
Formally Verified Safety Net for Waypoint
Navigation Neural Network Controllers ?

Alexei Kopylov1, Stefan Mitsch2, Aleksey Nogin1, and Michael Warren1

1 HRL Laboratories, LLC, Malibu, CA
{akopylov, anogin, mawarren}@hrl.com

https://csrs.hrl.com/
2 Carnegie Mellon University, Pittsburgh, PA

smitsch@cs.cmu.edu

Abstract. This paper describes a formal model of a “location, head-
ing and speed” waypoint navigation task for an autonomous ground
vehicle—that is, a task of navigating the vehicle towards a particular
location so that it has the desired heading and speed when in that loca-
tion. Our novel way of modeling this task makes formal reasoning over
controller correctness tractable. We state our model in differential dy-
namic logic (dL), which we then use to establish a formal definition of
waypoint feasibility and formally verify its validity in the KeYmaera X
interactive theorem prover. The formal machine-checked proof witnesses
that for any waypoint we consider feasible, the vehicle can indeed be
controlled to reach it within the prescribed error bound. We also de-
scribe how we use these formal definitions and theorem statements to
inform training of neural network controllers for performing this way-
point navigation task. Note that in our approach we do not need to rely
on the neural network controller always being perfect—instead, the for-
mal model allows a synthesis of a correct-by-construction safety net for
the controller that checks whether the neural network output is safe to
act upon and present a safe alternative if it is not.

1 Introduction

Our work is motivated by the task of assuring that an autonomous ground vehicle
will safely travel from a start point to a destination point. Specifically, we are
working with the US Army Combat Capability Development Center (CCDC)
Ground Vehicle Systems Center (GVSC) autonomous Polaris MRZR vehicle,
which was originally developed and used as part of the Dismounted Soldier Au-
tonomy Tools (DSAT) effort [18]. At the highest level, we consider this “start to

? Acknowledgment: this material is based upon work supported by the United
States Air Force and DARPA under Contract No. FA8750-18-C-0092. Any opin-
ions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the view of the United States
Air Force and DARPA. Distribution Statement “A” (Approved for Public Release,
Distribution Unlimited).

https://csrs.hrl.com/

2 Alexei Kopylov et al.

destination” task as a combination of two subtasks. The first subtask, which is
outside the scope of this paper, is to plan a safe path from start to destination,
replanning as necessary when circumstances change. The second subtask, ad-
dressed in this paper, is to then control the vehicle in a way that can be assured
to follow the planned path without deviating from it beyond some error margin.

Obviously, not every path can be followed with sufficient precision—for exam-
ple, a path that requires a turn that is much sharper than the vehicle’s minimum
turning radius could not be feasibly followed without significant deviation. More-
over, we are not only interested in limiting ourselves to paths that are feasible
from the point of view of the vehicle’s mechanical limits—we are interested in
limiting ourselves to paths for which we can assure that the vehicle will be able
to follow successfully. The notion of a feasible path effectively becomes the con-
tract between the two subtasks—in assuring the overall task, we need to assure
that the path planning subtask will always output a path (including the relevant
error margins) that is both safe and feasible, and then assure that the path navi-
gation subtask is capable of navigating any such feasible path without exceeding
the error margin. Our choice of focusing on the latter task first is motivated by
the desire to find a formal notion of feasible paths that is both sufficiently liberal
(provide flexibility in the solution of the former task), while at the same time
conservative enough to support our assurance argument.

The benefit of a formally verified notion of feasible paths is that it allows
us to use machine learning to aggressively optimize a path following controller:
The current “baseline” path following controller on the MRZR is a pure pursuit
controller that does not always follow complex paths accurately, typically limited
to fairly low speeds, and according to the users “feels somewhat robotic”. The
goal is to replace the MRZR path following controller with a neural network
based one that is capable of driving both more aggressively, yet more accurately,
and with better control. To provide safety guarantees for this critical task despite
using machine learning, we need to be able to assure that the neural network
based controller can be trusted to not misbehave—even in unlikely corner cases
that might have never been encountered during training and testing.

This paper presents the first iteration of our work on assuring a path following
controller, where we make a number of simplifying assumptions: (i) we use a
point vehicle model with instantaneous steering,3; (ii) control is instantaneous
and can change the vehicle actuation at any time, that is, our model of control
is event-based (e.g., we can control a vehicle when it reaches a safety region
boundary); and (iii) the vehicle is traversing even and flat terrain.

The goal is to first define a notion of feasible waypoint—those waypoints
that we can assure the vehicle will be able to reach with some precision, given a
particular starting state (or a particular set of possible starting states). Once we
have a notion of a feasible waypoint, we can define a feasible path as a sequence
of waypoints, such that the first waypoint in the sequence is feasible from the

3 As a consequence of instantaneous steering, the curvature of the vehicle’s path is
able to change instantaneously to any value in the feasible range (that is, between
− 1

Rmin
and 1

Rmin
, where Rmin is the minimum turning radius of the vehicle).

Formally Verified Safety Net for Waypoint Navigation NN Controllers 3

vehicle starting state, and for each non-final waypoint, reaching that waypoint
(within a specified error margin) implies that the subsequent waypoint is feasible.

In general, simply knowing the vehicle location is not enough to know whether
the next waypoint will be feasible—at the very least, we need to know the vehicle
heading and speed. Therefore, we specify waypoints in terms of: (i) desired
location; (ii) desired heading; (iii) maximal speed at waypoint (should also not
be exceeded prior to reaching the waypoint, unless it is unavoidable due to
excessive initial speed); and (iv) error margin.

For the remainder of this paper, we focus on this specific subset of the general
path following task—that of reaching a particular location, with desired heading
at that location, and a speed limit at and prior to arrival at that location. We do
not specifically restrict the route that the vehicle must take towards the desired
location (it is the job of the route planner to place the waypoints close enough in
those regions where the vehicle path needs to be tightly controlled), but prohibit
the vehicle from driving “back”—that is, the angle between the vehicle’s current
heading and the desired heading at the waypoint must not exceed 180◦.

Contributions. The main contributions of this work, summarized in Fig. 1, are
the following. First, we develop a novel formalization of the “location, heading
and speed” waypoint navigation task described above, expressing it in the dif-
ferential dynamic logic (dL) modeling language [26,27] inside the KeYmaera X
interactive theorem prover [13]. Second, we deduce and express the notions of
“safe” states—those vehicle states where reaching the waypoint (subject to an
error bound) is feasible—and “safe” control actions—namely, those control ac-
tions that would allow the vehicle to correctly navigate towards the waypoint.
Third, we create a sequence of formal proofs in KeYmaera X establishing the
desired properties—namely, as long as the waypoint is not yet reached, for each

ModelPlex
runtime safety net

ModelPlex
runtime safety net

MRZR vehicle

Formal dL model Bicycle model
(Simulation A)

NVML model
(Simulation B)

dL formal proofs

Neural Network A Neural Network B

≅ ≇

Abstrac(on:
- point-mass
- no (res
- instant steering

Abstraction:
- two wheels
- instant steering

Abstraction:
- mostly accurate

synthesized from model
+ formally verified

trained on trained on

sim
-to-real ✓

sim
-to-real ✗

Fig. 1. Contributions overview: formal dL model, proofs, and runtime safety nets are
formally verified; controllers are trained on simulations of varying fidelity, with varying
sim-to-real success; verified safety net works well with the bicycle model simulation
(fits closer to formal dL model), but additional work is needed to get to a formal model
that closer matches the real vehicle.

4 Alexei Kopylov et al.

safe state there is a safe control action and the use of any safe control actions
implies to stay in the safe region until we reach the desired waypoint.

We want to emphasize that we use theorem proving not merely as a tool
to obtain a correctness proof about an already correct system; we use it to
explore and understand a system in all its subtleties and with all its corner
cases thoroughly, to structure the system analysis process, to discover properties
of the system that are not or only partially known (e.g., loop invariants), to
discover and fix correctness bugs in the process, and to link model and system
execution formally. The proof then ensures that the conditions we identified are
sufficient. They are not necessarily the weakest necessary conditions—in fact, our
initial formulation proved to be too conservative in practice and we subsequently
revised the formalization and proofs to relax the safety condition to be reasonable
in practice. The safety conditions we derived and proved correct can now be used
as a basis for designing and ensuring correctness of other system parts.

It is also important to emphasize that “safe” in our case does not just mean
“safe for now”; instead it means that we have proven that as long as the start-
ing state is “safe”, and only “safe” control actions are taken, the vehicle will
remain “safe” until the waypoint is reached. Once the theorem is completed,
following the usual KeYmaera X methodology, we use the ModelPlex tool [24] to
automatically extract a correct-by-construction runtime monitoring safety net
from the proof. The monitoring condition extracted by ModelPlex is a Boolean
combination of a number of (in)equalities, and therefore the computational cost
of evaluating the monitor on measurements and control output is negligible.

Our final contribution is the manner in which our formulation of the waypoint
navigation task informed training neural networks to perform the task. Note that
in our approach we do not rely on the neural network controller always being
correct—instead, the correct-by-construction safety net for the controller checks
whether the neural network output is safe to act upon, and presents a safe
alternative if not (again, “safe” in a sense that it can ensure the vehicle will stay
safe in the future, not just safe right now). Also note that while our focus is on
neural networks, the same safety net could be used with any other controller.

Paper Structure. The remainder of this paper is structured as follows. First, in
Section 2 we provide background information on differential dynamic logic (dL)
and the KeYmaera X interactive theorem prover. Then, in Section 3 we describe
the dL formulations of waypoint feasibility and navigation. Next, in Section 4 we
outline the formal proof of waypoint feasibility, implemented in and machine-
checked by KeYmaera X. In Section 5, we describe how we use the dL formulation
of the task to inform training of a neural network controller for performing the
task. Finally, in Section 6 we discuss related work and next steps.

2 Background

We express our models in differential dynamic logic (dL) [26,27]. dL is a specifi-
cation and verification language with logical formulas that express properties of

Formally Verified Safety Net for Waypoint Navigation NN Controllers 5

Table 1. Hybrid programs

Statement Meaning

x := e Assigns value of term e to x
x := ∗ Assigns an arbitrary real value to x
?Q Stays in current state if formula Q is true
{x′ = f(x) Continuous evolution for any duration t ≥ 0 with

& Q} evolution domain constraint formula Q true throughout
α;β Executes β after α
α ∪ β Executes either α or β, nondeterministically
α∗ Repeats α zero or more times

hybrid systems written in a programming language. Hybrid programs support
differential equations (ODEs) as program statements, which allows us to express
the control laws together with the entailed kinematics of the system and ana-
lyze control software for its correctness in terms of physical effects (e.g. collision
avoidance). Proofs in differential dynamic logic are supported with the theorem
prover KeYmaera X [13]. KeYmaera X is an LCF-style prover [22] with a small
soundness-critical core of about 2000 LoC; the correctness of its core has been
formally verified [4]. Table 1 summarizes the syntax and informal semantics of
hybrid programs (detailed formal semantics are in [28]).

Typical control programs use assignments x := e to compute intermediate
or control output values. Random assignments x := ∗ choose any arbitrary real
value for x and are often combined with tests ?Q; for example, the program x :=
∗; ?0≤x<5 chooses any value in the half-open interval [0, 5), the program x :=
∗; ?x2=y computes the square root of y. Tests ?Q control program execution:
if the condition Q is true, program execution continues, otherwise it aborts
(but may backtrack to another execution branch). Differential equations x′ =
f(x) & Q follow a solution of x′ = f(x) for any duration as long as the constraint
Q is true throughout. Note that even though the semantics is described in terms
of solutions, in the proof calculus we do not rely on solving differential equations,
but use invariance techniques for differential equations instead [30]. Sequential
composition α;β first runs α and then β, non-deterministic choice α ∪ β executes
either α or β, and non-deterministic repetition α∗ runs α any number of times
(even zero). Other control instructions are expressible (e.g., ifQ thenα elseβ is
expressed with (?Q;α) ∪ (?¬Q;β) with mutually exclusive conditions Q and
¬Q) and supported for convenience in the input syntax of KeYmaera X. It is
good practice to avoid gaps in branch conditions (e.g., program

(
(?x≥5;x :=

2) ∪ (?x≤0;x := 2)
)∗

gets stuck after at most one repetition of the loop).
Many models use a controller that runs periodically, following the shape

(u := ctrl(x); t := 0; {x′ = f(x, u), t′ = 1 & t ≤ T})∗ ,

where a discrete program outputs control input u (slight abuse of notation: ctrl
may output non-deterministically chosen values) for a subsequent continuous
model x′ = f(x, u) with a clock t′ = 1, repeated in a loop (∗). The continuous

6 Alexei Kopylov et al.

model runs for at most T time, as ensured by the time reset t := 0 and the
constraint t ≤ T , and then returns to u := ctrl(x). Note that the loop may
repeat any number of times and so our safety analysis will hold for unbounded
time. The differential equations in interesting continuous models often have non-
polynomial solutions or are not solvable at all, but can still be analyzed in dL [30]
with some careful rephrasing of transcendental functions. To make up for the
lack of decidability of transcendental and trigonometric functions in the underly-
ing real arithmetic theory4, we encode trigonometric functions with differential
equations as illustrated in the following example of a point moving along a unit
circle. A typical model represents the position along the circle with angle θ and
computes the position of the point in cartesian coordinates (x, y) using trigono-
metric functions sin and cos: the differential equation x′= cos θ, y′= sin θ, θ′=ω
describes change in position (x, y) and change in angle θ with angular velocity ω.
The symbolic solution of this differential equation again mentions sin and cos
and so results in undecidable arithmetic. To avoid this, we follow [29] to axiom-
atize sin and cos with differential equations using additional symbols dx= cos θ
and dy= sin θ. We determine the derivatives of dx and dy using

d′x = (cos θ)′ = − sin θ · θ′ = −dy · ω
d′y = (sin θ)′ = cos θ · θ′ = dx · ω

and the resulting differential equation expands to x′=dx, y
′=dy, d

′
x=−ωdy,

d′y=ωdx, with the constraint d2x +d2y = 1 for the starting values, which no longer
uses trigonometric functions. To prove properties of such differential equations
(including proving that the d2x + d2y = 1 constraint is maintained), we use tech-
niques in [30] instead of symbolic solutions.

We formalize properties with dL formulas per the following grammar where
P,Q are formulas, e, ẽ are terms, x is a variable and α is a hybrid program:

P,Q ::= e ≥ ẽ | ¬P | P ∧Q | P ∨Q | P → Q | P ↔ Q | ∀xP | ∃xP | [α]P

The operators of first-order real arithmetic are as usual with quantifiers ranging
over the reals. For a hybrid program α and a dL formula P , [α]P is true iff P is
true after all runs of α. It is particularly useful for expressing safety properties
of the form Q→ [α]P with assumptions Q on the starting states of program α.

3 Modeling the Waypoint Navigation Task

Vehicle State. In a point-vehicle model, the state of a vehicle is defined by its
position (x, y) and its velocity (vx, vy). We define the left turning point (l) and
right turning point (r) as points that lie at equal distances from the center of
the vehicle along a line transverse to the heading of the vehicle in left and right
directions, respectively, and where the distance to the center is equal to the
minimum radius of curvature (Rmin), as illustrated in Figure 2.

4 Some solvers, e.g. dReal [14], opt for δ-decidability to render transcendental functions
decidable.

Formally Verified Safety Net for Waypoint Navigation NN Controllers 7

Fig. 2. Vehicle with left and right turning points.

Definition 1 (Vehicle State). Coordinates of the left turning point l and right
turning point r follow from vehicle position (x, y) and heading v, where (dx, dy)
is a normalized direction of the vehicle:

lx = x−Rmindy rx = x+Rmindy dx = vx/v v =
√
v2x + v2y

ly = y +Rmindx ry = y −Rmindx dy = vy/v

It turns out that it is significantly easier to use (lx, ly, rx, ry, v) as coordinates
of the state than the traditional (x, y, vx, vy). In this coordinate system the
waypoint feasibility constraints become simpler and much easier to both visualize
and reason about. Therefore in our model a state of the vehicle is a point state =
(lx, ly, rx, ry, v) on a 4-dimensional manifold with condition:

isWellformed(state) ::= (lx − rx)2 + (ly − ry)2 = (2Rmin)
2 .

Vehicle Control and Movement. We define a control action for the vehicle as a
pair control = (a, κ), where a is the acceleration and κ is the curvature of the
vehicle’s path resulting from steering.

Definition 2 (Vehicle State Evolution). The evolution of the vehicle state
is specified by the following differential equations with control (a, κ):

r′x = v(ly − ry)(K− κ)/2 l′x = v(ly − ry)(K + κ)/2 v′ = a
r′y = v(rx − lx)(K− κ)/2 l′y = v(rx − lx)(K + κ)/2

Here K = 1
Rmin

is the maximal curvature of a path the vehicle can take.

4 Proving Safety

4.1 Safe Starting States and Safe Actions

In Section 1 we outlined the notion of a feasible waypoint—that is a waypoint
that, given a certain starting state, we can control the vehicle towards and can
assure to reach within a given error bound. Here, we flip this relationship—rather
than characterizing waypoints given a specific starting state, we will instead
characterize starting states given a specific waypoint—namely a waypoint in the

8 Alexei Kopylov et al.

Fig. 3. Safety region for left and right turning centers of the vehicle starting state,
when navigating to a waypoint at the origin. The state is considered to be safe when
point l is outside of the light-red zone, point r is outside of the light-blue zone, and
velocity v points upward. Dark red and dark blue circles are the destination zone: a
vehicle is considered to have reached the waypoint when the point l is inside the dark-
red circle and the point r inside the-dark blue circle.

origin (0, 0) with the desired heading along the y axis facing towards positive
values of y (this specific choice does not introduce a loss of generality as we can
always perform a coordinate transformation to move and rotate the waypoint).
We will call a state safe if the waypoint remains feasible with that starting state,
and for a particular safe state, a safe action is one that does not immediately
take us out of a safe state.

We say that we have reached the waypoint if the turning points l and r each
reach the small neighborhood of points A and B respectively, where A and B
are the points that lie distance Rmin from the desired waypoint to the left and
right (see Fig. 3). Specifically, we require that each of |l − A| and |r − B| is
< 2ε for some parameter ε, where | · | is Euclidean distance, and so a waypoint
is considered reached by Def. 3.

Definition 3 (Waypoint reached). For a waypoint at the origin, target region
A for left turning point l = (lx, ly) is at (−Rmin, 0) and target region B for right
turning point r = (rx, ry) is at (Rmin, 0), and so the waypoint is reached with
tolerance ε when Reached(state) is satisfied:

Reached(state) ::= (lx +Rmin)
2 + l2y < (2ε)2 ∧ (rx −Rmin)

2 + r2y < (2ε)2

Note, when ε � Rmin, then Reached(state) implies that both the vehicle
location and the vehicle heading are close to the desired ones, while allowing
some trade-off between the two.

Formally Verified Safety Net for Waypoint Navigation NN Controllers 9

The rest of this section proceeds as follows. First, we define a safe region as
a certain subset of the state manifold. We also define a set of safe actions as a
subset of the set of possible controls (a, κ). To establish that our definitions are
valid, we then prove two theorems. First, we prove that whenever we are in a
safe state, and we take a safe action for a period of time δ, we will remain in
a safe state. Second, we prove whenever we are in a safe state, then unless we
already reached our goal, there exists a safe action we can take.

4.2 Safe Region

We define our state safety condition as a conjunction of three conditions:

Safe(state) ::= SafeDir(state) ∧ SafeLeft(state) ∧ SafeRight(state) where

• SafeDir(state) ::= rx ≥ lx captures the requirement that the vehicle is not
allowed to drive “back”,

• SafeLeft(state) is a proposition stating that the left turning point does not
fall into the light red region shown in Fig. 3 and algebraically defined as a
conjunction of the following clauses:
– SafeFrontLineLeft(state) ::= ly < ε
– SafeCircleLeft(state) ::= l2y + (lx −Rmin − ε)2 ≥ (2Rmin)

2

– SafeBackLineLeft(state) ::= ly ≤ −2Rmin ∨ lx ≤ Rmin + ε
• SafeRight(state) is a proposition defined symmetrically to SafeLeft(state),

stating that the right turning point does not fall into the light blue region
shown in Fig. 3.

4.3 Safe Action

For each of the clauses SafeX(state) in the definition of safe region, we define a
condition for a safe action SafeControlX(state, control) such that whenever the
vehicle is in a state that satisfies property SafeX(state) and we take a control
action that satisfies SafeControlX(state, control) for a period of time δ according
to this control, then SafeX will be true for the vehicle’s end state. That is,

SafeX(state) ∧ SafeControlX(state, control)→ [Dynamics] SafeX(state)

where Dynamics is a set of differential equations of Def. 2 augmented with a
time limit δ until the next control action: t′ = 1&t < δ. For example, we define

SafeControlBackLineLeft(state, control) ::=(
ly ≤ −2Rmin ∧ dy(K + κ)vδ ≤ −lyK− 2−∆(K + κ)vδ

)
∨
(
lx ≤ Rmin + ε ∧

(
dx(K + κ)vδ ≤ −(lx − ε)K + 1−∆(K + κ)vδ
∨ dx(K + κ)vδ ≤ −(lx − ε)K + 1 ∧ (lx − rx)κ ≤ 0

))
where ∆ = |vκ|δ is the maximum angle the vehicle can turn with steering κ at
velocity v during the reaction time δ. Then we prove that

SafeBackLineLeft(state) ∧ SafeControlBackLineLeft(state, control)→
[Dynamics] SafeBackLineLeft(state)

10 Alexei Kopylov et al.

The proofs of these lemmas are based on the following fairly straightforward
fact that requires some care to prove in KeYmaera X. Suppose we have a point
(x, y) that is moving on a unit circle x2 + y2 = 1 by the dynamic given by
equations: x′ = −y; y′ = x. If at the starting point x ≥ a+ δ, and x ≥ a, y < 0,
1− 2δ ≥ a, then after time δ we will have that x ≥ a. In case of x ≥ a+ δ, this
is true simply because x′ ≥ −1 and this case is easy to prove in KeYmaera X as
well. For the case of x ≥ a, y < 0, 1 − 2δ ≥ a, this is true because the point
is moving counterclockwise starting in the lower half of a circle and needs to
move a distance of at least δ in order to cross the line x = a. This fact is key for
establishing the various invariants, including those shown above, and was used
many times in our proofs.

After proving such lemmas for all clauses we define SafeControl(state, control)
as a conjunction of these clauses.

Theorem 1. Safe control keeps the vehicle in a safe state:

Safe(state) ∧ SafeControl(state, control)→ [Dynamics] Safe(state)

Proof. By mechanized proof in KeYmaera X, splitting Safe into its conjuncts to
apply lemmas. ut

Theorem 2. For every safe state, either the vehicle is at the destination, or
there exists a control κ within the limits of maximum steering K = 1

Rmin
and a

deadline D such that κ is safe up to deadline D:

Safe(state)→
Reached(state)∨
∃|κ|≤K.∃D>0.∀0<δ≤D. SafeControl(state, control)

Proof. By mechanized proof in KeYmaera X, along cases: a) not close to any of
the bounds: go forward; b) close to a bound, then consider each of the following:
go forward, or turn left, or turn right, or reached the waypoint, or unsatisfiable
assumptions (case impossible). To formalize this proof in KeYmaera X, we used
lemmas that allowed us to decompose statements under an existential quantifier:(

∃D1>0.∀0<δ≤D1. P (δ)
)
∧
(
∃D2>0.∀0<δ≤D2. Q(δ)

)
→
(
∃D>0.∀0<δ≤D.P (δ) ∧Q(δ)

)
, usingD = min(D1, D2)(

∃D>0.∀0<δ≤D.P (δ)
)
∨
(
∃D>0.∀0<δ≤D.Q(δ)

)
→
(
∃D>0.∀0<δ≤D.P (δ) ∨Q(δ)

)
.

These lemmas are used to prove statements of the form ∃D>0.∀0<δ≤D.P (δ)
separately and construct the proofs by considering all cases. ut

The two theorems together give us the desired safety property:

Corollary 1. For each safe state there is a safe control action and we can use
safe control actions to stay in the safe region, until we reach the desired waypoint.

Formally Verified Safety Net for Waypoint Navigation NN Controllers 11

5 Training a Neural Network Controller

5.1 Controller Training

As we discussed in Section 4.1, we consider the waypoint reached, when points l
and r that lie Rmin to the left and right of the vehicle (where “left” and “right” are
taken with respect to the vehicle heading) each get within ε of the corresponding
points A and B that lie Rmin to the left and right of the waypoint location (where
“left” and “right” are taken with respect to the desired heading at the waypoint).

Reward Function. This definition informs a natural metric for how far the ve-
hicle is from its goal—namely,

√
|l −A|2 + |r −B|2 (where | · | is the Euclidean

distance). Similarly, to Def. 3 (Reached), this naturally combines the location
and heading errors in the same metric.

We use this distance metric as a reward function to train neural network
controllers for waypoint navigation. At each time step, the reward is computed as
−
√
|l −A|2 + |r −B|2−λmax(0, v−vmax), where λ is a positive meta-parameter

constant. That is, at every time step the controller is penalized proportional to its
distance to the target, and is additionally penalized whenever its speed exceeds
the speed limit vmax.

Once the vehicle passes the y = 0 goal line, it is given a large reward if
the waypoint is reached and a large penalty proportional to the distance to the
waypoint—to encourage it to hit the waypoint as precisely as possible.

Training Parameters. We initially tried a number of algorithms for training
the control NNs, including Trust Region Policy Optimization (TRPO) [32] and
Constrained Policy Optimization (CPO) [1], but later settled on using a variation
on the self-learned almost Lyapunov critics appoach [6], which is an extension of
the Proximal Policy Optimization (PPO) algorithm [33]. We tried architectures
with two and three dense hidden layers, and with hyperbolic tangent (tanh)
and rectified linear unit (relu) activation functions, and eventually settled on
using three hidden layers for the actor neural network, with 96, 32, and 16 nodes
in each respectively, two hidden layers for the critic network, with 128 and 96
nodes in each respectively, relu activation for hidden layers, tanh activation for
the output layer of the actor network, and softplus activation for the output
layer of the critic network. In both cases, the chosen approach resulted in faster
convergence as well as in faster and better-performing policies (as judged via a
subjectively tuned combination of objective performance metrics).

Lessons Learned from an Earlier Prototype. In an early prototype, we only
trained the controller on feasible waypoints. This worked well in simulation,
but once we integrated it with the autonomy software stack [18] on the MRZR
vehicle, it became obvious that an assured planner (the first subtask mentioned
earlier) is crucial to ensure that the vehicle is never asked to navigate towards
an infeasible waypoint. Without an assured planner, we must be prepared to
make a best effort to also reach infeasible waypoints, even if there is no longer

12 Alexei Kopylov et al.

Fig. 4. Path of a simulated MRZR vehicle performing the waypoint+heading naviga-
tion task for a randomly chosen sequence of feasible waypoints, under an early neural
network policy trained using the TRPO algorithm and only feasible waypoints, trained
and tested in a simulator implementing a simple bicycle model of the vehicle, and a
brush tire model of tire-to-surface interactions (Simulation A in Fig. 1).

any assurance of success. Further analysis revealed that in the early prototype
the definition of feasible waypoint (or, equivalently, of safe starting state region)
was overly conservative, so that too many of the waypoints generated by the
(non-assured) planner were considered unsafe. As a consequence, we relaxed the
notion of waypoint feasibility to the one presented in this paper, formally verified
correctness of the relaxed definitions, and retrained the controllers.

5.2 Evaluating and Improving upon an Initial Controller

We initially trained and tested the neural network controller in a simulation
that used a simple bicycle model of the vehicle, with a model of tire-to-surface
interactions [2]. In that simulation environment, the neural network controller
appeared to work very well, successfully reaching over 99% of the feasible way-
points chosen at random (Figure 4).

However, we soon discovered that the simulation used for initial training
(Simulation A in Fig. 1) of the controller was insufficiently representative of the
actual vehicle—e.g., the vehicle controls were more responsive and accurate in
simulation than on the actual MRZR vehicle. The behavior of our early controller
on the MRZR vehicle due to this mismatch can be seen in the video at https:

//youtu.be/bE2UpKHxsLg.
In order to account for the above challenges, we replaced the vehicle model we

use for training the Neural Network with a model developed by CMU National
Robotics Engineering Center (NREC) and implemented in their NREC Vehi-
cle Modeling Library (NVML) based on the Wheeled Mobile Robot Dynamics
Engine (WMRDE) [34,35], instantiated and calibrated to provide an accurate
model of MRZR (Simulation B in Fig. 1). We then also incorporated a variant
of the Neural Lyapunov technique [6] to improve controller stability and speed
up training convergence.

https://youtu.be/bE2UpKHxsLg
https://youtu.be/bE2UpKHxsLg

Formally Verified Safety Net for Waypoint Navigation NN Controllers 13

The resulting neural network (NN) controller appeared to perform well in
practice. Anecdotally, the GVSC team evaluating the work reported that: (i) NN
sticks closer to the planned path than the baseline; (ii) NN navigates the path
more consistently than the baseline; (iii) With NN, the planner does not get
“stuck” replanning as often; (iv) Baseline feels robotic, while NN feels like a
student driver; (v) Baseline is crawling, while NN goes more reliably fast, but
NN accelerates too aggressively at times and does not feel sufficiently “in control”
at high speeds; (vi) NN feels more natural—when going slowly, it feels like it
could safely go faster; and (vii) NN usually drives smoother around obstacles,
compared to the baseline.

5.3 Controller Safety

While our goal is to train a trustworthy controller that can be assured to always
output a safe action (e.g., ether using the Neural Lyapunov based barrier function
technique [7,6], or using the dReal SMT solver [14] to verify the properties
of the neural network), neither is necessary in order to be able to assure safe
vehicle behavior. Even if the underlying neural network based controller is not
trustworthy, our technique allows for the use of the ModelPlex tool [24], which is
part of the KeYmaera X theorem prover, to create a safe-by-construction safety
net for the controller that checks whether the neural network outputs satisfy the
SafeControl property and are therefore formally verified safe to act upon or else
presents a safe alternative action (see Fig. 1).

However, our dL formalization in KeYmaera X used a simple vehicle model
with instantaneous steering (similar to that used in Simulation A from Fig. 1).
As we discussed above, the actual MRZR does not behave close enough to that
model, and we ended up having to train the neural network controller with
a significantly different model (Simulation B). As a result, we could use (and
indeed successfully tested) the ModelPlex-created safety wrapper in Simulation
A, but that safety wrapper is unfortunately not yet applicable to the real vehicle.

6 Discussion

6.1 Conclusions and Next Steps

Our initial attempts to formalize the task using the traditional (x, y, vx, vy) rep-
resentation of the state resulted in large formulas that took hours to even try
to simplify in Mathematica, and so it was fairly hopeless to try reasoning about
them in a theorem prover. Our turn center based model not only simplifies the
formalization, but makes it modular and easier to work with—namely, it allows
decomposing the Safe(state) definition into three parts, each only referring to
two of the coordinates—SafeDir only referring to rx and lx, SafeLeft only re-
ferring to lx and ly, and similarly SafeRight only referring to rx and ry. Such
reduction in dimensionality is especially valuable given the doubly-exponential
runtime complexity of deciding problems in real arithmetic [8]. This allowed us

14 Alexei Kopylov et al.

(a) Feasible waypoints ac-
cording to SafeRight as de-
fined in Sect. 4.2

(b) Relaxed SafeRight5: ar-
eas of similar percentage
are larger than original
SafeRight

(c) Trained neural net-
work critic’s prediction of
whether the (0, 0) waypoint
can be successfully reached

Fig. 5. SafeRight zone according to a verified formal model, a to-be-verified further
relaxed formal model, and a neural network “critic”; Rmin=5, ε≈0.17, vehicle speed
0.5 m/s, speed limit 0.5 m/s (deviation between simulator vehicle model for training
the neural network and simplified formal model is smaller at low speed); color intensity
of each point (rx, ry) indicates which percentage of orientations (i.e., starting configu-
rations of fixed (rx, ry) and varying (lx, ly), so that the vehicle heading spans a range
between -90◦and 90◦) would be safe; brighter is higher percentage.

to separately reason about different components of the state and different parts
of the Safe constraint. Furthermore, it allowed us to exploit the left-right symme-
try: once the “left” parts of the relevant lemmas are proved, tactics for proving
the corresponding “right” lemmas follow immediately by symmetry.

The ability of the turn center based formalization to provide a natural “dis-
tance to waypoint” metric combining both the location and heading require-
ments, as well as expressing a natural trade-off between the two, results in a
synergy between the formal modeling and verification of the “location + head-
ing” waypoint navigation task and training of the corresponding neural network
based controllers, where the distance metric informs the reward function. The
synergy could be leveraged further, by explicitly penalizing the controller for
choosing actions that our definitions consider unsafe. The result of such a con-
strained training process would be a controller that learns to navigate without
causing monitor violations. For now, we want to test the conservativeness of our
formal models and allow the training process to explore and discover its own
notion of safety—and indeed, the learned controllers tend to converge to notions

5 Relaxed SafeRight: circle of radius 2Rmin−2ε around destination point A excluded
from safe zone and SafeFrontLineRight pushed back to 2ε.

Formally Verified Safety Net for Waypoint Navigation NN Controllers 15

of safety that are more aggressive than our formal models. In particular, our def-
inition of SafeRight seems too conservative—it appears (although we have not
been able to prove it just yet) that rather than excluding a circle of radius 2Rmin

around (−Rmin− ε, 0) (light-blue quarter-circle in Fig. 3), it should be enough to
only exclude a circle of radius 2Rmin− ε, or perhaps even just 2Rmin− 2ε around
the original point A (that is, (−Rmin − ε, 0)), and similarly it might be safe to
push back SafeFrontLineRight to 2ε. The corresponding SafeRight zone and the
SafeRight zone as discovered by the neural network “critic” (using the bicycle
model of the vehicle) are illustrated in Fig. 5.

The KeYmaera X proof outlined in this paper took several man-months to
complete and is to the best of our knowledge the largest safety proof ever done in
KeYmaera X. It is at least 4x larger (in both the number of the interactive proof
steps and the number of the primitive proof steps) than a previous “location +
curvature” waypoint navigation safety proof performed by a different subset of
our team [5], which was about the same size as other the largest KeYmaera X
safety proofs. Despite that complexity, we are optimistic that we will be able to
tweak it to support a less conservative Safe(state) definition with relatively lit-
tle effort since KeYmaera X translates interactive proof steps into proof tactics.
However what we ultimately hope to be able to do is to state and prove sim-
ilar safety theorems using more realistic vehicle models, with multiple wheels,
friction, actuation delays, and uneven terrain. At present, it seems unlikely that
this would be feasible using our current approach of manually stating the defini-
tion, manually discovering relevant invariants, and manually transforming real
arithmetic statements until they become tractable for the state-of-the-art real
arithmetic solvers used by KeYmaera X. Instead, we plan to explore a machine-
learning approach, where some aspects of the problem and some proof details
are discovered and approximated by neural networks (along the lines of how
the neural network “critic” in Figure 5 approximates our formal definition of
SafeRight).

Another opportunity for future extension is to adapt the one-waypoint-at-a-
time form of the navigation task to handle a sequence of multiple waypoints at
once, which better resembles the current planner in the MRZR. While in our ex-
perience, the one-waypoint-at-a-time worked reasonably well (often better than
the existing baseline implementation) even when used with a planner that gen-
erates waypoint sequences, we expect to be able to improve driving smoothness
with a neural network controller that is provided with multiple waypoints.

6.2 Brief Comparison to Related Work

Formal verification of safety properties of robotic ground vehicles (see [21] for
a comprehensive overview, or [11] for certification of autonomous systems) is
roughly divided into methods based on reachability analysis and methods based
on theorem proving: (online) reachability analysis [20,25] may support more
complex differential equations at the expense of ignoring worst-case scenarios
(e.g., [20] ignores the possibility of suddenly turning pedestrians), providing only

16 Alexei Kopylov et al.

bounded-time results and requiring online computation, which makes it challeng-
ing to use for training with reinforcement learning with large volumes of simula-
tions. Verisig [17] translates neural network controllers with sigmoid/tanh acti-
vation functions into a hybrid systems model, combined with a plant model, and
uses bounded-time reachability analysis for verification of the resulting closed-
loop system. NNV [37] provides several reachability algorithms a variety of set
representations to analyze stability and bounded-time safety of neural networks.

In contrast, we obtain unbounded-time results offline and verified monitoring
conditions [24] that are fast to evaluate even in reinforcement learning settings.
Unbounded-time results for waypoint navigation are also obtained in [5] for a
point-robot with a focus on integrated safety and liveness properties, but without
guarantees on the orientation of the robot. Ways to introduce sensor and actuator
disturbance in unbounded-time safety models are discussed in [23]. In [31] a
planner for ground vehicle motion is verified in Isabelle, but path tracking and
control is not addressed.

Complementary approaches use synthesis from formal specifications to ob-
tain correct-by-construction control or planning, e.g., [3,40,41]. Unlike in our ap-
proach, the safety arguments of synthesis do not transfer to learned controllers.
Approaches for monitoring and falsification based on formal specifications in
linear temporal logic (LTL), metric temporal logic (MTL), or signal temporal
logic (STL) target bug finding and runtime safety, treating monitor specifica-
tions as trusted input to the monitoring tool. For example [38] tests the control
choices of autonomous vehicles with machine-learning components in the loop;
the PLANrm framework [15] uses MTL to inspect and modify plans; [39] gen-
erate barrier certificates from simulation to justify safety of learned controllers;
[10] use falsification to find when control obtained through machine learning
violates specifications; [9] monitor the assumptions used for model-checking a
control software; [19] uses runtime monitors for fault disambiguation on mobile
robots. Several runtime verification tools provide convenient integration with
robotic platforms, e.g., [16,36,12]. This gives confidence in safety if the monitor
specification is correct and “enough” simulations and tests are conducted.

In our approach, safety is formally guaranteed and the verified models pre-
sented here are the source for ModelPlex monitor generation by proof [24]; Mod-
elPlex guarantees mutually satisfied assumptions: the offline proof justifies mon-
itor correctness, while satisfied online monitors justify model correctness and
provably detect when the assumptions of the offline model are no longer true in
reality. All artifacts in the offline proof and in the monitor synthesis proofs, in-
cluding invariant regions of differential equations, barrier certificates, and other
properties of differential equations if they come up in proofs, are justified from
axioms in differential dynamic logic [27] and its differential equation axioms [30].

References

1. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimiza-
tion. In: Proceedings of the 34th International Conference on Machine Learn-

Formally Verified Safety Net for Waypoint Navigation NN Controllers 17

ing, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. pp. 22–31 (2017),
http://proceedings.mlr.press/v70/achiam17a.html

2. Ahn, E.: Towards Safe Reinforcement Learning in the Real World. Master’s thesis,
Carnegie Mellon University (Jul 2019), https://www.ri.cmu.edu/wp-content/

uploads/2019/08/MSR_Thesis_-Edward_Ahn_2019.pdf, cMU-RI-TR-19-56
3. Alonso-Mora, J., DeCastro, J.A., Raman, V., Rus, D., Kress-Gazit, H.: Reactive

mission and motion planning with deadlock resolution avoiding dynamic obstacles.
Auton. Robots 42(4), 801–824 (2018). DOI: 10.1007/s10514-017-9665-6

4. Bohrer, R., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differ-
ential dynamic logic. In: Proceedings of the 6th ACM SIGPLAN Conference on
Certified Programs and Proofs. ACM (Jan 2017). DOI: 10.1145/3018610.3018616

5. Bohrer, R., Tan, Y.K., Mitsch, S., Sogokon, A., Platzer, A.: A formal safety net
for waypoint following in ground robots. IEEE Robotics and Automation Letters
4(3), 2910–2917 (jul 2019). DOI: 10.1109/LRA.2019.2923099

6. Chang, Y.C., Gao, S.: Stabilizing neural control using self-learned almost Lyapunov
critics. In: Proceedings of the 2021 International Conference on Robotics and Au-
tomation (ICRA 2021) (2021), https://arxiv.org/abs/2107.04989, to appear.

7. Chang, Y.C., Roohi, N., Gao, S.: Neural Lyapunov control (2020), https://arxiv.
org/abs/2005.00611

8. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symb. Comput. 5(1/2), 29–35 (1988). DOI: 10.1016/S0747-7171(88)80004-X

9. Desai, A., Saha, I., Yang, J., Qadeer, S., Seshia, S.A.: DRONA: a framework for
safe distributed mobile robotics. In: Mart́ınez, S., Tovar, E., Gill, C., Sinopoli, B.
(eds.) Proceedings of the 8th International Conference on Cyber-Physical Systems,
ICCPS 2017, Pittsburgh, Pennsylvania, USA, April 18-20, 2017. pp. 239–248. ACM
(2017). DOI: 10.1145/3055004.3055022

10. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. J. Autom. Reasoning 63(4), 1031–1053
(2019). DOI: 10.1007/s10817-018-09509-5

11. Fisher, M., Mascardi, V., Rozier, K.Y., Schlingloff, B., Winikoff, M., Yorke-Smith,
N.: Towards a framework for certification of reliable autonomous systems. Auton.
Agents Multi Agent Syst. 35(1), 8 (2021). DOI: 10.1007/s10458-020-09487-2

12. Foughali, M., Bensalem, S., Combaz, J., Ingrand, F.: Runtime verification of timed
properties in autonomous robots. In: 18th ACM/IEEE International Conference
on Formal Methods and Models for System Design, MEMOCODE 2020, Jaipur,
India, December 2-4, 2020. pp. 1–12. IEEE (2020). DOI: 10.1109/MEMOCODE51338.

2020.9315156

13. Fulton, N., Mitsch, S., Quesel, J., Völp, M., Platzer, A.: Keymaera X: an ax-
iomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middel-
dorp, A. (eds.) Automated Deduction - CADE-25 - 25th International Confer-
ence on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings.
Lecture Notes in Computer Science, vol. 9195, pp. 527–538. Springer (2015).
DOI: 10.1007/978-3-319-21401-6_36

14. Gao, S., Kong, S., Clarke, E.M.: dreal: An SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) Automated Deduction - CADE-24 - 24th Inter-
national Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14,
2013. Proceedings. Lecture Notes in Computer Science, vol. 7898, pp. 208–214.
Springer (2013). DOI: 10.1007/978-3-642-38574-2_14

15. Hoxha, B., Fainekos, G.E.: Planning in dynamic environments through temporal
logic monitoring. In: Magazzeni, D., Sanner, S., Thiébaux, S. (eds.) Planning for

http://proceedings.mlr.press/v70/achiam17a.html
https://www.ri.cmu.edu/wp-content/uploads/2019/08/MSR_Thesis_-Edward_Ahn_2019.pdf
https://www.ri.cmu.edu/wp-content/uploads/2019/08/MSR_Thesis_-Edward_Ahn_2019.pdf
https://dx.doi.org/10.1007/s10514-017-9665-6
https://dx.doi.org/10.1145/3018610.3018616
https://dx.doi.org/10.1109/LRA.2019.2923099
https://arxiv.org/abs/2107.04989
https://arxiv.org/abs/2005.00611
https://arxiv.org/abs/2005.00611
https://dx.doi.org/10.1016/S0747-7171(88)80004-X
https://dx.doi.org/10.1145/3055004.3055022
https://dx.doi.org/10.1007/s10817-018-09509-5
https://dx.doi.org/10.1007/s10458-020-09487-2
https://dx.doi.org/10.1109/MEMOCODE51338.2020.9315156
https://dx.doi.org/10.1109/MEMOCODE51338.2020.9315156
https://dx.doi.org/10.1007/978-3-319-21401-6_36
https://dx.doi.org/10.1007/978-3-642-38574-2_14

18 Alexei Kopylov et al.

Hybrid Systems, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA,
February 13, 2016. AAAI Workshops, vol. WS-16-12. AAAI Press (2016), http:
//www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12556

16. Huang, J., Erdogan, C., Zhang, Y., Moore, B.M., Luo, Q., Sundaresan, A., Rosu,
G.: ROSRV: runtime verification for robots. In: Bonakdarpour, B., Smolka, S.A.
(eds.) Runtime Verification - 5th International Conference, RV 2014, Toronto, ON,
Canada, September 22-25, 2014. Proceedings. Lecture Notes in Computer Science,
vol. 8734, pp. 247–254. Springer (2014). DOI: 10.1007/978-3-319-11164-3_20

17. Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verifying
the safety of autonomous systems with neural network controllers. ACM Trans.
Embed. Comput. Syst. 20(1), 7:1–7:26 (2021). DOI: 10.1145/3419742

18. Kania, R., Frederick, P., Pritchett, W., Wood, B., Mentzer, C., Johnson, E.: Dis-
mounted soldier autonomy tools (DSAT) — from conception to deployment. In:
2014 NDIA Ground Vehicles Systems Engineering and Technology Symposium
(2014), http://gvsets.ndia-mich.org/publication.php?documentID=171

19. Kempa, B., Zhang, P., Jones, P.H., Zambreno, J., Rozier, K.Y.: Embedding on-
line runtime verification for fault disambiguation on robonaut2. In: Bertrand, N.,
Jansen, N. (eds.) Formal Modeling and Analysis of Timed Systems - 18th In-
ternational Conference, FORMATS 2020, Vienna, Austria, September 1-3, 2020,
Proceedings. Lecture Notes in Computer Science, vol. 12288, pp. 196–214. Springer
(2020). DOI: 10.1007/978-3-030-57628-8_12

20. Liu, S.B., Roehm, H., Heinzemann, C., Lütkebohle, I., Oehlerking, J., Althoff,
M.: Provably safe motion of mobile robots in human environments. In: 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2017, Vancouver, BC, Canada, September 24-28, 2017. pp. 1351–1357. IEEE
(2017). DOI: 10.1109/IROS.2017.8202313

21. Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.: Formal specification
and verification of autonomous robotic systems: A survey. ACM Comput. Surv.
52(5), 100:1–100:41 (2019). DOI: 10.1145/3342355

22. Milner, R.: LCF: A way of doing proofs with a machine. In: Becvár, J. (ed.) Math-
ematical Foundations of Computer Science 1979, Proceedings, 8th Symposium,
Olomouc, Czechoslovakia, September 3-7, 1979. Lecture Notes in Computer Sci-
ence, vol. 74, pp. 146–159. Springer (1979). DOI: 10.1007/3-540-09526-8_11

23. Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal verification of obsta-
cle avoidance and navigation of ground robots. I. J. Robotics Res. 36(12), 1312–
1340 (2017). DOI: 10.1177/0278364917733549

24. Mitsch, S., Platzer, A.: ModelPlex: Verified runtime validation of verified cyber-
physical system models. Form. Methods Syst. Des. 49(1), 33–74 (2016). DOI: 10.

1007/s10703-016-0241-z, special issue of selected papers from RV’14
25. Pan, Y., Lin, Q., Shah, H., Dolan, J.M.: Safe planning for self-driving via adap-

tive constrained ILQR. CoRR abs/2003.02757 (2020), https://arxiv.org/abs/
2003.02757

26. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning
41(2), 143–189 (2008). DOI: 10.1007/s10817-008-9103-8

27. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.
J. Autom. Reasoning 59(2), 219–265 (2017). DOI: 10.1007/s10817-016-9385-1

28. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer (2018).
DOI: 10.1007/978-3-319-63588-0

29. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance
maneuvers: A case study. In: Cavalcanti, A., Dams, D. (eds.) FM. LNCS, vol. 5850,
pp. 547–562. Springer (2009). DOI: 10.1007/978-3-642-05089-3_35

http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12556
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12556
https://dx.doi.org/10.1007/978-3-319-11164-3_20
https://dx.doi.org/10.1145/3419742
http://gvsets.ndia-mich.org/publication.php?documentID=171
https://dx.doi.org/10.1007/978-3-030-57628-8_12
https://dx.doi.org/10.1109/IROS.2017.8202313
https://dx.doi.org/10.1145/3342355
https://dx.doi.org/10.1007/3-540-09526-8_11
https://dx.doi.org/10.1177/0278364917733549
https://dx.doi.org/10.1007/s10703-016-0241-z
https://dx.doi.org/10.1007/s10703-016-0241-z
https://arxiv.org/abs/2003.02757
https://arxiv.org/abs/2003.02757
https://dx.doi.org/10.1007/s10817-008-9103-8
https://dx.doi.org/10.1007/s10817-016-9385-1
https://dx.doi.org/10.1007/978-3-319-63588-0
https://dx.doi.org/10.1007/978-3-642-05089-3_35

Formally Verified Safety Net for Waypoint Navigation NN Controllers 19

30. Platzer, A., Tan, Y.K.: Differential equation invariance axiomatization. J. ACM
67(1), 6:1–6:66 (2020). DOI: 10.1145/3380825

31. Rizaldi, A., Immler, F., Schürmann, B., Althoff, M.: A formally verified mo-
tion planner for autonomous vehicles. In: Lahiri, S.K., Wang, C. (eds.) Au-
tomated Technology for Verification and Analysis - 16th International Sympo-
sium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings.
Lecture Notes in Computer Science, vol. 11138, pp. 75–90. Springer (2018).
DOI: 10.1007/978-3-030-01090-4_5

32. Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P.: Trust region pol-
icy optimization. CoRR abs/1502.05477 (2015), http://arxiv.org/abs/1502.
05477

33. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (Aug 2017), http://arxiv.org/abs/1707.06347v2

34. Seegmiller, N.: Dynamic Model Formulation and Calibration for
Wheeled Mobile Robots. Ph.D. thesis, Carnegie Mellon University,
Pittsburgh, PA (Oct 2014), https://www.ri.cmu.edu/publications/

dynamic-model-formulation-and-calibration-for-wheeled-mobile-robots/

35. Seegmiller, N., Kelly, A.: High-fidelity yet fast dynamic models of wheeled mobile
robots. IEEE Transactions on Robotics 32(3), 614–625 (Jun 2016). DOI: 10.1109/

TRO.2016.2546310

36. Shivakumar, S., Torfah, H., Desai, A., Seshia, S.A.: SOTER on ROS: A run-time
assurance framework on the robot operating system. In: Deshmukh, J., Nickovic, D.
(eds.) Runtime Verification - 20th International Conference, RV 2020, Los Angeles,
CA, USA, October 6-9, 2020, Proceedings. Lecture Notes in Computer Science, vol.
12399, pp. 184–194. Springer (2020). DOI: 10.1007/978-3-030-60508-7_10

37. Tran, H., Yang, X., Lopez, D.M., Musau, P., Nguyen, L.V., Xiang, W., Bak,
S., Johnson, T.T.: NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang,
C. (eds.) Computer Aided Verification - 32nd International Conference, CAV
2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 12224, pp. 3–17. Springer (2020). DOI: 10.1007/

978-3-030-53288-8_1

38. Tuncali, C.E., Fainekos, G., Prokhorov, D.V., Ito, H., Kapinski, J.: Requirements-
driven test generation for autonomous vehicles with machine learning components.
IEEE Trans. Intell. Veh. 5(2), 265–280 (2020). DOI: 10.1109/TIV.2019.2955903

39. Tuncali, C.E., Kapinski, J., Ito, H., Deshmukh, J.V.: Reasoning about safety of
learning-enabled components in autonomous cyber-physical systems. In: Proceed-
ings of the 55th Annual Design Automation Conference, DAC 2018, San Francisco,
CA, USA, June 24-29, 2018. pp. 30:1–30:6. ACM (2018). DOI: 10.1145/3195970.

3199852

40. Wong, K.W., Ehlers, R., Kress-Gazit, H.: Resilient, provably-correct, and high-level
robot behaviors. IEEE Trans. Robotics 34(4), 936–952 (2018). DOI: 10.1109/TRO.

2018.2830353

41. Wong, K.W., Finucane, C., Kress-Gazit, H.: Provably-correct robot control with
ltlmop, OMPL and ROS. In: 2013 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, Tokyo, Japan, November 3-7, 2013. p. 2073. IEEE
(2013). DOI: 10.1109/IROS.2013.6696636

https://dx.doi.org/10.1145/3380825
https://dx.doi.org/10.1007/978-3-030-01090-4_5
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347v2
https://www.ri.cmu.edu/publications/dynamic-model-formulation-and-calibration-for-wheeled-mobile-robots/
https://www.ri.cmu.edu/publications/dynamic-model-formulation-and-calibration-for-wheeled-mobile-robots/
https://dx.doi.org/10.1109/TRO.2016.2546310
https://dx.doi.org/10.1109/TRO.2016.2546310
https://dx.doi.org/10.1007/978-3-030-60508-7_10
https://dx.doi.org/10.1007/978-3-030-53288-8_1
https://dx.doi.org/10.1007/978-3-030-53288-8_1
https://dx.doi.org/10.1109/TIV.2019.2955903
https://dx.doi.org/10.1145/3195970.3199852
https://dx.doi.org/10.1145/3195970.3199852
https://dx.doi.org/10.1109/TRO.2018.2830353
https://dx.doi.org/10.1109/TRO.2018.2830353
https://dx.doi.org/10.1109/IROS.2013.6696636

	Formally Verified Safety Net for Waypoint Navigation Neural Network Controllers

