery life when the peak power is

large. Reducing idle power (B) always results in the least increase in battery life. Reducing

the duty cycle (C) always does better than reducing the idle power and does as well as

reducing peak power only for the lowest value of peak power. This can be explained for

the similar reasons as the loads with 10 second periods in Figure 3.9 having a larger capac-

ity than the loads with 1000 second periods: Reducing the duty cycle means that there is

less time for the concentration gradients to become pronounced, and consequently the

concentration overpotential. But when the peak power is larger, reducing the duty cycle

does not increase the battery life by as much as reducing the active power.

The column labeled “% difference from expected” refers to difference between the simu-

lated battery life of the modification and what would be expected given the initial battery

life and the factor by which the power was reduced. For example, the initial battery life of

 Figure 3.10 Dynamic power profile example. Modifications A, B, and
C reduce the average power.

Time

P
ow

er

Pidle

Pactive

tactive tidle

tcycle

A: Reduce active power

B: Reduce idle power

C: Reduce active duty cycle

Chapter 3: Battery behavior and modeling 36

the waveform with the 300 W/kg peak power is 51 minutes. Because the average power

for each of the modifications is 80% of the initial waveform, one would expect the battery

life for them to be 51/0.8 = 64 minutes. But this ignores the non-ideal capacity effects.

In practice, one usually does not have an initial battery life as a starting point. Typically

the battery life is estimated using the rated capacity of the cell, which is measured at a very

low rate discharge of 10-20 hours. For loads with large peak values, the estimate obtained

using the rated capacity can be too large. Estimating the battery life using the capacity at

the peak power provides a lower bound. Furthermore, it is often a closer estimate than one

obtained using the rated capacity. Table 3.3 shows estimates of the battery life for the

example of Figure 3.10 using the rated capacity and capacity at the peak power of the load.

Table 3.2. Doyle’s model results for waveform of Figure 3.10.

Waveform
modification

Duty Cycle,
tactive/tcycle,

%

Peak
power,
W/kg

Idle
power,
W/kg

Average
power,
W/kg

Battery life,
minutes

% difference
from expected

none 20 300 75 120 51 --

A 20 180 75 96 83 +30

B 20 300 45 96 67 +5

C 9.3 300 75 96 68 +7

none 20 200 50 80 87 --

A 20 120 50 64 132 +21

B 20 200 30 64 117 +8

C 9.3 200 50 64 118 +9

none 20 100 25 40 202 --

A 20 60 25 32 268 +6

B 20 100 15 32 253 0

C 9.3 100 25 32 268 +6

Chapter 3: Battery behavior and modeling 37

The rated capacity consistently overestimates the battery life, by as much as 50%. Using

the capacity at the peak power, on the other hand, consistently underestimates the battery

life and the magnitude of the error is much less than that of using the rated capacity.

These results may explain why the advertised battery life of the typical notebook computer

is greater than what users realize in practice: Suppose the notebook manufacturer is adver-

tising an estimated battery life rather than a measured one. If the manufacturer estimates

the battery life by using the battery’s rated capacity and the average power of the system,

then the estimate will be too large because of the loss of capacity of the battery at higher

rates. While the notebook computer manufacturers reap an advantage by advertising a

Table 3.3: Estimates of battery life using rated capacity and capacity at peak power.

Waveform
modifica-

tion

Peak
power,
W/kg

Aver-
age

power,
W/kg

Battery
life from
simula-

tion,
minutes

Estimated
battery life
using rated
capacity of
151Wh/kg,

minutes

 Differ-
ence
from

simulated,
%

Estimated
battery life

using
capacity at
peak power,

minutes

 Differ-
ence
from

simulated,
%

none 300 120 51 76 +48 45 -12

A 180 96 83 94 +14 74 -11

B 300 96 67 94 +41 56 -16

C 300 96 68 94 +39 56 -17

none 200 80 87 113 +30 85 -2

A 120 64 132 142 +7 120 -9

B 200 64 117 142 +21 106 -9

C 200 64 118 142 +20 106 -10

none 100 40 202 227 +12 200 -1

A 60 32 268 283 +6 261 -3

B 100 32 253 283 +12 250 -1

C 100 32 268 283 +6 250 -7

Chapter 3: Battery behavior and modeling 38

longer battery life than is achievable in practice, obviously a motive to be considered, they

may simply be using the rated battery capacity rather than the capacity available at the

notebook’s peak power.

These results motivate the following observations for mobile computers that are operated

in the non-ideal region of their batteries:

• Total system power must be considered. Power-performance trade-offs made by
examining a subsystem in isolation may not lead to an increase in the computations
per battery life because total peak power is ignored.

• Peak power should be reduced wherever possible, which means background opera-
tions should be performed serially rather than concurrently. Serial operation is better
than concurrent operation when each consumes roughly the same energy. (Note that
serial operation will also tend to have lower context switching costs.)

• Reducing active energy is more important than reducing idle energy.

• Continuous behavior can be used to estimate intermittent behavior.

3.6 Summary

This chapter has introduced two non-ideal battery properties, loss of capacity and recov-

ery. Simulation using a first-principles Li-ion model shows that recovery is not a problem

for the typical loads and cells encountered in mobile computing, but loss of capacity can

be. Simulation also shows that reducing the energy while the system is active can lead to

bigger increases in battery life than reducing the energy while the system is idle, even if

the amount of reduction in both cases is the same.

Consequently, power-performance trade-offs are an important method of extending bat-

tery life, as they offer a way to reduce peak power. Because of the non-ideal battery prop-

erties, an analysis of a power-performance trade-off must look not only at the total energy

consumed but at the peak power of the system. Simulation of the whole system including

the battery is an option, but for quickly comparing trade-offs and building intuition about

them, an analytical approach is preferable.

Chapter 3: Battery behavior and modeling 39

Given that recovery is not a large effect in comparison to loss of capacity, a model for con-

stant loads will be a good approximation for both variable or constant loads if the power

used to calculate the capacity is the peak power and if the energy used while the system is

idle is accounted for. Frequency and duty cycle are unimportant in terms of recovered

capacity, although the duty cycle is needed to calculate the percentage of energy per cycle

consumed by idle time. With this knowledge, Peukert’s equation can be used to include

battery behavior when formulating analytical solutions to the power-performance trade-

offs. The next chapter will use Peukert’s equation to examine CPU speed-setting.

40

Chapter 4

A system approach to CPU speed-setting

Slow and steady wins the race.

--from “The Tortoise and the Hare”

As the previous chapter showed, peak power is a better indicator of battery capacity than

average power is. Consequently, analyzing the case where a mobile system is continuously

active offers useful insights into the problem of CPU speed-setting. Furthermore, since

recovery is not a factor, the continuous behavior can be used to study systems which

would typically be used intermittently.

While this does not reflect the behavior of mobile systems in actual use, it allows us to

estimate the computations per discharge in actual use because of the peak-power limited

behavior of the batteries as described in the previous section. Since there is a region of

operation where peak power is a stronger indicator of the battery’s capacity than average

power, one can obtain an estimate of the number of computations that can be completed in

a discharge by looking at continuous discharges. The number of computations completed

when the system is used intermittently is the continuous number times the ratio of active

time energy to the total energy in an active-idle cycle. This estimate is better than the esti-

mate obtained by dividing the ideal capacity by the average power of the cycle. Further-

more, studying continuous operation allows us to focus on the three factors discussed in

the Chapter 1--battery capacity as a function of system power, system power as a function

Chapter 4: A system approach to CPU speed-setting 41

of CPU frequency, and application performance as a function of CPU frequency--without

having to consider the variables of idle/active duty cycle and idle power.

This chapter develops an analytical expression for the normalized computations com-

pleted per discharge, called the “work ratio,” using Peukert’s formula for the battery

capacity and assuming an ideal performance speed-up. The chapter then shows the mea-

sured results of discharges using a variety of systems, verifying the predictions of the

work ratio. After that, the chapter relaxes the assumption about ideal performance speed-

up and delves into complications due to the memory hierarchy. The results show that bat-

teries caused a difference of 10%-40% from the behavior expected using ideal assump-

tions, and the memory hierarchy up to an additional 40% difference. The chapter

concludes with an estimate of the system power if the CPU employed a variable-voltage

supply.

4.1 Work ratio

This section develops an analytical expression for the normalized computations per dis-

charge for a simple case. This expression will show that the assumptions used in develop-

ing the CPU speed-setting policies described in Chapter 2 are faulty. Only one of the

assumptions will be changed, the assumption of constant battery capacity.

As described previously, Peukert’s formula for the capacity of a battery isQ = k/Iα, where

Q is the capacity, k is a constant,I is the load current, andα has a value of between 0.2 and

0.7. For modern batteries,α is typically around 0.2. The system powerP will be assumed

to be a linear function of the CPU frequency f, orP = S + CV2f, whereS is the portion of

power independent of the CPU frequency andCV2f is the dependent portion. The final

assumption in deriving the analytical expression is that the performance is proportional to

the CPU frequency.

Chapter 4: A system approach to CPU speed-setting 42

Using these assumptions, the variableρ is defined to beS/(S+CV2F), whereF is the slow-

est frequency at which the system will be operated, and the normalized speed,n, is defined

asf/F. ρ is a measure of how much of the system power is consumed by subsystems other

than the CPU. Ifρ is small, then the power of the system is nearly proportional to the CPU

frequency f. But if ρ is near unity, then the power of the system is almost independent of

the CPU frequency.

Using these definitions ofρ andn, the number of computations completed per discharge,

normalized to the number completed at the slowest frequency F, can be shown to be

(See Appendix A for the full derivation.) This expression for the normalized computations

per discharge is called the “work ratio.”

To understand what the work ratio tells us about the system, consider the case whereρ is

high, i.e. where the power of the system is almost independent of the CPU frequency. Fig-

ure 4.1 shows the work ratio’s prediction for a system withρ = 0.8. The difference

between the work ratio for an ideal battery (α = 0.0) and a non-ideal battery (α = 0.2) is

about 10% atn = 5 and about 20% atn = 10. In both cases, however, the value of the work

ratio increases as the frequency increases, at least for this range of normalized frequency.

The system completes more work as the CPU speed is increased. Hence, for systems with

a high value ofρ, it is best to set the CPU speed as high as possible, whether the batteries

are ideal or not.

On the other hand, consider the case whereρ is small, where the power of the system is

nearly proportional to CPU frequency. Figure 4.2 shows the work ratio predictions for

ρ = 0.3. When the battery is ideal, the system should be run as fast as possible, although

the increase in the work ratio as the frequency is increased is less than for highρ systems.

Wn W⁄ n 1
ρ n 1 ρ–()+
-------------------------------- 

 1 α+
=

Chapter 4: A system approach to CPU speed-setting 43

When the battery is non-ideal, however, increasing the CPU speed beyond a certain point

causes the work ratio to decrease. The difference between the ideal and non-ideal predic-

tions forρ = 0.3 is about 25% forn = 5 and 35% forn = 10. The important point here,

though, is that running as fast as possible, which is what should be done if the batteries are

ideal, will cause the computations completed in a discharge to decrease when the batteries

are non-ideal, even though the energy per operation decreases. For the non-ideal battery,

low-ρ case, there is a speed that maximizes the amount of work completed in a discharge.

Operating at higher speeds is detrimental.

To consider the general case for all values ofn andρ requires a 3-D plot. Figure 4.3 shows

the contours of the 3-D curve for the work ratio forα = 0.2, 0 <n < 10, and 0 <ρ < 1. The

x-axis is the speed-upn, and the y-axis isρ. The contours are the value of the work ratio.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4
Work ratio for high p system

Figure 4.1 Work ratio pr edictions for ideal (α = 0.0) and
non-ideal (α = 0.2) batteries for ρ = 0.8

ideal

non-ideal

Normalized clock frequency, n

W
or

k
ra

tio

Chapter 4: A system approach to CPU speed-setting 44

The dashed line shows the maximum value of the work ratiofor a givenρ. There are two

regions in the plot, one where increasing the clock frequency from n = 1 is initially benefi-

cial and one where decreasing it fromn = 1 is initially beneficial. The two regions are sep-

arated by the dashed line. The region where it is initially beneficial to increase the clock

frequency is above the line; the region where it is initially beneficial to decrease the clock

frequency is below the line. Only in the two ideal cases,ρ = 0 or 1, is it always better to

decrease (ρ = 0) or increase (ρ = 1) the clock frequency. For all other values ofρ, a maxi-

mum occurs atn = ρ/α(1-ρ) (see Appendix B).

For a given system, changing the clock frequency corresponds to a horizontal movement

from (1,ρ) to (n, ρ). ρ remains constant because it was defined using only the initial CPU

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Work ratio for low p system

Figure 4.2 Work ratio pr edictions for ideal (α = 0.0) and
non-ideal (α = 0.2) batteries for ρ = 0.3

ideal

non-ideal

Normalized clock frequency, n

W
or

k
ra

tio

Chapter 4: A system approach to CPU speed-setting 45

speedF. In order to complete the most computations per battery life,n should be set to the

value which maximizes the work ratio. For n > 1, if this new, faster system is used to

define aρ’, thenρ’ < ρ. If n = ρ/[α(1-ρ)], then (1,ρ’) is the point where the 1.0 contours

cross. (See Appendix A for a full derivation.) At this value ofρ, the CPU frequency is

optimal, because any change in n will result in a decrease in the work ratio.

The VuMan 2 wearable computer will serve as an example of how the contour plot can be

used. The power of the VuMan 2 was measured to be (0.84 + 0.015 x CPU frequency)

Watts. The minimum operating frequency of the design is 12 MHz and the maximum is 24

MHz. Suppose the current design operates at 12 MHz and a designer would like to know if

would be better to operate at some other frequency. At 12 MHz, thenρ = 0.84/(0.84 + 1.05

x 12) = 0.82. Atρ = 0.82 and n = 1 in Figure 4.3, decreasing the frequency decreases the

1.0

1.0

0.8

1.2

1.4

1.6

0.8

0.6

1.2

1.8
2.00.4

P
er

ce
nt

 in
de

pe
nd

en
t,ρ

Normalized clock frequency, n

Figure 4.3 Work ratio contours, α = 0.2

2.2

Chapter 4: A system approach to CPU speed-setting 46

work ratio, and increasing the frequency increases the work ratio. The designer would then

decide to increase the clock frequency. In this case, the designer would be limited by the

maximum frequency of 24 MHz. 24 MHz corresponds to n = 2, with the work ratio being

approximately 1.6, or a 60% increase in the number of iterations executed during a battery

life.

Suppose the designer, in order to take advantage of the work ratio increases beyond 24

MHz, wanted to increase the maximum frequency. The peak work ratio occurs at

n = ρ/[(1-ρ)α] = 0.82/(0.18x0.2) = 22.8, or at 274 MHz. The system should not be oper-

ated beyond this point.

Suppose, however, that the design were modified to lower the static portion of the power

from 0.84 W to 0.10 W. The design still operates at 12 MHz, so

ρ = 0.10/(0.10 + 0.015 x 12) = 0.35. Figure 4.4 shows a close-up of the contour plot

aroundρ = 0.35, with an ‘x’ marking the current design and a line showing the possible

increase in the work ratio by increasing the clock speed. The maximum occurs near

n = 2.7, with the work ratio approximately 1.10. The close-up shows that the work ratio is

very flat from n = 2 to n = 4 forρ = 0.35. While the maximum occurs at n = 2.7, little

could be gained by increasing the maximum frequency of the design beyond 24 MHz.

4.2 Work ratio r esults

To verify the work ratio for large values ofρ, a set of experiments was performed with sev-

eral mobile systems. Each system ran an application in a continuous loop, and the number

of iterations of that loop completed in a discharge cycle were counted over a range of CPU

frequencies. The systems used were the Navigator 1, a wearable computer developed at

CMU [65], and the Itsy, a hand-held system from Compaq’s Western Research Lab [71].

To verify the work ratio for small values ofρ, a clock circuit was constructed with a large

capacitive load. By adding resistors, the value ofρ could be varied over a broad range.

Chapter 4: A system approach to CPU speed-setting 47

The Navigator 1 is based on the Intel 80386 processor, runs the Mach operating system,

and was designed to be a campus tour guide. For the experiments with the Navigator 1, the

spinning hard drive was replaced with bootable EEPROM, the operating system was

changed to DOS to fit into the EEPROM, and the application was changed to be a simula-

tion of the VuMan 2 wearable computer. The system was designed to run at 25 MHz, but

by changing the CPU’s clock crystal, the system could run from 7.2 MHz up to 32 MHz.

Its ρ value was measured to be 0.81.

4.2.1 Navigator 1 results

The Navigator 1 results shown in Figure 4.5 and Figure 4.6 confirm the work ratio predic-

tions for the highρ case. At a normalized clock frequency of 4.5, the Navigator 1 shows

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

Normalized clock frequency, n

P
er

ce
nt

 in
de

pe
nd

en
t,

1.001.00

0.95

1.05

1.10

1.15

0.95

0.90

1.20

1.25

0.85

Figure 4.4 Close-up of work ratios around ρ = 0.35,
showing the maximum possible increase for that ρ

P
er

ce
nt

 in
de

pe
nd

en
t,ρ

Chapter 4: A system approach to CPU speed-setting 48

about a 10% difference from ideal for both Canon and Sony Li-ion batteries, matching the

predictions of the work ratio very well. That it matches for sets of batteries from two dif-

ferent manufacturing processes is also encouraging, as it means that the effect is not due to

the properties of a particular manufacturer’s product.

4.2.2 Simple circuit results

None of the computer systems available had a low value ofρ. To test the work ratio predic-

tions for the low-ρ case, a clock circuit with a large capacitive load was constructed.

Because of the large capacitive load, its power consumption was proportional tofCV2. By

adding resistors in parallel theρ of the simple circuit could be varied over most of the

range from zero to unity. Figure 4.7 shows the measured results with the low ρ system

(ρ = 0.14) and the predictions of the work ratio for both ideal and non-ideal batteries.

Figure 4.5 Work ratio ideal pr ediction, non-ideal prediction, and experi-
mental results with Navigator 1 and Canon BP-911 Li-ion batteries.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

Speedup, n

W
or

k
ra

tio

− Canon Li−ion battery sets

ideal

nonideal

Normalized clock frequency, n

Chapter 4: A system approach to CPU speed-setting 49

Again the non-ideal battery work ratio prediction matches the measured results quite well,

showing a decrease of about 30%.

For the low-ρ case, setting the CPU speed too high will decrease the number of computa-

tions that can be completed in a battery life. This runs counter to intuition and to the previ-

ous work. According to both, for a constant-voltage system, running as fast as possible

should at worst perform the same work per discharge as running at slower speeds, and in

most circumstances should perform more work per discharge. But because of the loss of

battery capacity, running as fast as possible decreases the work per discharge in the low ρ

case. Thus non-ideal battery behavior must be taken into account when setting the CPU

speed, especially when most of the power of the system is consumed by the CPU.

Figure 4.6 Work ratio ideal pr ediction, non-ideal prediction, and exper-
imental results with Navigator 1 and Sony LIP-2000 Li-ion batteries.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

Speedup, n

W
or

k
ra

tio

− Sony Li−ion battery sets

ideal

nonideal

Normalized clock frequency, n

Chapter 4: A system approach to CPU speed-setting 50

4.3 Non-ideal performance effects

The previous section showed the impact of non-ideal battery behavior. This section re-

examines the assumptions about performance speed-up as the CPU clock frequency is

changed. The ideal system behavior assumed by the previous work is that performance

scales with CPU frequency, which ignores the memory hierarchy. It turns out that memory

system behavior can also reduce the computations per battery life. The results in this sec-

tion show that if the memory bandwidth does not increase at the same rate as the CPU fre-

quency, then the performance will not scale with frequency for programs with poor cache

behavior. The data in this section were generated with the Itsy. Before describing the data,

it is necessary to give the reader some background about the Itsy system.

Figure 4.7 Work ratio ideal pr ediction, non-ideal prediction, and experi-
mental results with low-ρ circuit and Sony LIP-2000 Li-ion batteries.

0 1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

1.2

Speedup, n

W
or

k
ra

tio

x: Sony Li−ion batteries, measured

ideal

non−ideal

Normalized clock frequency, n

Chapter 4: A system approach to CPU speed-setting 51

4.3.1 Details of changing the clock speed on the Itsy

The Itsy is based on the StrongARM SA-1100 [14] and runs the Linux operating system

[60]. Two calls were added to the Linux kernel for changing the CPU frequency based

upon the clocking scheme for the StrongARM, which is shown in Figure 4.8. During nor-

mal operation, the CPU core runs at the primary clock frequency and the memory control-

ler runs at half the primary clock frequency. On a cache miss, the CPU core clock switches

to half the primary clock frequency so that the core and the memory controller run syn-

chronously. The first kernel call forces the CPU core clock to run at half the primary fre-

quency at all times, referred to as running with clock switching disabled (i.e. the core

clock cannot switch between the primary clock frequency and half the clock frequency).

The second kernel call selects the value of the primary clock frequency, setting it to one of

eleven possible values between 59 and 206 MHz. The overhead of the first call is only a

few CPU cycles, while the overhead of the second call is approximately 150µs while the

on-chip phase-locked loop acquires the new frequency [14]. The combination of the two

calls allows the CPU core frequency to vary from 29.5 to 206 MHz.

The kernel call for running with clock switching disabled writes to register 15 of copro-

cessor 15 of the SA-1100 as described in the SA-1100 Technical Reference Manual [14],

requiring less than 10 instructions. The call for changing the primary clock frequency is

considerably more involved. Because many of the peripheral devices experience an inter-

Primary clock
SA-1100 Core

Memory Controller

Figure 4.8 Clocking scheme for the StrongARM SA-1100

Divide
by
two

Chapter 4: A system approach to CPU speed-setting 52

ruption of service while the phase locked loop locks on to the new frequency, the call first

ensures that these devices are not in use by calling the power management suspend rou-

tine, which takes care of all the devices except for the memory controller. If the CPU clock

is being switched to a higher frequency, the memory controller is updated before changing

the clock frequency; if the clock is being switched to a lower frequency, then the memory

controller is updated after changing the clock frequency. In both cases, the FLASH mem-

ory configuration data is changed while the CPU is executing instructions from DRAM

but the DRAM memory configuration data is changed while the CPU is executing instruc-

tions from FLASH. This requires that the instructions for changing the DRAM memory

configuration be compiled separately from the rest of the Linux kernel and burned into

FLASH separately. It was found that the clock frequency could not be changed reliably for

certain combinations of initial and final clock frequencies without executing from FLASH

while changing the DRAM memory configuration. After the memory controller values

have been changed, the peripheral devices are awakened by a call to the power manage-

ment wake-up routine. The pertinent portions of the source code for the clock device

driver (clock.c, clock.h, clock-dram-setup.S) are included in Appendix

E, as is the source code for the instructions for changing the DRAM memory configura-

tion (clock-patch.S).

4.3.2 Experimental set up

The code chosen for the experiments was the Itsy’s MPEG video player. The justification

for this choice is twofold. First, a video player is expected to be one of the typical applica-

tions for a mobile computer. Second, the code should adequately exercise the memory

hierarchy and operating system for reasons similar to those given by Agarwal [1]. Measur-

ing the energy of an application that fits into the cache or that uses no operating system

resources would not be representative of a mobile computer capable of running a variety

of applications. Uhlig et al. describe how the programs in the SPEC suite have much lower

cache miss ratios than real applications, and the MPEG player is one of the applications

Chapter 4: A system approach to CPU speed-setting 53

they chose for their alternative benchmark suite with more realistic cache and system

behavior [70].

In the battery life measurements, the MPEG player ran in a continuous loop. Each run of

the MPEG player was followed by decompression and manipulation of a text file in order

to clear the caches of the MPEG instructions and data. The MPEG player accounted for

more than 90% of the run-time of the loop, however, so it was the dominant energy com-

ponent. The loop ran without any idle time.

All current measurements were made using a Fluke 45 true RMS, digital multimeter. The

Itsy has several 20mΩ precision resistors for measuring currents on each of its power sup-

plies. The Fluke makes 10 readings per second, sufficient speed given that the time con-

stants of the electrochemical reactions are such that the battery sees only the average for

load changes that occur at frequencies greater than about 1 Hz [33].

4.3.3 Itsy results

This section describes the measurements of performance versus frequency, power versus

frequency, and iterations per discharge of the Itsy running the MPEG player.

Figure 4.9 shows the ideal and measured computations per discharge for the Itsy powered

by AAA batteries. The measured values are considerably less than ideal. One might sus-

pect that the Itsy is a low-ρ system, but the power versus frequency measurements of Fig-

ure 4.10 show theρ to be 0.65, definitely not a low ρ system. This value of ρ was

calculated using a least squares fit of the data in Figure 4.10. For this data,

power = 0.0047× frequency + 0.26. Using the definition ofρ, then

ρ = 0.26/(0.0047 × 29.5 + 0.26) = 0.65. For this value ofρ one would expect the measured

results to differ from the ideal by about 20% at a speed-up of 7. The reason for the differ-

ence turns out to be the performance behavior of the memory hierarchy.

Chapter 4: A system approach to CPU speed-setting 54

Upon closer examination, the assumption of ideal performance speed-up does not hold for

the Itsy and the application it was running. Figure 4.11 shows the ideal and measured per-

formance versus frequency for the MPEG loop. Both are normalized to the performance at

the slowest speed. The measured performance is nearly ideal until 100 MHz, where there

is a breakpoint. From 100 MHz to the maximum frequency of 206 MHz, the measured

performance diverges from the ideal.

The Unix toolgprof [32] was used to examine the performance of the two functions that

take the most execution time. One has almost ideal speed-up whereas the other is far from

ideal. Figure 4.12 shows the normalized performance versus the CPU frequency for these

two functions. The points show the measured performance, the solid line shows the

expected performance given the change in clock speed, and the dashed line shows the nor-

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Speedup, n

N
or

m
al

iz
ed

 c
om

pu
ta

tio
ns

 p
er

 d
is

ch
ar

ge

Expected: Ideal performance

Measured

Figure 4.9 Expected and measured results with AAA batteries

Normalized clock frequency, n

Chapter 4: A system approach to CPU speed-setting 55

malized, measured main memory bandwidth. The routinempeg_j_rev_dct has the

expected performance speed-up over nearly the entire range of CPU frequencies. But the

other routine,GrayDitherImage, shows little increase in performance after 133 MHz,

where the main memory bandwidth becomes limited by the speed of the memory chips.

Below 133 MHz the memory bandwidth is determined by the minimum number of cycles

per access required by the SA-1100’s memory controller, while above 133 MHz the mem-

ory bandwidth is determined by the access time of the memory chips. So, as the CPU fre-

quency increases above 133 MHz, accesses to main memory take more CPU cycles. The

performance ofGrayDitherImage tracks the memory bandwidth rather than the CPU fre-

quency, limiting the performance speed-up of the program overall.

Figure 4.13 shows the expected iterations per discharge calculated from the power and

performance measurements from Figure 4.10 and Figure 4.11, and the iterations per dis-

0 20 40 60 80 100 120 140 160 180 200 220
0

0.2

0.4

0.6

0.8

1

1.2

CPU frequency, MHz

T
ot

al
 P

ow
er

, W

Figure 4.10 Power vs. frequency

Chapter 4: A system approach to CPU speed-setting 56

charge if the performance speed-up were ideal. Both curves assume ideal batteries and are

normalized to the slowest speed, 29.5 MHz. The iterations per discharge with a non-ideal

performance speed-up differs from the ideal iterations per discharge by 40%. This predic-

tion was confirmed with actual battery discharges while running the MPEG player using

Sanyo UF-510 and UF-310 Li-ion cells [62][63], shown in Figure 4.14, along with the

expected iterations per discharge curve from Figure 4.13. These cells are nearly ideal over

the range of power of the Itsy. Consequently, the measured iterations per discharge agree

with the expected curve quite well, although the measured points begin to fall below the

expected at the two highest frequencies. But the major feature of Figure 4.14 is that ideal

assumptions about performance versus frequency can be quite misleading.

But Figure 4.15 shows that ideal assumptions can be even more misleading when the bat-

tery is non-ideal over the range of the power of the system. These results were collected

20 40 60 80 100 120 140 160 180 200 220
0

1

2

3

4

5

6

7

8

CPU frequency, MHz

N
or

m
al

iz
ed

 it
er

at
io

n
pe

rf
or

m
an

ce

Figure 4.11 Performance vs. frequency of MPEG loop

Ideal performance

Chapter 4: A system approach to CPU speed-setting 57

using the AAA alkaline cells which the Itsy was designed to use. Because of the loss of

battery capacity, the iterations per discharge decreases at higher CPU frequencies even

though the energy used per iteration remains nearly constant. One might suspect that the

results in this figure are due to the batteries being loaded at an unrealistic value. The “on

time” of the highest frequency case is approximately 40 minutes, certainly a realistic load

since the system is continuously active. For comparison, notebook computers often have

battery lives of 1.5-3 hours on the ZDigit BatteryMark test, which is active less than 20%

of the time, giving them a continuous “on time” of less than 40 minutes [56]. Thus one

would expect to see similar results if the experiments were conducted using the notebook

computers.

20 40 60 80 100 120 140 160 180 200 220
0

1

2

3

4

5

6

7

8

Frequency, MHz

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

x: GrayDitherImage
+: mpeg_j_rev_dct
: Clock speed−up
: Main memory bandwidth

Figure 4.12 Performance versus frequency for two of the MPEG player functions,
with expected speed-up and measured main memory bandwidth

Chapter 4: A system approach to CPU speed-setting 58

Figure 4.15 shows that assuming ideal behavior for performance versus frequency and bat-

tery capacity versus power can be mistaken. The measured iterations per discharge were

more than 70% less than the iterations per discharge predicted by ideal behavior for both

factors. Even using measured performance versus frequency, the iterations per discharged

decreased as the clock frequency was increased, rather than increasing as predicted by

assuming an ideal battery capacity.

4.4 Total system power with variable-voltage CPU

The Itsy results shed light on the idea of using variable voltage CPU’s for speed-setting.

Obviously, the previous work on policies for variable-voltage CPU’s should be augmented

to include the non-ideal battery and performance properties. But it also should include

information about the total system power.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Speedup, n

N
or

m
al

iz
ed

 c
om

pu
ta

tio
ns

 p
er

 d
is

ch
ar

ge

Expected from measured
power and performance

Ideal

Figure 4.13 Ideal and expected computations per battery life

Normalized clock frequency, n

Chapter 4: A system approach to CPU speed-setting 59

Suppose the Itsy’s SA-1100 were a variable-voltage CPU. The SA-1100 has two power

planes: a 1.5V core voltage and a 3.3V voltage for the peripheral pins. Of these two, only

the 1.5V plane could be varied with the CPU frequency. The 3.3V plane would have to

remain fixed to be connected with the other subsystems. The points on Figure 4.16 show

the total measured power of the Itsy and the power of the 1.5V and 3.3V planes versus the

CPU frequency. (The measured total power is greater than the sum of the power on the

two planes because of losses in the power supplies.) The lower dashed line is an estimate

of the power of the 1.5V supply if it were scaled with the CPU frequency. The upper

dashed line is this estimate added to the power of the 3.3V supply, which, as was stated

above, must remain fixed. The upper dashed line is thus an estimate of the total power of

the Itsy if the SA-1100 were a variable voltage CPU.

Figure 4.14 Expected and measured results with
Li-ion batteries, Sanyo UF-510 and UF-310

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Normlized clock frequency, n

N
or

m
al

iz
ed

 c
om

pu
ta

tio
ns

 p
er

 d
is

ch
ar

ge

Expected: Ideal performance

Measured
Expected: Measured performance

Chapter 4: A system approach to CPU speed-setting 60

The Itsy’s total power in this case would be nearly linear, with a large y-intercept. It would

hardly vary ass3, wheres is the normalized clock frequency, the fundamental assumption

used in formulating the speed-setting policies in the previous work. Because it is nearly

linear with a large y-intercept, there will be a frequency greater than zero that minimizes

the energy per operation. The policies from the previous work assume that running as

slowly as possible minimizes the energy per operation. But this stems from looking at only

the power of the CPU. This example shows that it is necessary to look at the total system

power to set the CPU speed correctly. Even with a variable-voltage CPU, the system

power as a function of the normalized frequency s becomesa3s
3 + a2s

2 + a1s +a0 rather

than simplys3. Because of the lower order terms, the energy per operation is minimized at

a frequency which is greater than the minimum operating frequency of the CPU. Conse-

Figure 4.15 Expected and measured results with
AAA batteries

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Speedup, n

N
or

m
al

iz
ed

 c
om

pu
ta

tio
ns

 p
er

 d
is

ch
ar

ge

Expected: Ideal performance

Measured
Expected: Measured performance

Normalized clock frequency, n

Chapter 4: A system approach to CPU speed-setting 61

quently, a CPU speed-setting policy must take the lower order terms into account, as the

next chapter will show.

4.5 Summary

This chapter has developed an analytical expression for the amount of computations com-

pleted in a discharge, called the “work ratio”. The work ratio predicts that systems with

high values ofρ should be run with the CPU speed set at maximum speed, and that sys-

tems with low values ofρ should be run at less than maximum speed. The predictions of

the work ratio were verified for both high- and low-ρ systems.

20 40 60 80 100 120 140 160 180 200 220
0

0.2

0.4

0.6

0.8

1

1.2

1.4

CPU Frequency, MHz

A
ve

ra
ge

 p
ow

er
, W

Total power calculated if 1.5V can vary with freq
1.5V power if 1.5V can vary with freq

Measured 1.5V supply power
Measured 3.3V supply power
Measured total power

Figure 4.16 Measured total power, 3.3V and 1.5V supply power, and estimates
of 1.5V supply and total power of Itsy if SA-1100 were a variable voltage CPU.

Chapter 4: A system approach to CPU speed-setting 62

The wearable computer systems developed at CMU all have ρ values ranging from 0.8-

0.9. The question arises as to whether or not all mobile systems will have values ofρ in

this range, and if so, will they continue to have values ofρ in this range. In other words, do

all mobile systems have power composed mainly of non-CPU power, or will CPU’s begin

to dominate the power in the future? The likely answer is that there will be classes of

mobile systems that are consistently either highρ or low ρ due to the hardware require-

ments of their intended applications, and another class of systems that are at times highρ

systems and at other times low ρ systems, based upon the power management state of their

subsystems. For the consistently high or low ρ systems, the CPU speed can be fixed

accordingly. For the systems with mixedρ behavior, the current power management state

of each device must be taken into account when setting the CPU speed.

As developed in this chapter, the work ratio does not consider non-ideal performance

behavior, specifically performance limited by bandwidth of the main memory bus. The

results of discharge experiments with the Itsy show that the memory bandwidth will also

affect the number of computations completed in a discharge. For the Itsy, non-ideal battery

behavior caused a 10%-40% difference from ideal behavior and the non-ideal perfor-

mance behavior up to an additional 40%. Together the non-ideal battery and performance

behavior result in the measured values being up to a factor of four less than would be

expected using ideal assumptions.

The Itsy also allows one to estimate the total system power if it had been built using a vari-

able voltage CPU. Contrary to assumption of the previous work in policies for setting the

speed of variable voltage CPU’s, the system power as a function of frequency is likely to

be composed cubic and lower order terms. Thus the goal of running as slowly as possible

when there are no performance constraints is incorrect.

Chapter 4: A system approach to CPU speed-setting 63

The next chapter shows how each of the non-ideal factors covered in this chapter can be

used to develop a more realistic operating system policy for setting the CPU speed dynam-

ically.

64

Chapter 5

Towards A General Purpose
CPU Speed-setting Policy

Knowledge must become capability.

Clausewitz

The CPU speed-setting policies presented in the previous work [31][72] ignored the non-

ideal behavior described in Chapter 3 and Chapter 4. This chapter describes a method to

augment those policies so that they account for non-ideal battery properties, non-ideal per-

formance speed-up, and lower order terms in the function of system power as a function of

frequency. The chapter begins by outlining the goals of a CPU speed-setting policy. It then

presents the policy Past [72] as an example of how the results from the previous chapter

can be used, by changing the policy’s lower bound on speed. The effect of each of the

three factors on the lower bound is then covered, using simple cases to build intuition

about their interactions and introducing a notation for describing a system’s battery capac-

ity, power, and performance. Since finding the lower bound on the speed for the most gen-

eral case (non-ideal battery, general cubic function for system power, non-ideal

performance) involves solving a fourth order equation, a more practical approach for find-

ing the lower bound in general is given, and alternatives to it are discussed. The approach

handles both the general case and the special cases discussed in the previous work as well.

This chapter is more speculative than the previous chapters, as the hardware necessary to

test the ideas presented is not currently available. Initial validation of the ideas, however, is

Chapter 5: Towards A General Purpose CPU Speed-setting Policy 65

provided by re-visiting the simulations of Weiser et al. [72]. The chapter concludes with a

list of desirable system features for supporting a realistic CPU speed-setting policy.

It should be noted that it is assumed throughout the chapter that the CPU speed will be

changed dynamically, at least several times a second. The policies and methods described

are meant to be implemented within the operating system as part of its scheduling or

power management operations.

5.1 Goals of a CPU speed-setting policy

As described by Weiser et al., two options for implementing a policy are to modify appli-

cations such that they provide hints to the operating system, which then sets the speed, or

to have the operating system set the CPU speed based solely upon parameters of the sys-

tem [72]. The drawback of the former method is that the applications must be modified,

and so Weiser et al. opted for a policy based solely upon parameters of the system, as does

this dissertation. However, the lower bounds on speed and desirable features for a speed-

setting system that are discussed below are the same for both types of implementation.

A CPU speed-setting policy should have two goals. The first is to deliver performance

which is not noticeably different from the performance when the CPU is always running at

maximum speed [72]. The second is to allow the user to complete as much work per dis-

charge as possible. These two goals determine the upper and lower bounds on the range of

speeds that a speed-setting policy should employ. The upper bound is the maximum CPU

operating frequency. The lower bound is the speed that maximizes the work per discharge,

theoptimal frequency. Running more slowly than the optimal frequency violates the goal

of completing the most work per discharge possible. Running more quickly than the opti-

mal frequency should only occur when required by performance expectations.

The policies described in the previous work used the CPU’s minimum operating frequency

as the lower bound [31][72]. One of the policies,Past, is shown in Figure 5.1 [72]. The

Chapter 5: Towards A General Purpose CPU Speed-setting Policy 66

Pastpolicy calculates the speed for the next time-interval based upon the run- and idle-

percentage of the previous time interval, as well as work left over from the previous inter-

val if the speed during that interval was too slow to handle all the load. (The left-over work

is represented by the variableexcess_cycles.) The size of the time interval was from 10 ms

to 100ms, and the best results were obtained with the interval set to 20 ms.Past looked at

the percent idle time of the last interval and assumed the next interval would have the same

percent. Excess cycles from the previous interval were completed in the current interval, if

possible. The frequency changes were smoothed by limiting how much the frequency

could change from its previous value, using the empirically-determined constants

RUN_HIGH, RUN_LOW, and Delta.

Past()

new_cpu_speed = old_cpu_speed
if excess_cycles > idle_cycles {

new_cpu_speed = 1.0
return

}
run_percent =

run_cycles/(run_cycles+idle_cycles)
if run_percent > RUN_HIGH

new_cpu_speed =
new_cpu_speed + Delta

if run_percent < RUN_LOW
new_cpu_speed =

new_cpu_speed - Delta
if new_cpu_speed > 1.0

new_cpu_speed = 1.0
if new_cpu_speed < min_cpu_speed

new_cpu_speed = min_cpu_speed
return

 Figure 5.1 Pseudo-code for speed-setting policyPast [72]

Chapter 5: Towards A General Purpose CPU Speed-setting Policy 67

The important point to notice is that the lower bound on the speeds used by the policy is

set solely by the minimum operating frequency of the CPU. The other policies in the pre-

vious work differed fromPast in how they calculated the work to be completed in the next

cycle and in how much they allowed the speed to change from cycle to cycle, but all of the

policies used the minimum operating frequency as the lower bound on the speed. This is

due to assuming that the system power was proportional to s3, and consequently, that the

minimum operating frequency results in minimum energy operation, as described in

Chapter 2.

Using the CPU’s minimum operating speed as the lower bound ignores the non-ideal

behavior of the battery and the memory hierarchy, as well as the power consumed by the

other subsystems, as shown by the results in Chapter 4. The following sections discuss the

lower bound and a realistic method for finding it.

5.2 Determining the lower bound on speed

The lower bound can be determined either analytically or empirically, based upon the

complexity of the functions describing the battery, power, and performance of the system.

The work ratio presented in the previous chapter is an example of determining the lower

bound analytically. As explained in Chapter 1, the computations per discharge is given by

In general, the functions used to represent the battery capacity, system power, and perfor-

mance may make it difficult to solve for the maximum of computations per discharge. For

example, if the work per discharge is calculated using Peukert’s formula for the battery

capacity, assuming the system power as a function of frequency is a3f
3 + a2f

2 + a1f +a0,

and assuming that the memory bandwidth is fixed, finding the maximum analytically

Computations per Disch e x()arg
BatteryCapaci ty SystemPower x()()

SystemPower x()
--- Per formance x()×=

Chapter 5: Towards A General Purpose CPU Speed-setting Policy 68

involves solving a fourth-order polynomial equation. The overhead of finding the solution

on-line may overshadow the savings that might be had.

But to gain some understanding of the lower bound on the range of speeds, it is useful to

derive the computations per discharge for simple, common cases. Table 5.1 presents a list

of common functions for each of the factors of the computations per discharge. In the

table, Q is the battery capacity, P is system power, f is frequency, S is performance, c is the

fraction of memory accesses that access main memory, and a, ax, f1, j and k’ are constants.

Systems can be categorized with a notation ofBattery/SystemPower/Performance. Thus

the work ratio defined in the last chapter covers theNon-ideal/Linear/Ideal case, whereas

the previous work in CPU speed-setting was theIdeal/CubicProportional/Ideal case. The

most general case,Non-ideal/Cubic/Bottleneck, is a superset of the other cases: By setting

α, c, ax to 0 as appropriate, the general case becomes one of the other cases. However, as

stated above, finding the maximum computations per discharge for the general case

involves solving a fourth order polynomial equation.

While most of the entries in Table 5.1 are straightforward,Memory Bottleneck requires

some explanation. The equation forMemory Bottleneck assumes that memory bandwidth

is fixed and uses Amdahl’s Law for the performance speed-up based upon the fraction of

memory references that access main memory, c.

Table 5.1: Taxonomy of work ratio functions

Battery
System power versus

frequency
Performance versus

frequency

Ideal: Q = k’ Proportional: P = af Ideal: S = jf

Non-ideal: Q = k’/Pα Linear: P = a1f + a0 Memory Bottleneck:
S = j[1/(c + f1(1-c)/f)]

Cubic Proportional: P = af3

Cubic: P = a3f
3 + a2f

2 +a1f +a0

Chapter 5: Towards A General Purpose CPU Speed-setting Policy 69

Table 5.2 shows the computations per discharge and the lower bound on speed for several

common cases. In the “Lower bound on speed” column, fmax is the CPU’s maximum

operating frequency. It is interesting to note that only in the Ideal/CubicProportional/Ideal

case is the lower bound 0. For most of the other cases, the lower bound is greater than 0

and determined by the system parameters rather than the minimum CPU operating fre-

quency. For some combinations of parameters, it is possible that the lower bound is suffi-

ciently close to fmax that there is little to be gained by having a speed-setting policy. The

table enables mobile computer designers to check the parameters of their system, find

what category their system falls into, and then by solving the appropriate equation decide

whether a speed-setting policy would be useful. If so, then the policy requires a method to

find the lower bound for the policy.

5.3 Interactions of the three factors

Finding a general solution to the lower bound is involved for all but the simplest cases.

However, it is possible to make some generalizations even for the general case:

1. Non-ideal battery behavior decreases the lower bound.

a. -3(1+α)a3cf4 + (a3-(1+α)(2a2c+3a3(1-c)f1))f
3 + (a2-(1+α)(a1c + 2a2f1(1-c)))f2 + (a1- a1f1(1+α)(1-c))f +a0 = 0

Solving this involves first solving a cubic equation and then a quadratic equation based upon the solution of the
cubic [12].

Table 5.2: Lower bounds for common cases

Case Computations per discharge Lower bound on speed

Ideal/Proportional/Ideal k’j/a None

Ideal/Linear/Ideal k’ jf/(a1f + a0) fmax

Ideal/CubicProportional/Ideal k’ j/a3f
2 0

Ideal/Cubic/Ideal k’ jf/(a3f
3 + a2f

2 + a1f + a0) -2a3f
3 - a2f

2 + a0 = 0

Non-Ideal/Linear/Ideal k’jf/[(a 1f + a0)
1+α] (a1f+a0)

1+α − (1+α)a1f = 0

Ideal/Linear/Bottleneck k’j/[(a1f + a0)(c + f1(1-c)/f)] [a0f1(1-c)/a1c]0.5

Non-Ideal/Cubic/Bottleneck k’j
[(a3f

3 + a2f
2 +a1f + a0)

1+α(c + f1(1-c)/f)]
(fourth order equation)a

Chapter 5: Towards A General Purpose CPU Speed-setting Policy 70

2. Non-ideal performance behavior decreases the lower bound.
3. Static terms (a0 in above tables) in the power function increases the lower

bound.

It is assumed that for real systems, the coefficients of the system power functiona3, a2, a1,

anda0 are positive, that battery capacity is a decreasing function of power, and that

performance is at most linearly increasing, i.e. it is bounded above by a linear function.

The proof for (1) is as follows: Let a = Performance(f)/Power(f) and b = Capacity(f).

Assume a > 0, b > 0, and b is decreasing, i.e. db/df≤ 0. If a has only one maximum at fopt

for 0 < f < fmax, then da/df > 0 for all f < fopt, and da/df < 0 for all f > fopt. Since

d(ab)/df = da/df · b + db/df · a,

then for f = fopt,

d(ab)/df = 0 · b + a · (negative number or 0) = negative number or 0.

For f > fopt,

d(ab)/df = (negative number) · b + a · (negative number or 0) = negative number.

For f < fopt,

d(ab)/df = (positive number) · b + a · (negative number or 0) = positive, negative, or 0.

Then if there is a maximum for the product a · b, it occurs for some fnew ≤ fopt. The range

for the speeds used by a speed-setting policy is from fmax to fnew, and since fnew ≤ fopt then

this range is greater than or equal to the range fmax to fopt. Thus non-ideal battery behavior

decreases the lower bound.

A similar proof holds for (2), if it is assumed that performance as a function of frequency

is not concave upwards. The range of speeds when performance is non-ideal is always

Chapter 5: Towards A General Purpose CPU Speed-setting Policy 71

greater than or equal to the range of speeds when performance is ideal. Thus non-ideal

performance decreases the lower bound.

The proof for (3) is as follows: Let a = Capacity(f) · Performance(f). Let b = Power(f) -

(static power). Let c = (static power). Then the computations per discharge is equal to

a/[b + c],

and the derivative of this is

[(b + c) · da/df - db/df · a]/[b + c]2.

Let foptbe the frequency that maximizes the computations per discharge. Then the numer-

ator of the derivative,

[(b + c) · da/df - db/df · a],

is 0 for f = fopt, is positive for f < fopt, and is negative for f > fopt. Now let c increase. Then

the numerator becomes positive for f = fopt and f < fopt, and positive, 0, or negative for f >

fopt, since a, b, and db/df are positive for real systems. Thus if there is a maximum when c

is increased, it occurs for f > fopt. And so, for the system power as a function of frequency,

increasing the static term (a0) increases the lower bound.

Since the three factors do not affect the lower bound in the same manner, it is necessary to

calculate their relative effects in order to set the lower bound.

5.4 A general purpose method for finding the lower bound

There are at least three apparent on-line methods for a CPU speed-setting policy to find

the lower bound. The first is to solve the fourth order equation in general and in each win-

dow of time, substitute the current values for the parameters of each of the functions. The

solution would also have to checked to ensure that it is truly a maximum and not just an

Chapter 5: Towards A General Purpose CPU Speed-setting Policy 72

inflection point (a point where the slope is 0 but which is neither a minimum nor a maxi-

mum). The second method is to solve the fourth order equation iteratively, using Newton’s

method, for example. Again, the solution would have to be checked to ensure that it is

truly a maximum. The final method is to use brute force, calculating the computations per

discharge for each possible frequency and then choosing the frequency which gives the

maximum value.

Brute force seems to be a more practical method for finding the lower bound. If the CPU

utilizes a discrete set of frequencies as the StrongARM SA-1100 does, then the computa-

tions per discharge can be calculated for each frequency. If instead the CPU allows the fre-

quency to be set to any value in a range, the computations per discharge can be calculated

at equidistant frequencies across the range.

The brute force method for setting the lower bound, shown in pseudocode in Figure 5.2, is

as follows. At the beginning of each window of time, the policy finds the current state of

each device, looks up the power for each device in its respective state at each frequency

and calculates the total power at each frequency. This total power is then used to calculate

the capacity of the battery at each frequency. Next, the policy predicts the number of

accesses to main memory for the next window of time and, from that, the performance at

each frequency. Using the capacity, system power, and performance at each frequency, the

policy calculates the computations per discharge for each frequency. The policy’s lower

bound on speed for the window is the greater of either the optimal frequency or the CPU’s

minimum operating frequency.

One of the elements of theLowerBound function is a table containing the power at each

frequency of each device in the system for each of the device’s power management states.

This table is used to calculate the total power of the system. The maximum number of

entries in this table isd × t × n, whered is the number of devices,t is the number of power

Chapter 5: Towards A General Purpose CPU Speed-setting Policy 73

management states per device, andn is the number of possible frequencies. Each device

could provide such a table as part of its device driver code.

The battery capacity function could be implemented either as an analytical formula or as a

look-up table. This function would vary from battery to battery. Essentially, the battery

would deal with the operating system like any other device, with a device driver that pro-

vides this function. Alternatively, the battery device driver could provide simply the bat-

tery’s make and model number, and the policy would then choose an appropriate capacity

function for that battery from a list of possible capacity functions.

Finally, the performance function is the most difficult element ofLowerBound. Predicting

performance over some window of time is likely a topic for a dissertation by itself. How-

ever, given that the window of time is on the order of tens of milliseconds or more, the pre-

LowerBound()

for each CPU_frequency {
total_power[CPU_frequency] = 0
for each device {

total_power[CPU_frequency] =
total_power[CPU_frequency] + device_power[current_device_state]

}
capacity[CPU_frequency] = capacity_function(total_power[CPU_frequency])
main_mem_accesses = predict_mem_access()
performance[CPU_frequency] = performance_function(main_mem_accesses)
computatations_per_discharge[CPU_frequency] = capacity[CPU_frequency]×

performance[CPU_frequency]/total_power[CPU_frequency]
}
max_value = 0
for each CPU_frequency {

if computations_per_discharge[CPU_frequency] > max_value {
optimal_frequency = CPU_frequency
max_value = computations_per_discharge[CPU_frequency]

}
}
return maximum(optimal_frequency, minimum_operating_frequency)

 Figure 5.2 Pseudo-code for finding lower bound using brute force method.

Chapter 5: Towards A General Purpose CPU Speed-setting Policy 74

diction is much less difficult than if the window of time were on the order of the clock

cycles, as any large variations will be averaged over a longer time. The main assumption is

that performance will scale with frequency except for main memory accesses. Thus pre-

dicting performance is a problem of predicting main memory accesses.

TheLowerBound function corrects several shortcomings of the speed-setting policies

described in the previous work. First, it accounts for lower order terms in the function of

system power versus frequency. Second, it allows for a change in the system power based

upon the power management state of each of the subsystems. Third, it considers the loss of

battery capacity with increasing power. Finally, it accounts for non-ideal performance

speed-up due to limitations of the memory hierarchy.

Figure 5.3 shows pseudo-code for the updated version of the speed-setting policy Past.

The only change is to set the minimum CPU speed to the value returned byLowerBound.

The other policies described in the previous work can be modified in the same way.

While it is not possible at this time to testLowerBound with an actual system, some confi-

dence in the new lower bounds can be gained by re-visiting the simulations of Weiser et al.

Table 5.3 shows the results of the Weiser et al. simulator using the updated policy of Fig-

ure 5.3. The system power function was assumed to be 0.9s3 + 0.1 in column (a), 0.75s3 +

0.25 in column (b), and 0.5s3 + 0.5 in column (c), i.e. the static term is 10%, 20%, and

50% of the total power at full speed, withs being the normalized speed. The simulator set-

tings chosen for comparison were those which were determined to be the best by Weiser et

al., a minimum value ofs = 0.44 and a window size of 20 ms. Most of the traces were 10

to 60 seconds long, although one (kestrel) was nearly 10 hours long. All results are nor-

malized to what would have been achieved had the CPU run at full speed for the whole

trace.

Since the static term in the power function of column (a) is relatively small (10%), the

results for both the updated and original policy are nearly the same, as expected. Because

Chapter 5: Towards A General Purpose CPU Speed-setting Policy 75

the lower bound on speed for this case was less than the minimum determined to be best

by Weiser et al.,LowerBound performs slightly worse for some traces than the original

policy. As Weiser et al. reported, running too slowly can sometimes lead to larger energy

consumption because cycles that cannot be completed in a window have to be made up at

a faster speed in the next window. If LowerBound had used the minimum operating fre-

quency suggested by Weiser et al., the results for this column would have been identical

for both it and the original policy. Note that the best possible increase for column (a) is

2.54. That neither policy achieves this is due to the performance constraints of the trace.

Achieving the best possible increase occurs only when there is sufficient idle time in each

window for the CPU to always run at the optimal frequency. If there is not enough idle

Past()

min_cpu_speed = LowerBound()

new_cpu_speed = old_cpu_speed
if excess_cycles > idle_cycles {

new_cpu_speed = 1.0
return

}
run_percent =

run_cycles/(run_cycles+idle_cycles)
if run_percent > RUN_HIGH

new_cpu_speed =
new_cpu_speed + Delta

if run_percent < RUN_LOW
new_cpu_speed =

new_cpu_speed - Delta
if new_cpu_speed > 1.0

new_cpu_speed = 1.0
if new_cpu_speed < min_cpu_speed

new_cpu_speed = min_cpu_speed
return

 Figure 5.3 Pseudo-code for speed-setting policyPast updated to use the
LowerBound function

Chapter 5: Towards A General Purpose CPU Speed-setting Policy 76

time, then the CPU runs faster than the optimal frequency, which lowers the normalized

computations per discharge.

In column (b), the static term is slightly larger (25%), and here the updated policy begins

to consistently outperform the original. For column (b), the best possible increase is 1.47.

In column (c), the updated policy shows its merit, as it is able to increase the computations

per discharge for every trace while the original policy causes them to decrease for every

trace. The best possible increase for column (c) is 1.06. The updated policy performed

nearly this well for several traces, including the longest trace, kestrel.

The results show that the updated policy performs as well as the original policy when the

system power is nearly ideal and outperforms it as the system power becomes less ideal.

Table 5.3 Comparison of normalized computations per discharge for updated policy
and original Weiser policy

Trace name
(a):

Power = 0.9s3 + 0.1
Updated / Weiser

(b):
Power = 0.75s3 +0.25

Updated / Weiser

(c):
Power = 0.5s3 + 0.5
Updated / Weiser

heur1 1.03 / 1.03 1.03 / 1.03 1.02 / 1.02

fm1 1.23 / 1.23 1.15 / 1.13 1.03 / 0.99

idle1 1.54 / 1.56 1.27 / 1.23 1.04 / 0.92

em3 1.30 /1.30 1.17 / 1.15 1.02 / 0.96

mx2 1.81 / 1.79 1.32 / 1.28 1.05 / 0.87

emacs2 1.74 / 1.75 1.31 / 1.27 1.05 / 0.87

mx3 1.23 / 1.23 1.14 / 1.13 1.03 / 0.99

emacs1 1.71 / 1.71 1.33 / 1.28 1.06 / 0.89

mx1 1.73 / 1.74 1.32 / 1.29 1.06 / 0.90

fm2 1.31 / 1.32 1.20 / 1.17 1.04 / 0.98

fm3 1.06 / 1.06 1.04 / 1.04 1.02 / 1.00

kestrel 1.81 / 1.82 1.34 / 1.29 1.05 / 0.87

Chapter 5: Towards A General Purpose CPU Speed-setting Policy 77

Having the lower bound determined by the system characteristics is better than having it

determined by the CPU’s minimum operating frequency. Using the minimum operating

frequency, the computations per discharge decreases in some cases, since the lower order

term in the power function cause the energy consumption to increase if the speed is set too

low.

These results provide only a limited validation of the realistic speed-setting policy. The

simulation and the accompanying traces had no information about the states of subsystems

in each window or even which subsystems were accessed in each window. Thus these

results show only that setting the lower bound on speed according to the lower order

power terms prevents a policy from causing the computations per discharge to decrease.

This is in itself a large step toward taking a system level approach to the speed-setting

problem, as the policy no longer focuses on only the CPU power. To be fully validated,

however, theLowerBound function must be implemented on a mobile system, which in

turn requires that the system have several features.

5.5 System features for implementing a speed-setting policy

Because a realistic CPU speed-setting policy must consider aspects of the system other

than simply idle time, the system should have features that account for battery behavior,

total system power, and actual application performance as the CPU frequency is changed.

For the battery behavior, there are “gas-gauge” IC’s which keep track of the charge in and

out of the battery, the current load, and the battery family. The operating system can then

treat the battery as any other device in the system with a device driver for each type of bat-

tery. The operating system can probe the battery to determine its type and set the battery

capacity function parameters accordingly.

For performance, the CPU should have performance-monitoring registers such as those

found in high-end CPU’s like the Alpha and the Pentium. CPU’s intended for mobile use

Chapter 5: Towards A General Purpose CPU Speed-setting Policy 78

tend to not have these registers, but as was shown by the Itsy performance measurements

in Chapter 4, such registers could be useful in mobile computing. The operating system

could then monitor the current performance behavior when making CPU speed-setting

decisions.

Finally, for the total system power, the “gas-gauge” IC’s would again be useful as they can

report the current load, augmenting the look-up table in the operating system giving the

power for each subsystem and each of its states. The values in the table could initially be

the manufacturer’s typical values for the devices. Then the “gas-gauge” IC could be used

by the policy to correct the total power calculation for common combinations of device

states.

5.6 Summary

This chapter first discussed the goals of a CPU speed-setting policy. It then described a

notation for a system’s battery capacity, power, and performance, and used the notation to

derive lower bounds on useful CPU speeds for simple cases. Finally, it outlined the ele-

ments of a realistic, general purpose method for finding the lower bound on CPU speed,

and applied it to an existing CPU speed-setting policy.

A policy for CPU speed-setting should take a system level view, taking into account the

battery behavior, the actual performance of the application code, and the total system

power. The technology to account for all three exists, but has not been integrated. The

goals of the policy should be to first give the same apparent performance as if the CPU

were running at maximum speed at all times, and second, to maximize the work com-

pleted in a discharge. These two goals provide upper and lower bounds on the speeds that

should be used by a policy. The upper bound is maximum CPU frequency. The lower

bound is the speed which maximizes the computations per discharge. Running more

slowly than this means decreasing both performance and the work completed in a dis-

charge, both undesirable. A brute force calculation of the computations per discharge at

Chapter 5: Towards A General Purpose CPU Speed-setting Policy 79

each frequency, as outlined in this chapter, should provide an adequate means for finding

the lower bound. The lower bound calculated in this manner is realistic as it accounts for

non-ideal battery, power, and performance behavior, and is general purpose because it can

be applied to any implementation of a policy.

80

Chapter 6

Conclusion

This chapter summarizes the thesis, lists the contributions to the areas of low power and

mobile computing, and describes future extensions and other applications.

6.1 Summary

This work has combined models of power source behavior with models of system perfor-

mance to better understand the trade-offs between performance and power in low power

computing. Computations per discharge should be used to evaluate such trade-offs, as it

captures important aspects of the battery capacity, the total system power, and the actual

performance. Ignoring any one of these three may lead to the trade-off being made incor-

rectly.

Two non-ideal battery properties with the potential to affect power-performance trade-offs

are loss of capacity and recovery. Chapter 3 showed that recovery is not a problem for the

loads and batteries typical of mobile computing. But the loss of capacity means that peak

power rather than average power determines battery capacity. Consequently, reducing the

peak power of a mobile system will increase the battery life by more than reducing the idle

power, even if both reductions result in the same average power. An important method of

reducing peak power is trading power for performance, particularly setting the CPU speed.

Previous work in CPU speed-setting attempted to minimize the energy per operation of the

CPU. It assumed that the voltage of the CPU must scale with the speed and that the power

Chapter 6: Conclusion 81

varies ass3, wheres is the factor by which both the frequency and voltage are scaled. The

previous work further assumed that the performance also scaled with speed. These

assumptions do not account for the battery behavior, the total system power, or the actual

performance. For real systems, a policy should maximize the computations per battery life

rather than minimizing the energy per operation. It should assume that the system power

will not be proportional tos3 but will have lower order terms due to the other subsystems.

It should account for the performance not scaling with CPU frequency when the memory

hierarchy is a bottleneck. That these factors should be considered was confirmed by results

from battery discharge experiments with mobile systems, which were up to nearly a factor

of four less than expected because of non-ideal battery and performance behavior.

A practical method for determining the lower bound on speeds for a CPU speed-setting

policy was described. This method accounts for battery behavior, total system power, and

actual performance, as well as changes in those aspects of the system due to power man-

agement states of the subsystems. The lower bound can be used with any speed-setting

policy, as all of them share the goals of first meeting user performance expectations and

then maximizing the computations per battery life. Existing technology can be used to fur-

nish the information that this method for the lower bound requires.

6.2 Summary of contributions

The research described in this thesis contributes to the areas of low power and mobile

computing in the following ways:

• Regions of ideal/non-ideal battery behavior were delineated, allowing system
designers to understand when measuring only average power is adequate, and
when dynamic power must also be considered.

• Typical bounds on the approximate effect of battery capacity loss were given.

• Continuous discharge behavior was shown to be useful for estimating intermittent
discharge behavior.

Chapter 6: Conclusion 82

• Reducing idle power was found to have less of an effect than reducing active power
when the active power lies in the non-ideal range of battery behavior.

• It is the only system level power research to use battery discharge experiments to
verify predictions.

• The memory hierarchy was shown to be an important consideration when setting the
CPU speed.

• A realistic policy for dynamically setting the CPU speed was described.

6.3 Future work

The work reported in this thesis can be extended in several ways as well as applied to other

areas of research.

One extension would be to use the pieces of the phenomenological models described in

Chapter 3 to create a new phenomenological model, one applicable to a wider variety of

batteries. Doyle’s model requires nearly 50 parameters to describe the battery, many of

which deal with details of the battery’s construction and manufacture and are unavailable

to the everyday user. A phenomenological model would allow the end user to determine

parameters from a few measurements of the cell to be modeled or from published manu-

facturer data. A phenomenological model could be used by theLowerBound function or in

formulating analytical solutions to other types of power-performance trade-offs. An exam-

ple of the latter would be augmenting Zorzi’s approach to network protocols [76] with a

phenomenological battery model appropriate for a Markov chain.

The most pressing extension is to verify theLowerBound function described in Chapter 5,

using either simulation or a real system. Simulation would involve gathering traces from

actual mobile systems, building a simulator similar to that of Weiser et al. [72] but aug-

mented to account for the behavior of the memory hierarchy and the power management

state of each subsystems, and creating a power profile to be input either into a first-princi-

ples model such as Doyle’s (slow) or a phenomenological model such as above (fast). Ver-

Chapter 6: Conclusion 83

ification with a real system requires a CPU whose speed can be changed by software, and

some method of monitoring battery capacity, total power, and system performance.

A possible extension to the policy itself is that early in a discharge the battery should be

treated as ideal, but later in the discharge, it should be treated as non-ideal. Then the policy

would change modes after a certain point in the discharge. Thus it may be that a better

approach is to minimize energy per operation early in the discharge and maximize compu-

tations per discharge late in the discharge. Because the peak power that can be handled by

the battery decreases with the depth of discharge, it is possible that events early in the dis-

charge begin to look to the battery like their average value, i.e., when the battery is 80%

discharged, it does not matter how it came to be 80% discharged, just that it is 80% dis-

charged. Thus the proper approach is to minimize the energy per operation early in the dis-

charge, and only be concerned with non-ideal battery properties after the battery has

reached a depth of discharge where the peak power of the system would cause the battery

to reach its end-of-discharge voltage.

Another extension would be to investigate I/O power-performance trade-offs. I/O band-

width may have an impact similar to limited memory bandwidth.

The research can be applied to other areas as well. When measuring the energy usage of

applications [23][54], the peak power must be considered because of the findings of Chap-

ter 3. Resource scheduling, especially prefetching from hard drives and across wireless

networks, is another area where the findings of Chapter 3 can be applied. Both disks and

wireless devices can generate large peak powers. The way to reduce the overall peaks is to

make the disk and network generate their respective peaks when the rest of the system is

idle.

Another application for this research is autonomous mobile robots. Battery-powered

mobile robots must decide between how fast they travel and how far they can travel, a

trade-off similar to that of performance versus computations per discharge. Suppose a

Chapter 6: Conclusion 84

mobile robot has collected samples and must return them. The robot should travel at a

speed which maximizes the distance it can travel. Either it will reach the destination or it

will come as close as possible to reaching it (which increases the chance it can be retrieved

by another robot). Slippage of the wheels is similar to the loss of performance due to the

memory hierarchy. An added problem is dealing with turning. The path the robot takes is

not necessarily (nor likely to be) a straight line, so rate of turning and the friction involved

must also be accounted for.

Finally, another area would be to study other applications where performance versus CPU

frequency is an issue. This work looked at CPU speed-setting only for power-performance

trade-offs. Examining performance versus CPU frequency may also be useful for embed-

ded systems, as suggested by [27], which calls for compilers for embedded systems to

have knowledge of the performance versus frequency behavior of the processor.

Appendix A: Derivation of the work ratio 85

Appendix A

Derivation of the work ratio

In the previous work described in Chapter 2, it was assumed that the power consumed by

the system was directly proportional to the CPU clock frequency. A more general

assumption is that the current drawn by a system has two components,S andCV2f, where

S is the component of the current that is independent of the CPU frequency f, andCV2f, the

CMOS dynamic power, is the component that depends on the CPU frequency,

I = S + CV2f

The power of the system,P, is then

P = V0(S + CV2f)

whereV0 is the voltage of the battery. This more general relationship allows one to

represent the full range of possibilities, from the system of the earlier example, where the

power of the system is directly proportional to the CPU clock frequency (S=0), to systems

where the system power does not depend on the CPU frequency (CV2f=0). The charge

capacity of a battery, Q, is related to its discharge currentI by Peukert’s formula,

Q = k/Iα,

The life of the battery, then, is

L = V0Q/P =V0(k/Iα)/[V0(S + CV2f)] =
k/(S +CV2f)Iα = k/(S +CV2f)1+α

For this example, computation will be measured by the number of iterations of a loop that

can be performed. Letj be the number of iterations of the loop executed per unit time.

Then the total number of iterations the system can complete during a battery life is

Appendix A: Derivation of the work ratio 86

W = jL = jk/(S + CV2f)1+α

If the CPU frequency is changed by a factorn, n > 0, then the CPU frequency dependent

portion of the power changes fromCV2f to CV2fn, and, ideally, the number of iterations

executed per unit time fromj to jn. Then the total number of iterations the system can

complete is

Wn = njL = njk/(S + CV2fn)1+α

Taking the ratioWn/W gives

Wn/W = [njk/(S +CV2fn)1+α]/[jk/(S + CV2f)1+α] =

Letting ρ = S/(S + CV2f), the percent of the system power that is independent of the CPU

clock frequency at the initial frequency, then

n S fCV
2

+

S fnCV
2

+

 
 
 1 α+

Wn W⁄ n S ρ⁄
S ρ⁄() n 1–() S ρ⁄() 1 ρ–()+

--- 
 1 α+

=

n 1
ρ n 1 ρ–()+
-------------------------------- 

 1 α+=

Appendix B: Comparison of the work ratio to existing metrics 87

Appendix B

Comparison of the work ratio to existing
metrics

Unlike previous metrics relating performance and power, the work ratio shows that in

some situations there is a useful trade-off between performance and battery life. An

occasionally used power metric for CPU’s intended for portable applications is MIPS/Watt

[7][51]. An analysis of units shows that MIPS/Watt is actually (millions of instructions/s)/

(J/s) = millions of instructions/J. For a given CPU, increasing its clock frequency from f to

nf increases its MIPS rating by a factor ofn, assuming that other factors such as I/O do not

become bottlenecks. Increasing the clock frequency also increases the power, but by less

than a factor ofn because power has a static component and a dynamic component:S +

CV2f. Becausef/(S + CV2f) < nf/(S + CV2nf) for n > 1, the CPU running at a higher

frequency will always have a higher MIPS/W metric than it does when running at a lower

frequency. MIPS/W, then, is monotonically increasing, and does not give any sense of

diminishing returns.

Another metric in the literature power-delay, which for CPU’s has the units W/Spec2 [34].

Unlike MIPS/W, the power-delay metric has the property that “smaller is better”. Again,

increasing the clock frequency from f to nf increases its Spec rating by a factor ofn, while

the power increases by less than a factor ofn. So a CPU running at a higher frequency will

always have a lower W/Spec2 rating than it does when running at a lower frequency. As

with MIPS/W, W/Spec2 does not give any sense of diminishing returns.

The work ratio gives a sense of diminishing returns. It does not always become better with

increasing frequency. Taking the partial derivative with respect to the speedup factor,

Appendix B: Comparison of the work ratio to existing metrics 88

∂Wn/∂W = [-n(1 + α)(1 - ρ) + (ρ + n(1 - ρ))]/[(ρ + n(1 - ρ))]−(2+α)

Setting the numerator equal to 0 and solving for n, one finds that the maximum occurs at n

= ρ/[α(1 - ρ)]

So, unlike the previous metrics, the work ratio has a point where increasing the CPU

frequency is no longer beneficial. By substituting the above value of n into the equation for

ρ, one finds that the optimal point is whereρ = α/(α+1). Whether most systems can

operate at this point is a question for further investigation.

Appendix C: Brief review of the properties of batteries 89

Appendix C

Brief r eview of the properties of batteries

“Remember that any high-energy, high-power battery is a potential bomb.”

John Newman, [52]

This appendix is a brief review of the properties of batteries and common definitions asso-

ciated with them. It begins with the basic operation of a battery and defines common

terms. Following the definitions are descriptions of ideal and non-ideal battery properties.

The differences between the two, especially the non-ideal transient behavior, are the basis

for this work’s assertion that the characteristics of the battery must be taken into account

to properly balance power and performance in mobile systems. There follows a discussion

of porous electrode theory, which underlies Doyle’s model presented in Chapter 3.

C.1 Basic Operation

A battery is a set of one or more electrochemical cells, connected in either series or paral-

lel. A cell consists of two electrodes, an anode and a cathode, separated by an electro-

lyte. During discharge, the positive electrode is referred to as the cathode and the negative

electrode as the anode. When an external load is connected to the battery, electronic cur-

rent flows through the load and ionic current flows through the electrolyte, as shown in

Figure C.1. The charge of the ions and the direction of their flow is determined by the

materials used for the electrodes and electrolyte. If the majority carrier in the electrolyte is

positive, then the ions flow from the anode to the cathode. If the majority carrier is nega-

tive, then the ions flow from the cathode to the anode. There may be minority carrier flow

as well.

Appendix C: Brief review of the properties of batteries 90

After the battery is discharged, it is either discarded or recharged. Primary batteries can be

discharged only once, while secondary batteries are rechargeable. To recharge a secondary

battery, an external voltage source is connected to it as shown in Figure C.2. During the

charge cycle, the positive electrode is referred to as the anode and the negative electrode as

the cathode, because the flow of charge at the electrodes is the reverse of the flow during

discharge. While the charging method is very important to the health of a battery, its prop-

erties during discharge, and the number of discharges it can give, this dissertation will deal

only with the discharge cycle. Charging has been treated in detail elsewhere [28][66], and

battery manufacturers typically specify the charge regimen in their data sheets. This dis-

an
od

e

ca
th

od
e

load

electron flow

Figure C.1 Cell during discharge

cations

anions

electrolyte

- +

an
od

e

ca
th

od
e

electron flow

anions

cations

electrolyte

- +

+-

Figure C.2 Cell during charge

Appendix C: Brief review of the properties of batteries 91

sertation examines ways to better utilize the battery’s capacity during the discharge cycle,

assuming that the charge method gives equal capacity at the start of the discharge.

C.2 Ideal Voltage and Capacity

The voltage and capacity of a battery are the properties of most immediate concern to

mobile systems, followed by the battery’s weight, volume, and safety. The theoretical volt-

age and capacity are determined by the materials used for the electrodes. Table C.1 lists

the standard potentials and electrochemical equivalents of several common electrode

materials. The theoretical potential is found by subtracting the standard reduction potential

of the anode from that of the cathode. For example, the theoretical voltage of a NiCd bat-

tery is

Table C.1: Standard potentials and electrochemical equivalents of common electrode
materials

Material
Standard

reduction potential,
V

Electrochemical
equivalent, g/Ah

Anode materials

H2 0 0.037

Li -3.01 0.259

Cd* -0.81 2.10

Pb -0.13 3.87

Cathode materials

SO2 1.36 2.38

MnO2 1.23 3.24

NiOOH 0.49 3.42

PbO2 1.69 4.45

*Using the reaction Cd(OH)2 + 2e ⇔ Cd + 2OH-

Appendix C: Brief review of the properties of batteries 92

0.49 V[NiOOH] - (-0.81 V)[Cd] = 1.30 V

Further information on the standard potentials is available in Newman [52].

While the previous treatment of the theoretical voltage using standard potentials is usual,

it is instructive to discuss the theoretical voltage in terms of the Fermi levels in light of the

semiconductor background of the intended audience. Figure C.3 shows the relationship

between the open- circuit voltage and the Fermi levels of the electrodes [30]. The open-

circuit voltage is equal to the magnitude of the difference between the Fermi levels of the

electrodes.

Figure C.3 also shows how the choice of electrodes impacts the choice of electrolyte. In

general, for the electrolyte to not react chemically with the electrodes, its lowest unoccu-

pied molecular orbit (LUMO) must be above the Fermi level of the negative electrode,

while its highest occupied molecular orbital (HOMO) must be below the Fermi level of

the positive electrode. If a battery family has a large open-circuit voltage, then the choice

of electrolyte narrows to those with a large energy gap Eg. For example, the open-circuit

voltage of Li-ion batteries rules out aqueous electrolytes, which have an Eg of 1.23 eV.

Negative
electrode

Positive
electrode

LUMO

HOMO EF

EF

Figure C.3 Fermi levels of battery

Eg Voc

electrolyte

Appendix C: Brief review of the properties of batteries 93

While the voltage depends on the Fermi levels of the electrode materials, the capacity

depends on their molecular weights. The capacity of a battery usually refers to its charge

capacity, which is given in Amp-hours, abbreviated Ah. (1 Ah = 3600 Coulombs.) For

example, a battery which can be discharged for 5 hours at 0.3 A has a capacity of 1.5 Ah.

The charge capacity is commonly called the battery’s “C rating.” Capacity is also used to

refer to a battery’s energy capacity, typically given in Watt-hours. The energy capacity is

the nominal voltage times thecharge capacity.In this dissertation capacity will refer to

energy capacity rather than charge capacity unless noted otherwise. Terms used to relate

the capacity include specific energy, the energy capacity per unit weight, typically given in

Wh/kg; energy density, the energy capacity per unit volume, Wh/L; specific power, the

power delivered by the battery per unit weight, W/kg; and power density, the power deliv-

ered per unit volume, W/L. Energy density and power density are occasionally used to

refer to the specific energy and specific power. To avoid confusion, this dissertation will

not use the terms energy density or power density.

The theoretical charge capacity is calculated from the gram equivalent weights of the elec-

trodes. A gram equivalent weight of a material is its atomic weight in grams divided by the

number of electrons produced or consumed in its reaction. According to Faraday’s Laws,

one gram equivalent will produce 26.8 Ah of charge. Thus for the NiCd battery, using the

values from Table C.1, the theoretical charge capacity is

3.42 g/Ah[NiOOH] + 2.10 g/Ah[Cd]= 5.52 g/Ah, or 181 Ah/kg

The theoretical specific energy of the NiCd battery family is then 1.30 V× 181 Ah/kg =

235 Wh/kg.

The theoretical voltage and capacity consider only the electrode materials and do not

reflect contributions due to the electrolyte, cell housing, and other construction compo-

nents. Consequently, the practical voltage and capacity are often considerably less than the

theoretical values. In addition, the voltage and capacity vary with the load.

Appendix C: Brief review of the properties of batteries 94

C.3 Non-ideal Voltage and Capacity

An ideal battery’s charge capacity and voltage (and hence energy capacity) are constant

for all values of the load. In practice, however, both the voltage and the charge capacity

decrease as the load increases. Voltage losses are due to the activation polarization, con-

centration polarization, and ohmic polarization, shown in Figure C.4 [43]. Activation

polarization or surface overpotential is the driving force of the chemical reaction at the

electrode/electrolyte interface. Concentration polarization or concentration overpotential

is the voltage drop due to differences in the concentration of the electrolyte at the reaction

site and in the bulk. Ohmic polarization, or IR loss, is the resistive drop through the elec-

trolyte and electrodes, and across the contacts between the electrodes and the current col-

lectors. The magnitudes of these losses are determined in part by the battery family, and in

part by the physical design of the battery. For example, the electrolyte should be conduc-

tive enough that ohmic losses are not large in the intended region of operation, while

porous electrodes can be used to reduce activation polarization losses, decreasing current

Figure C.4 Cell polarization vs. operating current,

after [43], Figure 2.1

Current increasing

C
el

l v
ol

ta
ge

 in
cr

ea
si

ng

IR loss

Activation polarization

Concentration polarization

Ideal

Real

Appendix C: Brief review of the properties of batteries 95

density by increasing the surface area of the reaction. Porous electrodes will be discussed

further in Section C.4.

C.3.1 Expressions for concentration and activation polarization

While the ohmic polarization varies linearly with the discharge current, the concentration

and activation overpotentials do not. A greatly simplified but still instructive expression

for the concentration polarizationηc is

where co is the electrolyte concentration at the electrode, cb is the concentration in the

bulk, R is the gas constant, F is Faraday’s constant, T is the temperature, and n is the num-

ber of electrons involved in the reaction [43]. As the battery discharges, the electrolyte

concentration near the electrode decreases, causing the concentration polarization to

increase.

For the activation polarization, a simplified expression is

where i is the current density flowing between the electrodes, i0 is the exchange current

density andα is the activation coefficient [52]. The exchange current density i0 is a mea-

sure of the rate of the reaction under equilibrium conditions, when no net current is flow-

ing. This expression for the activation polarization shows that the magnitude ofηs

increases as the current density i is increased.

ηc
RT
nF
------- ln

cb

co
----- Vol ts()=

ηs
RT
αF
-------- ln

i
i0
---- Vol ts()=

Appendix C: Brief review of the properties of batteries 96

C.3.2 Shape of the discharge voltage profile

The shape of the discharge voltage profile varies from battery family to battery family.

Some families have a sloped voltage profile, while others have a nearly flat discharge volt-

age profile, as shown in Figure C.5 a and b. Note that both profiles have steep slopes at the

beginning and end of discharge. The concentration and activation overpotential expres-

sions given in Section C.3.1 help explain the steep slopes. At the beginning of the dis-

charge, reactants are used up at the reaction sites, setting up concentration gradients that

cause reactants to diffuse from the bulk of the electrodes and separator. Until the gradients

reach a steady state, the concentration overpotentials of the electrodes change. At the end

of discharge, reactants are exhausted in some areas of the electrode before they are

exhausted elsewhere, resulting in increased current density in the areas where the reactants

are still available. The increased current density increases the activation polarization. The

V
ol

ta
ge

V
ol

ta
ge

Percent discharged Percent discharged0 100 0 100

a. Sloped discharge profile b. Flat discharge profile

Figure C.5 Typical discharge voltage profiles

Appendix C: Brief review of the properties of batteries 97

increased current density also creates larger concentration gradients, so the concentration

potential increases as well.

There are several factors which determine the slope of the profile in the middle of the dis-

charge:

• Changes in resistance with discharge. If the conductivity of the reactants and prod-
ucts are much different, then as the discharge reaction occurs the resistance of the
cell will change. The change in resistance also depends on the localization of the
reaction site. If the reaction occurs at nearly the same rate throughout the elec-
trode, the resistance change during discharge will be less than if reaction occurs in
a localized area that moves through the electrode during the discharge.

• Changes in the standard potential. The standard potential of some electrodes varies
as the electrode composition changes with the reaction. This is the case with many
Li-ion batteries, for example.

The shape of the discharge profile impacts the design of the power supply and the method

of determining state of discharge. If the profile is flat, then it is possible to use a power

supply with a narrow input voltage range. If the profile is sloped, then the power supply

must be able to operate over a wider range of input voltages. As for determining the state

of discharge, if the profile is sloped, then the battery’s voltage is a good indicator of the

remaining capacity. If the profile is flat, however, then there may be only a few tens of mil-

livolts change in the voltage as the battery discharges from 90% capacity to 10%.

A battery is discharged when its voltage drops below a specified value, called the cutoff

voltage. Factors that determine the cutoff voltage include the battery family, the number of

cells which make up the battery, and the rate of the load [28]. Discharging a battery below

its cutoff voltage may damage it, rendering it immediately useless or reducing the number

of cycles it can be used. The active materials in the battery may not be fully utilized when

the battery voltage reaches the cutoff value, due to the voltage drop from activation, con-

centration, and ohmic polarization. If the active material is not fully utilized, the capacity

of the battery is reduced.

Appendix C: Brief review of the properties of batteries 98

C.3.3 Loss of capacity

The power lost due to activation, concentration, and ohmic polarization cannot be recov-

ered [43]. It is consumed like any other power, given off as heat. Figure C.6 shows a

Ragone plot, a log-log plot of specific energy vs. specific power [43], for the Canon BP-

911 Li-ion battery, generated by the method described by Doyle et al. [19]. The Ragone

plot uses specific energy vs. specific power so that one plot can describe a family of batter-

ies using the same materials but with different capacities, i.e. a battery of a particular fam-

ily with a capacity of 1 Ah would be described by the same Ragone plot as a battery of the

same family with a capacity of 2 Ah. For the BP-911, the capacity at the highest rate

shown is nearly 40% less than it is at the lowest rate. For other batteries, the amount of

lost capacity, the slopes of the curve at the low and high ends, and the point at which the

capacity begins to decrease will differ. But the general trends shown in the Ragone plot of

10
1

10
2

10
1

10
2

Lo
g

sp
ec

ifi
c

en
erg

y,
 W

h/
kg

Log specific power, W/kg

Figure C.6 Ragone plot for the Canon BP-911

Appendix C: Brief review of the properties of batteries 99

the BP-911 are typical of most batteries. Only at low rates is the energy capacity constant.

As the rate increases, the capacity decreases.

While the losses due to activation, concentration, and ohmic polarization cannot be recov-

ered, they do not entirely explain the lost capacity at higher power shown in the Ragone

plot of Figure C.6. The capacity is lost at higher rates because the cutoff voltage is reached

before the active materials of the battery are exhausted. The “lost” capacity at a given dis-

charge rate is available at a lower rate, or at the same rate if the load is removed for some

time.

C.3.4 Transient behavior

The properties discussed so far have been steady state properties. The discharge profiles

given have assumed constant loads throughout the discharge. The mobile computers this

dissertation is concerned with, however, have discharges that are anything but constant.

Figure C.7 shows the voltage profiles of a constant discharge and an intermittent dis-

charge. For the sake of illustration, the off time of the intermittent discharge is not shown.

Both the constant discharge and the intermittent discharge, while on, have the same dis-

charge rate. Consequently, the time of discharge is proportional to the delivered capacity.

The intermittent discharge delivers greater capacity before the cutoff voltage is reached

Figure C.7 Battery recovery (after [43])

Appendix C: Brief review of the properties of batteries 100

than the constant discharge. The difference in capacity will depend on the rate of the dis-

charge, the off time of the intermittent discharge, and the physical design of the cell.

An intuitive explanation of why the intermittent discharge delivers greater capacity

depends on the concentration overpotential. During the off time, concentration gradients

between the bulk of the electrolyte and that near the surface of the electrode decrease due

to diffusion of the ions. If the off time is sufficiently long that the gradient is greatly or

entirely reduced, then when the load turns on, the concentration overpotential will be

smaller than it was when the load was turned off. This is the cause of the voltage peaks in

Figure C.7. As the load stays on, the concentration overpotential will return to the steady

state value. However, due to the diffusion that occurs during the off time, more of the reac-

tants will be used than in the continuous discharge. Hence the greater capacity.

This simplified explanation illustrates why the difference in capacity between high rate

intermittent and constant discharges may be greater than the difference in capacity for low

rate intermittent and constant discharges. The concentration gradients set up by the high

rate discharges will be greater, so that more diffusion will occur during the off time than

for a low rate discharge. In addition, the continuous high rate discharge will use less of the

total capacity of the battery than a low rate continuous discharge, so there is a larger

amount of capacity available to the intermittent high rate discharge than to the intermittent

low rate discharge, as shown in Figure C.8.

C.4 Porous Electrodes

Accurate analysis of battery behavior is not possible without taking into account the

effects of porous electrodes. The following is a basic review of porous electrode theory in

order to prepare the reader for the details of the battery models presented in the next chap-

ter. This section is drawn mainly from Chapter 22 of Newman [52], which contains an in-

depth discussion of the topic.

Appendix C: Brief review of the properties of batteries 101

Figure C.9 shows the cross-section of a cell with a porous electrode. One or both elec-

trodes of most cells are porous. Porous electrodes have several advantages over plane elec-

trodes, the most important of which for battery applications are:

Log Specific Power

Capacity available
to low rate inter-
mittent discharge

Capacity available
to high rate inter-
mittent discharge

Figure C.8 Capacity available to an intermittent discharge

Capacity for
continuousLo

g
S

pe
ci

fic
 C

ap
ac

ity

current collector
current collector

electrolyte

porous electrode
� � � � � � � � � � � � 	 �

� � �
 � � � � � � �
 � �

� �
 	
 � � � � 	 �
 � �
� � � � � � � � � � � �

Figure C.9 Schematic of cell showing porous and plane electrodes

Appendix C: Brief review of the properties of batteries 102

• A large interfacial surface area per volume which will increase the rate of the elec-
trochemical reaction.

• Closer proximity of reactants to electrode surface.

• Smaller resistive drop due to shorter current paths.

Porous electrodes may be either matrices of an electrically conductive reactant or of a non-

conductive reactant mixed with a conductor. The voids of the matrix are occupied by the

electrolytic solution of the cell. The relative diffusion coefficients, size of particles and

interstices, and the reaction process itself determines how uniformly the reaction takes

place throughout the electrode.

For the purposes of this dissertation, the most significant difference between planar and

porous electrodes is the increased surface area available for the reaction. For a planar elec-

trode, the reaction can take place only at the interface between the electrode and the sepa-

rator. For a porous electrode, depending upon its construction and the relative conductance

of the electrolyte and the solid matrix, the reaction may occur throughout the entire elec-

trode simultaneously or in a narrow region which moves through the electrode during dis-

charge [52].

The porous electrode can be characterized by several average quantities. The first is the

void volume,the average fraction of the volume that is void. The second is the average

surface area of the matrix per unit volume. The electrolyte is assumed to fill the entire void

volume of the electrode, so that all of the surface area of the matrix is in contact with the

electrolyte. Equations governing electrode processes involving planar electrodes can be

applied to porous electrodes so long as effective values of variables based upon the void

volume and surface area per volume are used.

Appendix D: Glossary 103

Appendix D

Glossary

Activation polarization: Voltage drop due to rate of electrochemical reaction required to
provide the load current. Also referred to as surface overpotential.

Active materials: The reactants in a battery’s electrochemical reactions.

Amdahl’s Law: The performance increase due to a modification is limited by how often
that modification may be used.

Anion: A negatively charged ion.

Anode: The electrode in a cell at which oxidation occurs. During discharge, the anode is
the negative electrode.

Battery: Two or more electrochemical cells connected in either series or parallel. Com-
monly used to refer to a cell.

BEST model: Battery Energy Storage Test model for lead-acid cells. Based upon curves of
voltage versus current at different depths of discharge.

C rate: The discharge rate normalized to the battery’s charge capacity.

Capacity: The amount of charge or energy delivered by a fully charged battery. Typically
given in Amp-hours (charge capacity) or Watt-hours (energy capacity).

Cathode: The electrode in a cell at which reduction occurs. During discharge, the cathode
is the positive electrode.

Cation: A positively charged ion.

Cell: The basic electrochemical component, consisting of two electrodes and an electro-
lyte.

Concentration polarization: Voltage drop due to differences in reactant concentrations.
Also referred to as concentration overpotential.

Constant current discharge: A discharge where the load’s current does not vary.

Constant power discharge: A discharge where the load’s power does not vary.

Appendix D: Glossary 104

Constant resistance discharge: A discharge where the load’s resistance does not vary.

CPU speed-setting: Dynamically modifying the operating frequency of a CPU to reduce
energy consumption while still meeting the performance expectations of the user.

Cutoff voltage: Voltage at which a battery is considered fully discharged.

Depth of discharge: The ratio of the amount of charge removed from a battery to its charge
capacity.

Discharge rate: The rate at which charge is removed from the battery. Typically given in
Amperes, or normalized to the battery’s capacity.

Doyle’s model: A first principles, finite-mesh model of lithium-ion cells.

Electrode: The location at which an electrochemical reaction occurs.

Electrolyte: The material that enables ions to flow between electrodes in a battery.

Energy: The ability to do useful work, as in moving a charge or a mass. Typically given in
Joules or Watt-hours.

Excess cycles: In Weiser et al.’sPast policy, the number of cycles of computation left over
from a previous window which must be completed in the current window.

Gas-gauge IC: An integrated circuit that monitors the flow of charge into and out of a bat-
tery, as well as the battery’s temperature, voltage, and other characteristics.

Inflection point: A point on a curve where the slope is 0 but which is not a minima or max-
ima.

Internal resistance: The opposition to the flow of current within a battery.

KiBaM: Kinetic Battery Model. Models a battery as two wells of charge, an available well
and a bound well.

Performance: For this dissertation, the number of iterations of a loop of code that a system
can execute per unit time.

Peukert’s formula: A battery model for continuous discharges wherecapacity = k/cur-
rentα.

Power: The rate at which energy is consumed, typically given in Watts.

Power management: Placing idle subsystems into low power modes.

Appendix D: Glossary 105

Power-performance trade-off: Scaling back performance to thereby reduce power.

Ragone plot: A figure showing the energy capacity versus power for a battery. Typically a
logarithmic plot.

Recovery: A phenomenon whereby a battery may deliver more capacity for an intermittent
load than for a continuous load of the same value.

Specific energy: The amount of energy per unit weight of a cell.

Specific power: The amount of power per unit weight of a cell.

Speedup: The ratio of the execution time after a modification to the execution time before
a modification.

Standard potential: The voltage of a reactant measured relative to a reference material,
typically hydrogen.

State of charge: The amount of charge remaining in a battery.

System power: The total power drawn from a battery by a mobile computer.

Variable-voltage CPU: A CPU that scales its operating voltage with its operating fre-
quency.

Voltage profile: A plot of battery voltage versus depth of discharge.

Work ratio: The number of computations per discharge at a given clock frequency normal-
ized to the computations per discharge at an initial clock frequency.

Y-intercept: The y-coordinate of a line where it crosses the y-axis.

Appendix E: Source code listings 106

Appendix E

Source code listings

This appendix contains the pertinent portions of the Linux kernel code to change the

StrongARM SA-1100 clock, as described in Chapter 4.

/*
 * clock-patch.S Copyright (c) 1998 Tom Martin
 *
 * Assembly routine to change DRAM config registers.
 * Note that this is not meant to be part of the kernel,
 * but should instead be burned into FLASH.
 * Will hardcode the FLASH offset (0x0007ff00)in the kernel.
 * Should also have the kernel check that this code is present before
 * jumping to it.
 *
 * Assemble with arm-unknown-linuxaout-as. Note that as puts 20 bytes
 * before the actual code, so the kernel should jump to 0x0007ff20
 * if this is burned into 0x0007ff00.
 *
 * Inputs: r3: MDCNFG, r4: MDCAS0, r5: MDCAS1, r6: MDCAS2.

r2: &MDCNFG.
 * lr has return location.
 */

.text

.align

str r3, [r2]
str r4, [r2, #0x04]
str r5, [r2, #0x08]
str r6, [r2, #0x0c]
movpc, lr

Appendix E: Source code listings 107

/*
 * clock-dram-setup.S Copyright (c) 1998 Tom Martin
 *
 * Assembly routine to change DRAM config registers.
 * Jumps to routine clock-patch burned into FLASH just before
 * params location: 0x0007ff00.
 *
 *
 * Inputs: r0: ptr to array containing new mdcnfg, mdcas[0-2] values.
 * r1 jump_addr, r2 has MDCNFG’s virtual address.
 * lr has return location.
 */

.text

.align

.globl _clock_dram_setup
_clock_dram_setup:

stmfd sp !,{r3 - r6, lr}
ldr r4, [r0, #0x04]
ldr r5, [r0, #0x08]
ldr r6, [r0, #0x0c]
ldr r3, [r0]
ldr lr, =_jump_back
mov pc, r1

_jump_back:
ldmfd sp!, {r3 - r6, pc}

Appendix E: Source code listings 108

/*
 *
 * linux/arch/arm/drivers/char/clock.c
 * Code to control the SA-1100 clock.
 * Copyright (c) 1998, 1999 Tom Martin
 *
 */

/* From <asm/arch/hardware.h> */
/* comments pertain to itsy. otherwise just static memory bank mappings
*/
#define FLASH0 0x00000000 /* mirror of flash 1 or flash
2 */
#define FLASH1 0x08000000 /* mother board flash */
#define FLASH2 0x10000000 /* daughter card flash */
#define FLASH3 0x18000000 /* unused */

int coproc_switching_disabled = 0;

int speed_values[11]={59, 74, 88, 103, 118, 133, 148, 162, 177, 192,
206};

/* static_memory_setup needs some fixes:
--Will get the bank 0 wrong in some cases if there is a
daughtercard but bank 0 mirrors bank 1. Should work fine as
long as bank 0 mirrors bank 2 when there’s a daughtercard.
--Assumes FLASH is 4 MB.

*/

static int static_memory_setup(int ccf)
{
unsigned int msc0_new, msc0_old, msc1_new, msc1_old;
int config;
int mirror_flag=0;

/* This shouldn’t be hardcoded. */
int nonvol_memory_id_address = 0x003fffe0;

/* Should make the following def’s in clock.h */
int msc_bank_mask = 0x0000ffff;

/*
 * Assumptions: Static memory 1 is never invalid because it’s on
 * the motherboard. Static memories are 4 MB. The latter is a
 * Bad Assumption, but works while I get the kinks out. (Actually,
 * the FLASH driver assumes they’re 4 MB too...)
 */

msc0_old = MSC0;
msc1_old = MSC1;

/* Static memory bank 0 mirrors either static memory bank 1 or

Appendix E: Source code listings 109

 static memory bank 2. See Itsy User’s Manual. */
if ((msc0_old & msc_bank_mask) == (msc1_old & msc_bank_mask)) {

mirror_flag= 2;
}
/* sanity check */
else if ((msc0_old & msc_bank_mask)!=((msc0_old>>16) &

msc_bank_mask)) {
printk(“ *** static_memory_setup: mirror is wrong\n”);

}
else {

mirror_flag = 1;
}

config = ((volatile Word *) VirtAdd
(FLASH1+nonvol_memory_id_address))[ccf/2];

if (ccf % 2) {
config = config & msc_bank_mask;

}
else {

config = config >> 16;
}

msc0_new = config << 16;
if (mirror_flag == 1) {

msc0_new |= config;
}

if ((msc1_old & msc_bank_mask) != MSC_INVALID) {
config = ((volatile Word *) VirtAdd

(FLASH2+nonvol_memory_id_address))[ccf/2];
if (ccf % 2) {

config = config & msc_bank_mask;
}
else {

config = config >> 16;
}
msc1_new = config;
if (mirror_flag == 2) {

msc0_new |=config;
}

}
else msc1_new = MSC_INVALID;

if ((msc1_old >>16) != MSC_INVALID) {
config = ((volatile Word *) VirtAdd

(FLASH3+nonvol_memory_id_address))[ccf/2];
 if (ccf % 2) {

config = config & msc_bank_mask;
}
else {

config = config >> 16;
}
msc1_new |= config << 16;

}
else {

msc1_new |= (MSC_INVALID << 16);

Appendix E: Source code listings 110

}

#ifdef CLOCKDEBUG
printk(“msc0_new: %x msc1_new: %x \n”, msc0_new, msc1_new);

#endif /* CLOCKDEBUG */

MSC0 = msc0_new;
MSC1 = msc1_new;
return 0;

}
/* returns 0 if valid speed, -1 if not. */
/* clobbers r0, r1, r2, r3, r4. Not sure if the compiler takes care of
that
or not. */
static int clock_change(int speed)
{
extern void clock_dram_setup(int *, unsigned long , volatile Word *);
int retval, ccf, ppcr_val, ppcr_upper, new_is_faster;
int mdcnfg_new, mdcnfg_old, mdcas0, mdcas1, mdcas2, de_field;

int md_array[4];
ulong jump_addr, flags;

typedef struct {
 int mdcnfg;
 int mdcas0;
 int mdcas1;
 int mdcas2;
} dram_table_t;

dram_table_t *dram_config_addr;

/* Make these defines in clock.h */
int ccf_mask = 0x0000001f;

switch (speed) {
case 59:

ccf = 0;
retval = 0;
break;

case 74:
ccf = 1;
retval = 0;
break;

case 88:
ccf = 2;
retval = 0;
break;

case 103:
ccf = 3;
retval = 0;
break;

case 118:
ccf = 4;
retval = 0;

Appendix E: Source code listings 111

break;
case 133:

ccf = 5;
retval = 0;
break;

case 148:
ccf = 6;
retval = 0;
break;

case 162:
ccf = 7;
retval = 0;
break;

case 177:
ccf = 8;
retval = 0;
break;

case 192:
ccf = 9;
retval = 0;
break;

case 206:
ccf = 10;
retval = 0;
break;

default:
retval = -1;

#ifdef CLOCKDEBUG
printk(“ *** clock_change in default: speed: %d \n”, speed);

#endif /* CLOCKDEBUG */

return retval;
break; /* shouldn’t reach here. */

}

ppcr_val = inl(PPCR_V);
ppcr_upper = ppcr_val & (~ccf_mask);

ppcr_val &=ccf_mask;

if (ccf > ppcr_val) {
new_is_faster = 1;

}
else if (ccf < ppcr_val) {

new_is_faster = 0;
}
else { /* The new speed is the same as the old */

retval = 0 ;
return retval;

}

ppcr_val = ppcr_upper | ccf;

#ifdef CLOCKDEBUG

Appendix E: Source code listings 112

 printk(“ *** clock_change: speed: %d ppcr = %x\n”, speed,
ppcr_val);
#endif /* CLOCKDEBUG */

/* try using powermgr for now. Doesn’t look like it takes
care of the DMA controller however. */

#ifdef USE_POWERMGR

{
int delay;

if (powermgr_suspend_check(0, &delay)) {
powermgr_suspend();

}
else {

printk(“suspend_check failed with delay %d\n”, delay);
return -EIO;
}

}

#endif /* USE_POWERMGR */

/* Disable D-cache and WB */
/* asm(“mrc p15, 0, r1, c1, c0”);

asm(“bic r1, r1, #0x000c”);
asm(“mcr p15, 0, r1, c1, c0”);

*/

mdcnfg_old = (MDCNFG);
de_field = mdcnfg_old & DE_FLD_MASK;

/*
if (de_field > 1) {

mdcnfg_new = mdcnfg_values[ccf+11][0] | de_field;
mdcas0 = mdcnfg_values[ccf+11][1];
mdcas1 = mdcnfg_values[ccf+11][2];
mdcas2 = mdcnfg_values[ccf+11][3];

}
else {

mdcnfg_new = mdcnfg_values[ccf][0] | de_field;
 mdcas0 = mdcnfg_values[ccf][1];
 mdcas1 = mdcnfg_values[ccf][2];
 mdcas2 = mdcnfg_values[ccf][3];
 }
*/

/* From Debby’s email, 11/18/1998 */
dram_config_addr = (dram_table_t *)VirtAdd(0x000010cc);

mdcnfg_new = (dram_config_addr+ccf)->mdcnfg | de_field;
 mdcas0 = (dram_config_addr+ccf)->mdcas0;
 mdcas1 = (dram_config_addr+ccf)->mdcas1;
 mdcas2 = (dram_config_addr+ccf)->mdcas2;

md_array[0] = mdcnfg_new;

Appendix E: Source code listings 113

md_array[1] = mdcas0;
md_array[2] = mdcas1;
md_array[3] = mdcas2;
jump_addr = VirtAdd(FLASH1 + CLOCK_PATCH +0x00000020);

/* Test to make sure the patch is in FLASH. */
if (*(unsigned int*)(jump_addr) != 0xe5823000) {

printk(“clock_change: DRAM setup patch is not in FLASH!\n”);
return -1;

}

#ifdef CLOCKDEBUG
else

printk(“clock_change: DRAM setup patch is in FLASH.\n”);

printk(“clock_change. md_array: %x jump_addr: %x &MDCNFG %x\n”,
md_array, jump_addr, &MDCNFG);

#endif /* CLOCKDEBUG */

if (new_is_faster) {
save_flags_cli (flags);

/* Putting the call to the pcmcia_setup stub here for now.
When PCMCIA is working, the stub will have to change
MECR. May have to test whether the cards care when
their timing is changed relative to the CPU. May also
have MECR change in powermgr. */

pcmcia_setup(ccf);

static_memory_setup(ccf);

#ifdef FLASH_PATCH
clock_dram_setup(md_array, jump_addr, &MDCNFG);

#else
MDCAS2 = mdcas2;
MDCAS1 = mdcas1;
MDCAS0 = mdcas0;
MDCNFG = mdcnfg_new;

#endif /* FLASH_PATCH */
restore_flags(flags);

}

#ifdef LCD_STATIC
lcdStatic();

#else
#ifdef LCD_OFF

lcdOff();
#endif
#endif

#ifndef USE_POWERMGR

Appendix E: Source code listings 114

TurnUartOff(serial_save);
#endif

/* Might be getting lucky that writing r1 doesn’t clobber anything. */
 /*disable clock switching*/

asm(“mcr p15, 0, r0, c15, c2, 2”);
asm(“mov r1, #0xe8000000”);
asm(“add r1, r1, #0x00050000”);
asm(“ldr r0, [r1]”); /* force a cache miss */

 /* r1 points to a uncacheable address */

outl(ppcr_val, PPCR_V);

/* re-enable clock switching if it hasn’t been forced off.*/
/* Test to see if this needs to be here. I suspect that changing ppcr
 enables clock switching. */

if (coproc_switching_disabled == 0) {
__asm__ __volatile__(“mcreq p15, 0, r0, c15, c1, 2”);

/* printk(“Switching not disabled\n”); */
}

#ifndef USE_POWERMGR
TurnUartOn(serial_save);

#endif

if (!new_is_faster) {
save_flags_cli (flags);

/* See comment after “if (new_is_faster)” above.*/
pcmcia_setup(ccf);

static_memory_setup(ccf);

#ifdef FLASH_PATCH
clock_dram_setup(md_array, jump_addr, &MDCNFG);

#else
MDCNFG = mdcnfg_new;
MDCAS0 = mdcas0;
MDCAS1 = mdcas1;
MDCAS2 = mdcas2;

#endif /* FLASH_PATCH */
restore_flags(flags);

}

/* Enable D-cache and WB */
/* asm(“mrc p15, 0, r1, c1, c0”);

asm(“orr r1, r1, #0x000c”);
asm(“mcr p15, 0, r1, c1, c0”);

*/

Appendix E: Source code listings 115

#if (defined(LCD_STATIC) || defined (LCD_OFF))
lcdOn();

#elif (!defined(USE_POWERMGR))
lcd_setup(speed);

#endif /* LCD_STATIC || LCD_OFF */

#ifdef USE_POWERMGR
/* see arch/arm/kernel/sa1100-sleep-mode.c & powermgr.c */

powermgr_resume(inl(PSSR_V));

#endif /* USE_POWERMGR */

#ifdef CLOCKDEBUG
printk(“ After powermgr_resume: LCRR3: %x \n”, LCCR3);

#endif /* CLOCKDEBUG */

return retval;
}

static inline void sa1100_disable_switching(void)
{

__asm__ __volatile__(“mcr p15, 0, r0, c15, c2, 2”); /*disable
clock switching*/

__asm__ __volatile__(“mov r1, #0xe8000000”);
__asm__ __volatile__(“add r1, r1, #0x00050000”);
__asm__ __volatile__(“ldr r0, [r1]”); /* force a cache miss */

/* r1 points to a uncacheable address */

}

static inline void sa1100_enable_switching(void)
{

asm(“mcr p15, 0, r0, c15, c1, 2”); /*renable clock switching*/
}

static inline int clock_full(void)
{

sa1100_enable_switching();
coproc_switching_disabled = 0;
return 0;

}

Bibliography 116

Bibliography

 [1] Agarwal, A. Analysis of cache performance for operating systems and multiprogram-
ming. Boston: Kluwer Academic Publishers, 1989.

 [2] Anderson, J., Berc, F., Dean, J., Ghemawat, S., Henzinger, M., Leung, S., Sites, R.,
Vandevoorde, M., Waldspurger, C., Weihl, W. “Continuous profiling: Where have all
the cycles gone?” ACM Transactions on Computer Systems, vol.15, no.4, November
1997, p. 357-90.

 [3] Athas, W., Svennson, L. Koller, J., Tzartzanis, N. and Chou, E. “Low-Power Digital
Systems Based on Adiabatic-Switching Principles,” IEEE Transactions on VLSI Sys-
tems, December 1994, pp. 398-407.

 [4] Benchmarq Microelectronics, Inc. 1994 Data Book.

 [5] Bennett, H. “Logical Reversibility of Computation,” IBM Journal of Research and
Development, November 1973, pp. 525-532.

 [6] Bennett, H. and Landauer, R. “The Fundamental Physical Limits of Computation,”
Scientific American, July 1985, pp. 48-56.

 [7] Burd, T. and Brodersen, R. “Energy Efficient CMOS Microprocessor Design,” Pro-
ceedings of the Twenty-Eighth Annual Hawaii International Conference on System
Sciences; Vol.1; Wailea, HI, January 1995.

 [8] Bhattacharya, D. “Power Management White Paper,” Intel Corporation, Rev. 0.2.

 [9] Chandrakasan, A. and Brodersen, R.Low Power Digital CMOS Design. Boston: Klu-
wer Academic Publishers, 1995.

 [10] Chang, J. and Pedram, M. “Battery-powered digital CMOS design,’’ Procings of
Design Automation and Test in Europe, March 1999, pp. 72-76.

 [11] Child, J. “Making Every Watt Count,” Computer Design, December 1993, vol. 32,
no. 12, pp. 67-70, 83-86.

 [12] Chemical Rubber Company. CRC Handbook of Chemistry and Physics. 76th edi-
tion. CRC Press, Cleveland, OH, 1995.

 [13] De Vidts, P. and White, R.E. “Mathematical modeling of a nickel-cadmium cell:
proton diffusion in the nickel electrode,” Journal of the Electrochemical Society;
vol.142, no.5; May 1995; pp. 1509-19.

Bibliography 117

 [14] Digital Equipment Corporation. DIGITAL Semiconductor SA-1100 Microproces-
sor: Technical Reference Manual, revision EC-R5MTC-TE, March 1998.

 [15] Doyle, M. Design and Simulation of Lithium Rechargeable Batteries. Ph.D. Disser-
tation, University of California at Berkeley. 1995.

 [16] Doyle, M., Fuller, T. and Newman, J. “Modeling of Galvanostatic Charge and Dis-
charge of a Lithium/Polymer/Insertion Cell,” Journal of the Electrochemical Society;
vol. 140, no. 6; June 1993; pp. 1526-1533.

 [17] Doyle, M. and Newman, J. “Analysis of Capacity-Rate Data for Lithium Batteries
Using Simplified Models of the Discharge Process,” to appear in the Journal of
Applied Electrochemistry.

 [18] Doyle, M. and Newman, J. “Comparison of Modeling Predictions with Experimen-
tal Data from Plastic Lithium Ion Cells,” Journal of the Electrochemical Society; vol.
143, no. 6; June 1996; pp. 1890-1903.

 [19] Doyle, M., Newman, J. and Reimers, J. “A quick method for measuring the capacity
versus the discharge rate for a dual lithium-ion insertion cell undergoing cycling,”
Journal of Power Sources; vol. 52, no. 2; December 1994; pp. 211-216.

 [20] Elnozahy, E. Private communication.

 [21] Fan, D. and White, R.E. “Mathematical Modeling of a Nickel-cadmium Battery.
Effects of Intercalation and Oxygen Reactions,” Journal of the Electrochemical Soci-
ety; vol.138, no.10; Oct. 1991; pp. 2952-60.

 [22] Feynman, R. “Quantum Mechanical Computers,” Foundations of Physics, Vol. 16,
No. 6, 1986, pp. 507-531.

 [23] Flinn, J. and Satyanarayanan, M. “PowerScope: A Tool for Profiling the Energy
Usage of Mobile Applications,” 2nd IEEE Workshop on Mobile Computing Systems
and Applications, New Orleans, LA, February 25-26, 1999, pp. 2-10.

 [24] Flynn, J. “How to Talk to ‘Smart Batteries’,” Embedded Systems Programming, vol.
9, no. 12, November 1996, pp. 30-46.

 [25] Fuller, T., Doyle, M. and Newman, J. “Relaxation Phenomena in Lithium-Ion-Inser-
tion Cells,”, Journal of the Electrochemical Society; vol. 141, no. 4; April 1994; pp.
982-990.

 [26] Fuller, T., Doyle, M. and Newman, J. “Simulation and Optimization of the Dual
Lithium Ion Insertion Cell,” Journal of the Electrochemical Society; vol. 141, no. 1;
January 1994; pp. 1-10.

Bibliography 118

 [27] Ganssle, J. “A Plea to Compiler Vendors,” Embedded Systems Programming, vol.
12, no. 3, March 1999, pp. 129-132.

 [28] Gates Energy Products, Inc. Rechargeable Batteries Applications Handbook. Bos-
ton: Butterworth-Heinemann, 1992.

 [29] Glass, B. “Under the Hood: Power Management,” Byte, September 1991, pp. 329-
335.

 [30] Goodenough, J. “Design Considerations,” Solid State Ionics 69, 1994, pp. 184-198.

 [31] Govil, K., Chan, E., and Wasserman, H. “Comparing Algorithms for Dynamic
Speed-Setting of a Low-Power CPU,” Proceedings of the 1st ACM International Con-
ference on Mobile Computing and Networking, 1995, pp. 13-25.

 [32] Graham, S., Kessler, P., McKusick, M. “gprof: A Call Graph Execution Profiler,”
Proceedings of the SIGPLAN ‘82 Symposium on Compiler Construction, SIGPLAN
Notices, June 1982, Vol. 17, No. 6, pp. 120-126.

 [33] Hageman, S. “Simple PSpice Models Let You Simulate Common Battery Types,”
EDN, October 28, 1993, pp. 117-129.

 [34] Horowitz, M, Indermaur, T, and Gonzalalez, R. “Low-Power Digital Design,” Pro-
ceedings of the 1994 Symposium on Low Power Electronics, October 1994, pp. 8-11.

 [35] Hyman, E., Spindeler, W.C., and Fatula J. F. “Phenomenological Discharge Voltage
Model for Lead-Acid Batteries,” Proceedings of the AIChE Meeting, November 1986,
pp. 78-86.

 [36] Intel Corporation, Microsoft Corporation. “Advanced Power Management: The Next
Generation,” Version 1.0, August 18, 1991.

 [37] Intel Corporation. Memory Products Databook, 1993.

 [38] Keyes, R. “Physical Limits in Digital Electronics,” Proceedings of the IEEE, Vol.
63, May 1975, pp. 740-767.

 [39] Keyes, R. and Landauer, R. “Minimal Energy Dissipation in Logic,” IBM Journal of
Research and Development, March 1970, pp. 152-157.

 [40] Kiaei, S. and Devadas, S. Panel session organizers, “Which has greater potential
power impact: High-level design and algorithms or innovative low power technol-
ogy?” Proceedings of the 1996 International Symposium on Low Power Electronics
and Design, August 1996, pp. 175.

Bibliography 119

 [41] Koller, J. and Athas, W. “Adiabatic Switching, Low Energy Computing, and the
Physics of Storing and Erasing Information,” Proceedings of the Workshop on Physics
and Computation, October 1992,

 [42] Kuroda, T. Suzuki, K., Mita, S., Fujita, T., Yamane, F., Sano,F., Chiba,A., Watanabe,
Y., Matsuda, K., Maeda, T., Sakurai, T., and Furuyama, T. “Variable supply-voltage
scheme for low-power high-speed CMOS digital design,” IEEE Journal of Solid-State
Circuits, Vol. 33, No. 3, March 1998, pp. 454-462.

 [43] Linden, D.Handbook of Batteries and Fuel Cells. New York: McGraw-Hill, 1984.

 [44] Lindstrom, O. “A Pseudo-Resistance Method for Collating Battery Discharge Data,”
Journal of the Electrochemical Society; Vol. 117, No. 8; August 1970; pp. 1083-1090.

 [45] Lorch, J. and Smith, A. “Software strategies for portable computer energy manage-
ment,” IEEE Personal Communications Magazine, Vol. 5, No. 3, June 1998, pp. 60-73.

 [46] Manwell, J. and McGowan, J. “Lead Acid Battery Storage Model for Hybrid Energy
Systems,” Solar Energy Vol. 50, No. 5, pp. 399-405.

 [47] Martin, T. “Evaluation and Reduction of Power Consumption in the Navigator
Wearable Computer”, Masters Thesis, Carnegie Mellon University Department of
Electrical and Computer Engineering, 1994.

 [48] Martin, T. and Siewiorek, D. “A Power Metric for Mobile Systems,” Proceedings of
the 1996 International Symposium on Low Power Electronics and Design, August
1996, pp. 37-42.

 [49] Mayer, J. “Design Team Gives Thumbs Up to Portable Platform,” Portable Design,
February 1996, pp. 47-51.

 [50] Mead, C. and Conway, L. Introduction to VLSI Systems. Reading, MA. Addison-
Wesley Publishing Company, 1980.

 [51] NEC Electronics Inc. VR4100 Microprocessor Product Brief, 1995.

 [52] Newman, J.Electrochemical Systems, 2nd Edition. Englewood Cliffs, NJ: Prentice
Hall, 1991.

 [53] Newman, J. “Optimization of Porosity and Thickness of a Battery Electrode by
Means of a Reaction-Zone Model,” Journal of the Electrochemical Society; vol 142,
no. 1; January 1995; pp. 97-101.

Bibliography 120

 [54] Ong, P. and Yan, R. “Power-Conscious Software Design--a framework for modeling
software on hardware,” Proceedings of the 1994 Symposium on Low Power Electron-
ics, October 1994, pp. 36-37.

 [55] Paleologo, G., Benini, L., Bogliolo, A., and De Micheli, G. “Policy Optimization for
Dynamic Power Management,” Proceedings of the 35th Design Automation Confer-
ence, San Francisco, CA, June 15-19, 1998, pp. 182-187.

 [56] PC Magazine, “Travelling powerhouses,” January 19, 1999.

 [57] PC Magazine, “Notebook computers,” July 20, 1999.

 [58] Pedram, M., Tsui, C-Y. and Wu, Q. “An integrated battery-hardware model for por-
table electronics,’’ , Proc. of Asia and South Pacific Design Automation Conf., Febru-
ary 1999, pages 109-112.

 [59] Pering, T. and Brodersen, R. “Energy Efficient Voltage Scheduling for Real-Time
Operating Systems,” presented at the Fourth IEEE Real-Time Technology and Appli-
cations Symposium, Works in Progress session, Denver, CO, June 3-5, 1998.

 [60] Petersen, R.Linux: The Complete Reference. Berkeley, CA: Osborne McGraw-Hill,
1996.

 [61] Podlaha, E. and Cheh, H. “Modeling of Cylindrical Alkaline Cells,” Journal of the
Electrochemical Society, vol. 141, no. 1; January 1994; pp. 28-35.

 [62] Sanyo Corporation. UF812248 Data Sheet. April, 1998.

 [63] Sanyo Corporation. UF612248 Data Sheet. April, 1998.

 [64] Seymour, J. “386SX laptops: Desktop power, notebook size,” PC Magazine, vol. 10,
no. 14, August 1991, pp. 103-230.

 [65] Smailagic, A. and Siewiorek, D. “The CMU Mobile Computers: A New Generation
of Computer Systems,” Proceedings of COMPCON ‘94; San Francisco, CA, 28 Febru-
ary-4 March 1994.

 [66] Sony Corporation, Recording Media and Energy Company. Lithium Ion Recharge-
able Battery Data Sheet, 1996.

 [67] Su, C., Tsui, C., and Despain, A. “Low Power Architecture Design and Compilation
Techniques for High-Performance Processors,” Proceedings of COMPCON ’94, pp.
489-498.

Bibliography 121

 [68] Tiwari, V., Malik, S., and Wolfe, A. “Compilation Techniques for Low Energy: An
Overview,” Proceedings of the 1994 Symposium on Low Power Electronics, October
1994, pp. 38-39.

 [69] Tiwari, V., Malik, S., and Wolfe, A. “Power Analysis of Embedded Software: A
First Step Towards Software Power Minimization,” IEEE Transactions on Very Large
Scale Integration Systems, vol. 2, no. 4, December 1994, pp. 437-445.

 [70] Uhlig, R., Nagle, D., Mudge, T., Sechrest, S., and Emer, J. “Instruction Fetching:
Coping with Code Bloat,” Proceedings of the 22nd International Symposium on Com-
puter Architecture, July 1995, pp. 345-356.

 [71] Viredaz, M. “The Itsy Pocket Computer Version 1.5 User’s Manual,” Compaq West-
ern Research Laboratory Technical Note TN-54, July 1998.

 [72] Weiser, W., Welch, B., Demers, A., and Shenker, S. “Scheduling for Reduced CPU
Energy,” Proceedings of the 1st USENIX Symposium on Operating Systems Design
and Implementation, November 1994, pp. 13-23.

 [73] Wuytack, S., Francky, C., Franssen, F., Nachtergaele, L., and De Man, H. “Global
communication and memory optimizing transformations for low power systems,” Pro-
ceedings of the 1994 Workshop on Low Power Design, April 1994, pp. 203-208.

 [74] Yao, F., Demers, A. and Shenker, A. “A Scheduling Model for Reduced CPU
Energy,” Proceedings of the 36th Annual Symposium on Foundations of Computer
Science, October 1995, pp. 374-382.

 [75] Younis, S. and Knight, T. “Asymptotically Zero Energy Split-Level Charge Recov-
ery Logic,” Proceedings of the 1994 International Workshop on Low Power Design,
April 1994, pp. 177-182.

 [76] Zorzi, M. and Rao, R. “Error control and energy consumption in communications
for nomadic computing,” IEEE Transactions on Computers, Vol. 46, No. 3, March
1997, pp. 279-289.

