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Abstract Continuous invariants are an important component in deductive
verification of hybrid and continuous systems. Just like discrete invariants are
used to reason about correctness in discrete systems without having to un-
roll their loops, continuous invariants are used to reason about differential
equations without having to solve them. Automatic generation of continuous
invariants remains one of the biggest practical challenges to the automation
of formal proofs of safety for hybrid systems. There are at present many dis-
parate methods available for generating continuous invariants; however, this
wealth of diverse techniques presents a number of challenges, with different
methods having different strengths and weaknesses. To address some of these
challenges, we develop Pegasus: an automatic continuous invariant generator
which allows for combinations of various methods, and integrate it with the
KeYmaera X theorem prover for hybrid systems. We describe some of the ar-
chitectural aspects of this integration, comment on its methods and challenges,
and present an experimental evaluation on a suite of benchmarks.
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1 Introduction

Safety verification problems for ordinary differential equations (ODEs) are
continuous analogs to Hoare triples: the objective is to show that an ODE
cannot evolve out of a designated set of safe states from any of its designated
initial states. The role of continuous invariants is broadly analogous to that of
inductive invariants for discrete program verification. A continuous invariant
is a set of states that can never be left when following the ODE from that set;
such an invariant implies safety when it contains all of the initial states and
is also a subset of the safe states. The problem of automatically generating
invariants (also known as invariant synthesis) is one of the greatest practical
challenges in deductive verification of both continuous and discrete systems.
In theory, it is actually the only challenge for hybrid systems safety [57].

The proliferation of published techniques [6,39,44,61,68,70,81,89,91] for
continuous invariant generation—targeting various classes of systems, and hav-
ing different strengths and weaknesses—presents a complication: ideally, one
does not want to be restricted by the limitations of one particular generation
technique (or small family of techniques). Instead, it is far more desirable to
have a framework that accommodates existing generation methods, allows for
their combination, and is extensible with new methods as they become avail-
able. In this article we (partially) meet the above challenge by developing a
single framework which allows us to combine invariant generation methods
into novel invariant generation strategies. In our work, we are guided by the
following considerations:

1. Specialized invariant generation methods are effective only when the prob-
lem falls within their domain; their use must therefore be targeted.

2. A combination of invariant generation methods can be more practical than
any of the methods considered in isolation. A flexible and reconfigurable
mechanism for combining these methods is thus highly desirable.

3. Reasoning with automatically generated invariants needs to be done in
a sound fashion: any deficiencies in the generation procedure must not
compromise the final verification result.

Our interest in automatic invariant generation is motivated by the pressing
need to enhance the level of proof automation in deductive verification tools for
hybrid systems. In this work we target the KeYmaera X theorem prover [25].

Contributions. This article is an extended version of the conference paper [84].
The article describes the design and implementation of a continuous invariant
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generator (Pegasus)1 and its integration into KeYmaera X. It outlines some of
the principles behind this coupling, the techniques used to generate invariants,
and the mechanism used for combining them into more powerful invariant
generation strategies. An evaluation of this integration on a set of verification
benchmarks is presented—with very promising results. The present article
extends our previous work [84] with:

1. Extensive coverage of the methods for generating continuous invariants em-
ployed by Pegasus (Section 4), including extended descriptions of several
invariant generation methods, as well as new material on conic abstrac-
tions [7] and on the theory and practice of generating rational first integrals
for non-linear and linear systems [21,22,30,47,48,77]. The extended article
also includes a detailed account of the pitfalls and caveats associated with
the various invariant generation and checking methods (Sections 3–6).

2. New insights on invariant generation strategies based on combining various
invariant generation methods (Section 5), including various configuration
options for the differential saturation [61] strategy and a new strategy
based on differential divide-and-conquer [81].

3. An extended benchmark suite with 60 new problems on top of the 90
existing ones (Section 6), together with extended experimental evaluation
and analysis of various invariant generation strategy configurations.

Structure of this article. Mathematical preliminaries and definitions are re-
viewed in Section 2. Section 3 recalls the problem of continuous invariant check-
ing and describes our architecture for sound invariant checking and generation.
Sections 4 and 5 describe some of the methods employed by Pegasus for gen-
erating continuous invariants, along with mechanisms for their combination.
Section 6 presents an empirical evaluation of our integration with KeYmaera X
on a suite of verification benchmarks. Section 7 reviews related work and Sec-
tion 8 discusses the outlook and possible further extensions. Section 9 ends
with a summary and concluding remarks.

2 Preliminaries

Ordinary Differential Equations. An n-dimensional autonomous system of first-
order ODEs has the form: ~x′ = f(~x), where ~x = (x1, . . . , xn) ∈ Rn is a vector
of state variables, ~x′ = (x′1, . . . , x

′
n) denotes their time-derivatives, i.e. dxi

dt
for each i = 1, . . . , n, and f(~x) = (f1(~x), . . . , fn(~x)) specify the right-hand

1 An etymological note on naming conventions. The KeY [4] prover provided the
foundation for developing KeYmaera [62], an interactive theorem prover for hybrid systems.
The name KeYmaera was a pun on the Chimaera, a hybrid monster from Classical Greek
mythology. The tactic language of the new (aXiomatic) KeYmaera X prover [25] is called
Bellerophon [24], after the hero who defeats the Chimaera in the myth. In keeping with an
established tradition, the invariant generation framework is called Pegasus because the aid
of this winged horse was crucial to Bellerophon in his feat.
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side (RHS) of the equations that these time-derivatives must obey along so-
lutions to the ODEs. Geometrically, such a system of ODEs defines a vector
field f : Rn → Rn, associating to each point ~x ∈ Rn the vector f(~x) =
(f1(~x), . . . , fn(~x)) ∈ Rn specifying in which direction the continuous system
evolves at ~x. Whenever the state of the system is required to be confined
within some prescribed set of states Q ⊆ Rn, called its evolution domain
constraint2, we will write ~x′ = f(~x) & Q. If no evolution domain constraint
is specified, then Q = Rn. A solution to the initial value problem for the
system of ODEs ~x′ = f(~x) with initial value ~x0 ∈ Rn is a differentiable func-
tion ~x(~x0, t) : (a, b) → Rn defined on some maximal interval of existence
(a, b) ⊆ R ∪ {∞,−∞} where a < 0 < b, and such that ~x(~x0, 0) = ~x0 and
d
dt~x(~x0, t) = f(~x(~x0, t)) for all t ∈ (a, b). The Lie derivative of a continuously
differentiable function p : Rn → R with respect to vector field f is defined
as p′ ≡

∑n
i=1

∂p
∂xi

fi and equals the time-derivative of p evaluated along the
solutions to the system ~x′ = f(~x) [60,64].

Semi-algebraic Sets. A set S ⊆ Rn is semi-algebraic iff it is characterized by
a finite boolean combination of polynomial equations and inequalities:

l∨
i=1

mi∧
j=1

pij < 0 ∧
Mi∧

j=mi+1

pij = 0

 , (1)

where pij ∈ R[x1, . . . , xn] (i.e. pij are multivariate polynomials in the inde-
terminates x1, . . . , xn, with real coefficients). By quantifier elimination, every
first-order formula of real arithmetic characterizes a semi-algebraic set and can
be expressed in the form (1), see e.g. Mishra [49, §8.6]. With an abuse of nota-
tion, this article uses formulas and the sets they characterize interchangeably.

Continuous Invariants in Verification. Safety specifications for ODEs and hy-
brid systems can be rigorously verified in formal logics, such as differential
dynamic logic (dL) [56,59,60] as implemented in the KeYmaera X proof assis-
tant [25] and hybrid Hoare logic [43] as implemented in the HHL prover [92].
The use of appropriate continuous invariants is key to these verification ap-
proaches as they allow the complexities of the continuous dynamics to be han-
dled rigorously even for ODEs without closed-form solutions. For example, the
dL formula Init → [~x′ = f(~x) & Q] Safe states that the safety property Safe
is satisfied throughout the continuous evolution of the system ~x′ = f(~x) & Q
whenever the system begins its evolution from a state satisfying Init . The in-
variant reasoning principle for verifying such a safety property is given by the
following sound rule of inference in dL, with three premisses above the bar and
the conclusion below:

(Safety)
Init → I I → [~x′ = f(~x) & Q] I I → Safe

Init → [~x′ = f(~x) & Q] Safe
.

2 Evolution domain constraints are also called mode invariants in the context of hybrid
automata. We avoid this name to prevent fundamental confusion with generated invariants.
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In this rule, the first and third premiss respectively state that the initial
set Init is contained within the set I, and that I lies entirely inside the safe set
of states Safe. The second premiss states that I is a continuous invariant, i.e.
I is maintained throughout the continuous evolution of the system whenever
it starts inside I, that is, the following dL formula is true in all states:

I → [~x′ = f(~x) & Q] I . (2)

Thus, the problem of verifying safety properties of ODEs reduces to finding
an invariant I that can be proved to satisfy all three premisses. Semantically,
a continuous invariant can also be defined as follows.

Definition 1 (Continuous invariant) Given a system ~x′ = f(~x) & Q, the
set I ⊆ Rn is a continuous invariant iff the following statement holds:3

∀ ~x0 ∈ I ∀ t ≥ 0 :
(
(∀ τ ∈ [0, t] : ~x(~x0, τ) ∈ Q) =⇒ ~x(~x0, t) ∈ I

)
.

For any given set of initial states Init ⊆ Rn, a continuous invariant I such
that Init ⊆ I provides a sound over-approximation of the states reachable
by the system from Init by following the solutions to the ODEs within the
evolution domain constraint Q. Indeed, the exact set of states reachable by a
continuous system from Init provides the smallest such invariant.4 While Def. 1
above features the solution ~x(~x0, t), which may not be available explicitly, a
crucial advantage afforded by continuous invariants is the possibility of check-
ing whether a given set is a continuous invariant without computing the solu-
tion, i.e. by working directly with the ODEs.

3 Sound Invariant Checking and Generation

The problem of checking whether a semi-algebraic set I ⊆ Rn is a continu-
ous invariant of a polynomial system of ODEs ~x′ = f(~x) &Q was shown to
be decidable by Liu, Zhan, and Zhao [44]. This decision procedure, henceforth
referred to as LZZ, provides a way of automatically checking continuous invari-
ants (2) by exploiting facts about higher-order Lie derivatives of multivariate
polynomials appearing in the syntactic description of I and the Noetherian
property of the ring R[~x] [28,44]; its implementation requires an algorithm for
constructing Gröbner bases [15], as well as a decision procedure for the univer-
sal fragment of real arithmetic [73]. A logical alternative for invariant checking
is provided by the complete dL axiomatization for differential equation invari-
ants [64]. Whereas using LZZ results in a yes/no answer to an invariance ques-
tion (2), dL makes it possible to construct a formal proof of invariance from
a small set of ODE axioms [64] whenever the property holds (or a refutation
whenever it does not).

3 To simplify notation, ∀ t ≥ 0 is implicitly assumed to quantify over all times t ≥ 0 in the
maximal interval of existence of the ODE solution from ~x0, i.e., where ~x(~x0, t) is defined.

4 Unfortunately, reachable sets rarely have a simple description as semi-algebraic sets.
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3.1 Invariant Generation with Template Enumeration

Given a means to perform invariant checking with real arithmetic, an obvious
solution to the invariant generation problem (which has been suggested by
numerous authors [44,61,86]) involves the method of template enumeration,
which yields a theoretically complete semi-algorithm, in the sense that it ter-
minates with a positive answer iff that is possible with the given templates. A
template is a parametric formula, such as

a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2 < 0 ∧ b0 + b1x+ b2y ≥ 0 ,

composed from polynomials in the state variables (in this example x, y) with
symbolic coefficients (here a0,a1,a2,a3,a4,a5 and b0,b1,b2), which are inter-
preted over the reals. All it takes in theory is to exhaustively enumerate para-
metric templates matching all real arithmetic formulas describing all semi-
algebraic sets, and use a quantifier elimination algorithm (such as CAD [14])
to identify whether choices for the template parameters exist that meet the
required arithmetic constraints. While templates make this British Museum
Algorithm-like approach more successful than, e.g. exhaustively enumerating
all proofs [34], the method is nevertheless quite impractical for the resulting
real arithmetic [58]. To appreciate why, let us only remark that quantifier elim-
ination algorithms for real arithmetic used in practice have doubly-exponential
time complexity in the number of variables [69]. Template enumeration treats
every monomial coefficient in the template as a fresh variable, leading to ex-
ponentially many real arithmetic variables, which makes this approach highly
unscalable. In practice, invariant generation is achieved by using incomplete—
but considerably more efficient—generation methods. These methods are nu-
merous and vary considerably in their strengths and limitations, creating a
wide spectrum of possible trade-offs in performance, the quality, and the form
of invariants that one can generate. Effectively navigating this spectrum is an
important practical challenge that this article seeks to address.

3.2 Soundness: Proof Assistants and Invariant Generation

There are a number of design decisions that can be exercised in how reasoning
with continuous invariants is performed within a deductive verification frame-
work. A fundamental design decision is how tightly (i) continuous invariance
checking and (ii) continuous invariant generation are to be coupled with the
implementation of the prover. This space of design choices is exemplified by
the HHL prover and the KeYmaera X prover.

The HHL prover [12,92] implements (i) the LZZ decision procedure for
invariant checking and (ii) the method of template enumeration for invariant
generation based on real quantifier elimination and Gröbner bases. From the
perspective of the HHL prover, these are trusted external oracles for checking
the validity of statements about continuous invariance; trusting the output of
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the HHL prover includes trusting the implementation of its LZZ procedure
and the invariant generator (and any arithmetic tool either of them use).

LZZ procedure
assistant

prover core

soundness-critical

soundness-critical

yes/noinvariant?

I → [x′ = f(x) &Q] I

H
H
L

p
o
r
v
e
r

External oracle

(a) PVS-style

dL core
assistant

dL tactics

soundness-critical

non-critical

Proof/refutation from dL axioms

I → [x′ = f(x) &Q] I

K
e
Y
m

a
e
r
a

X
(b) LCF-style

Fig. 1: Alternative prover architectures for checking conjectured continuous
invariants, i.e. formulas for the form I → [~x′ = f(~x) & Q] I

In contrast, KeYmaera X [25] pursues an LCF-style approach, seeking to
minimize the soundness-critical code that needs to be trusted in its output [51].
For continuous invariants, it achieves this by (i) checking invariance within the
axiomatic framework of dL (rather than trusting external checking procedures)
and (ii) accepting conjectured invariants generated from a variety of sources
but separately checking the result. Invariant checking in KeYmaera X is auto-
matic [64], which is made possible by the use of specialized proof tactics [24];
these additionally allow it to use a variety of other (incomplete, but computa-
tionally inexpensive) methods for proving continuous invariance [28].

Remark 1 The difference between these two approaches (Fig. 1) is broadly
analogous to the use of trusted decision procedures in PVS [18] and oracles
in HOL [8,94] on the one hand, and LCF-style proof reconstruction (e.g. in
Isabelle [93]) on the other.

Remark 2 KeYmaera X also supports witness checking for the universal frag-
ment of real arithmetic [63] resulting from ODE invariance checking [64]. In
theory, this leads to a complete LCF-style approach, but in practice, the per-
formance of real arithmetic witness generation is only competitive with second-
tier quantifier elimination [63].

3.3 Syntactic Representation of Invariants

A subtle issue that arises when interfacing with provers like KeYmaera X or
the HHL prover is which terms can be syntactically represented in the prover.
The choice of representation limits the kinds of invariants that can be de-
scribed (or generated), but it is an important consideration for computational
efficiency and soundness purposes. For example, Noetherian functions support
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a sound and complete axiomatization of invariants in dL [64] but can lead to
undecidable arithmetic. Rational functions and roots could be supported [9]
but would increase the complexity of the required symbolic computations. For
decidability of the invariance and arithmetic questions, this article only con-
siders semi-algebraic invariants, i.e., those built from polynomials as in (1).

A similar issue arises even when restricted to polynomial terms. Näıvely, for
maximum flexibility, one would like to describe invariants using polynomials
p ∈ R[x] that have arbitrary real-valued coefficients. In practice though, only
computable subfields K of R can be effectively represented and used on a com-
puter. Thus, any computational tool must necessarily work with polynomials
p ∈ K[x] over some choice of representation for the field of coefficients K.
Real algebraic numbers K = Q̄ would work as coefficients, but they increase
the complexity of symbolic computations due to the added need to work with
polynomial ideal arithmetic for coefficients and can also lead to some subtleties
with the non-differentiability of the resulting root function itself [9]. On the
other extreme, floating point numbers are computationally efficient but they
do not form a field, and would also cause numerical errors that make it harder
to obtain sound and exact answers in the end. For these reasons, KeYmaera X
works with polynomials p ∈ Q[x] that have rational coefficients.5 This results
in fast evaluations and symbolic computations, and a reasonable (although
nontrivial) complexity for the resulting real arithmetic validity decision prob-
lem. Many invariant generation techniques described in this article are fairly
general and agnostic to the precise choice of field K. Thus, the rest of this
article elides this subtlety and describes the invariant generation algorithms
over p ∈ R[x], i.e., with R as the coefficient field.

KeYmaera X

Tactics
(non-soundness-critical)

dL core
(checks all proof steps)

guide the core

Pegasus

Classifier

Generation Strategy

Qualitative Analysis

Polynomial First Integrals

Darboux Polynomials

Rational First Integrals

Barrier Certificates

safety problem

+ proof hints

invariant

Fig. 2: Sound invariant generation: invariant generator analyzes safety problem
to provide invariants and proof hints to tactics; the invariants are formally
verified to be correct within the soundness-critical dL core

5 In practice, some generation methods may need to internally use floating point arith-
metic when interfacing with numerical solvers, but Pegasus then applies rounding procedures
to obtain polynomials with rational coefficients.
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4 Invariant Generation Methods in Pegasus

Pegasus is a continuous invariant generator implemented in the Wolfram Lan-
guage with an interface accessible through both Mathematica and KeYmaera X.6

When KeYmaera X is faced with a continuous safety verification problem that
it is unable to prove directly, it automatically invokes Pegasus to help find an
appropriate invariant (if possible). KeYmaera X checks all the invariants it
is supplied with—including those provided by Pegasus (see Fig. 2). This de-
sign ensures that any correctness issues in Pegasus cannot compromise the
soundness of KeYmaera X. It also presents implementation opportunities:

1. Pegasus can freely integrate numerical procedures and heuristic meth-
ods while providing best-effort guarantees of correctness. Final correctness
checks for the generated invariants are left to the purview of KeYmaera X.7

2. Pegasus records proof hints corresponding to the various methods that were
used to generate continuous invariants. These hints enable KeYmaera X to
build more efficient shortcut proofs of continuous invariance [28].

Pegasus currently implements an array of powerful invariant generation
methods, which we describe below, beginning with a large family of related
methods that are based on qualitative analysis, which can be best explained
using the machinery of discrete abstraction of continuous systems. We first
briefly recall the main idea behind this approach.

4.1 Exact Discrete Abstraction

Discrete abstraction is the subject of numerous works [2,88,90]. Briefly, the
steps are: (i) discretize the continuous state space of a system by defining
predicates that correspond to discrete states, (ii) compute a (local) transition
relation between the discrete states obtained from the previous step, yielding a
discrete transition system which abstracts the behavior of the original continu-
ous system, and finally (iii) compute reachable sets in the discrete abstraction
to obtain an over-approximation of the reachable sets of the continuous system.

A discrete abstraction is sound iff the relation computed in step (ii) has
a transition between two discrete states whenever there is a corresponding
trajectory of the original continuous system between the two neighboring sets
corresponding to those discrete states. The abstraction is exact iff these are the
only transitions computed in step (ii). Soundness of the discrete abstraction
guarantees that any invariant extracted from the discretization corresponds to
an invariant for the original system. Exactness implies that no invariants are
lost that are representable in the abstraction at all.

6 Pegasus (http://pegasus.keymaeraX.org/) is linked to KeYmaera X through the Math-
ematica interface of KeYmaera X, which translates between the internal data structures of
the prover core and the Mathematica data structures.

7 Naturally, the output from Pegasus can also be checked using a trusted implementation
of the LZZ decision procedure before anything is returned. When used with KeYmaera X,
though, this additional (soundness-critical) check is unnecessary.

http://pegasus.keymaeraX.org/
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Fig. 3: Discrete abstraction of a two-dimensional system

Figure 3 illustrates a discretization of a system of ODEs (Fig. 3a), which
results in 9 discrete states in a sound and exact abstraction (Fig. 3b). The state
space is discretized using predicates built from sign conditions on polynomials,
p1, p2 ∈ R[x1, x2].8 The discrete states of the abstraction are given by formulas
such as S1 ≡ p1 < 0 ∧ p2 = 0, S2 ≡ p1 < 0 ∧ p2 > 0, and so on. The question
whether there should be a discrete transition from S1 to S2 in the abstraction
may be equivalently cast as the following question: is S1 a continuous invariant
of the system ~x′ = f(~x) under evolution domain constraint S1 ∨ S2, i.e. is the
following dL formula valid?

S1 → [~x′ = f(~x) &S1 ∨ S2]S1 .

This question can be answered with a decision procedure such as LZZ
or formally proved/disproved using dL, as discussed in Section 3. If S1 is a
continuous invariant under this evolution domain constraint, then there are no
states satisfying S1 from which the system continuously evolves into a state
satisfying S2 along a trajectory that remains within the union S1∪S2 and thus
there should not be a transition from S1 to S2 if the discrete abstraction is
to be exact; on the other hand, if S1 is not a continuous invariant, then there
must be such a transition if the abstraction is to be sound.

The ability to construct sound and exact discrete abstractions [81] has an
important consequence: if an appropriate semi-algebraic continuous invariant
I exists at all, it can always be extracted from a discrete abstraction built from
discretizing the state space using sign conditions on the polynomials describ-
ing I. The problem of (semi-algebraic) invariant generation therefore reduces
to finding appropriate polynomials whose sign conditions can yield suitable
discrete abstractions and computing reachable states in these abstractions.

Remark 3 Reachable sets (from the initial states) in discrete abstractions are
the smallest invariants with respect to ⊆ (set inclusion) that are representable
in that abstraction. The smallest invariant is the most informative because it
allows one to prove the most safety properties, but it may not be the most

8 Sign conditions on a polynomial p are atomic formulas p < 0, p = 0, and p > 0.
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useful invariant in practice. In particular, one often wants to work with invari-
ants that have low descriptive complexity and are easy to prove in the formal
proof calculus. This leads naturally to consider alternative ways of extracting
invariants. Pegasus is able to extract reachable sets of discrete abstractions,
but favours less costly techniques, such as differential saturation [61], which
often succeed in more quickly extracting more conservative invariants.

Finding “good” polynomials that can abstract the system in useful ways
and allow proving properties of interest is generally difficult. While abstraction
using predicates that are extracted from the verification problem itself can be
surprisingly effective, in certain cases useful predicates may not be syntacti-
cally extracted from the problem statement. In order to improve the quality
of discrete abstractions, Pegasus employs a separate classifier, which extracts
features from the verification problem which can then be used to suggest poly-
nomials that are more tailored to the problem at hand. Certain systems have
structure that, to a human expert, might suggest an “obvious” choice of good
predicates. Below we sketch some basic examples of what is currently possible.

4.2 Targeted Qualitative Analysis

As a motivating example, consider the class of one-dimensional ODEs x′ = f(x),
where f ∈ R[x]. A standard way of studying qualitative behavior in these sys-
tems is to inspect the graph of the function f(x) [85]. Figure 4 illustrates such
a graph of f(x), along with a vector field induced by such a system on the
real line. The ODE x′ = f(x) is at an equilibrium without any motion at

x

x′ f(x)

Fig. 4: Qualitative analysis of one-dimensional ODEs x′ = f(x)

points where f(x) = 0. By computing the real roots of the polynomial in the
right-hand side, i.e the real roots r1, . . . , rk ∈ R of f(x), we may form a list of
polynomials x− r1, . . . , x− rk that can be used for an algebraic decomposition
of R into invariant subregions corresponding to real intervals from which an
over-approximation of the reachable set can be constructed. Such an algebraic
decomposition can be further refined by augmenting the list of polynomials
with x − b1, . . . , x − bl, where b1, . . . , bl ∈ R are the boundary points of the
initial set in the safety specification. From this augmented list, one can exactly
construct the reachable set of the system by computing the reachable set of
the corresponding exact abstraction.
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Remark 4 If x′ = f(x) is one-dimensional, one can exploit another useful fact:
every one-dimensional system is a gradient system, i.e. its motion is generated
by a potential function F (x) which can be computed directly by integrating
−f(x) with respect to x, i.e. F (x) = −

∫
f(x) dx. For any k ∈ R, F (x) ≤ k

defines a continuous invariant of the one-dimensional system x′ = f(x).

In higher dimensions, the behavior of linear systems ~x′ = A~x with a con-
stant coefficient matrix A can be studied qualitatively by examining the eigen-
values and eigenvectors9 of the matrix A [3]. Pegasus implements methods
targeted at linear systems that take advantage of facts such as these to sug-
gest useful abstractions from which invariants can be extracted. The current
strategy is similar in spirit to the abstraction methods proposed in the work
of Tiwari [87], and works by computing linear forms describing the invariant
half-spaces in the state space of linear systems. Briefly, whenever the system
matrix A has a real eigenvalue λ ∈ R, by considering an eigenvector ~v of the
transpose matrix AT , which is associated with the eigenvalue λ (recall that
the eigenvalues of square matrices A and AT are the same), one may construct
the linear form p = ~vT~x, which has the property that [87, §2]:

p′ = ~vT~x′ = ~vTA~x = (A~v)T~x = (λ~v)T~x = λp .

Such linear forms correspond to a special case of so-called Darboux polynomials,
which will be described in more detail in Section 4.4.2 and have the property
that p > 0, p = 0, and p < 0 define invariant regions in state space (the fact
that λ is a real number also allows us to construct invariants p ≤ k, where k
is an appropriately chosen offset depending on the sign of λ).

Additionally, when all the eigenvalues of the system matrix A have strictly
negative real parts, the origin ~0 is asymptotically stable and one may construct
a Lyapunov function (see [80, Ch. 3],[38, Ch. 3]) for the linear system by solving
the Lyapunov equation ATP + PA = Q where Q is some given negative-
definite matrix10, and the solution P is positive-definite (see [80, Ch. 3, §3.5]);
the quadratic Lyapunov function V for the stable system is given by V (~x) =
~xTP~x. Every sub-level set V ≤ k defines a continuous invariant of the system;
Fig. 5 (right) illustrates the kind of invariants that can be obtained by using
Lyapunov functions together with invariant half-planes to perform abstraction
of linear systems.

Example 1 The linear systems in Fig. 5 exhibit different qualitative behaviors.
The invariants (shown in blue), demonstrate unreachability of the unsafe states
(shown in red) from the initial states (shown as green disks in Fig. 5).

In the leftmost system, all eigenvalues of the system matrix A are purely
imaginary. Pegasus generates annular invariants containing the green disks be-
cause trajectories of such systems are always elliptical. For the middle system,

9 A vector ~v ∈ Rn is an eigenvector for eigenvalue λ ∈ C of matrix A ∈ Rn×n iff A~v = λ~v.
In direction ~v, the ODE ~x′ = A~x, thus, converges to 0 if λ < 0 or diverges if λ > 0.
10 An n×n matrix Q is negative-definite if it is symmetric, i.e. Q = QT , and ~xTQ~x < 0 for

all ~x ∈ Rn \ {~0}; a symmetric matrix P is positive-definite if ~xTP~x > 0 for all ~x ∈ Rn \ {~0}.
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x′1 = −4x2, x′1 = 2x1 − x2, x′1 = −2x1 + x2,

x′2 = x1, x′2 = −3x1 + x2, x′2 = x1 − 3x2.
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Fig. 5: Automatically generated invariants for linear systems

the (asymptotic) behavior of its trajectories is determined by the eigenvectors
of its system matrix (eigenvalues are real and of opposite sign [3]). Pegasus
uses these eigenvectors to generate two invariant half-planes, one for each green
disc. Invariant half-planes are also generated for the rightmost system which
is asymptotically stable (all real parts of eigenvalues are negative [3]). Pegasus
further refines these half-planes with suitable elliptical regions containing the
green disks because elliptical regions are invariants for such systems.

" In textbook examples of linear systems, one usually finds matrices with
eigenvalues and eigenvectors that can be described using rational numbers.
However, the situation is not always that nice in practice: eigenvectors of ma-
trices will often feature irrational components, which in the case of the example
above leads to invariant half-planes described by linear polynomials with irra-
tional coefficients. It is therefore important to have the means of working with
irrational real numbers in the invariant generator and the prover.

In special cases when the verification problem features a purely algebraic
initial set, the strongest algebraic invariants for linear systems (i.e. the smallest
continuous invariants that can be described by polynomial equalities p = 0)
can be computed following the method of Rodŕıguez-Carbonell & Tiwari [70],
which we implement in Pegasus.

Remark 5 Bogomolov et al. [7] introduced a technique called conic abstrac-
tions that combines discrete abstraction of affine systems with an associated
reachability analysis method. It is particularly powerful for systems ~x′ = A~x in
which the matrix A is diagonalizable11, where the authors’ experiments suggest
it outperforms other tools for linear reachability analysis, like SpaceEx [23].
The eponymous idea behind the method is to partition state space into a num-
ber of regions (i.e., cones), so that within each cone the change in angle of the
vector field (i.e., the twisting) is bounded by a tunable parameter θ. Given any

11 The matrix A is diagonalizable iff it can be written as A = PDP−1 for some invertible
matrix P and diagonal matrix D.
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point in the vector field, then, this construction gives a known range of possible
slopes for the vector at that point. This is useful information for the subsequent
reachability analysis—instead of simply computing the transition relation be-
tween neighboring cones, as in Section 4.1, the algorithm [7] uses the twisting
information to determine what portions of each cone is potentially reachable
from an initial set. We experimented with the conic abstraction method in a
limited setting: bounded linear 2-dimensional systems. The major obstacle in-
hibiting a complete implementation is that Mathematica’s native support for
polyhedra computations does not quite meet the demands of the algorithm.
Our limited implementation is not able to return an exact invariant region—
instead, we produce promising visualizations of the invariant generated for
two examples from Fig. 5 (see Fig. 6).12 With better support for polyhedra
computations, this could be an exciting direction for future implementation
by interfacing Pegasus with the Parma Polyhedra Library.

4.3 Qualitative Analysis for Non-Linear Systems

General non-linear polynomial systems of ODEs present a hard class of prob-
lems for invariant generation. A number of useful heuristics can be applied
to partition the continuous state space of these systems, in the hope that the
resulting abstraction exhibits a suitable invariant. For example, factorizing the
RHS of a differential equation x′i = fi(x) yields a set of irreducible polynomial

factors p1, . . . , pk such that fi =
∏k
j=1 pj , which implies that the flow along

the curves pj = 0 vanishes in the xi direction. This information can be used
to cheaply approximate the transition relation in the discrete abstraction and
to efficiently extract invariant candidates. For the non-linear ODE in Fig. 3,
the discretization polynomials p1, p2 are chosen such that x′2 = 0 and x′1 = 0
on their respective level curves. This yields a useful discrete abstraction e.g.
S4 is an invariant for the resulting abstraction (Fig. 3b). Other useful sources
of polynomials for qualitative analysis of non-linear systems are found in, e.g.
the summands and irreducible factors of the right-hand sides of the ODEs, the
Lie derivatives of the factors, and physically meaningful quantities such as the
divergence of the system’s vector field.

Locally transverse linear forms A simple geometric idea can sometimes help
generate linear polynomials for abstraction. For a system of ODEs ~x′ = f(~x),
which may be non-linear, and a regular point ~x0 ∈ Rn with f(~x0) 6= ~0, one
may construct the linear form f(~x0) · (~x − ~x0), which has the property that
its zero set is locally transverse to the vector field near ~x0.13 With a suffi-

12 The conic abstractions approach does not work directly with the leftmost example
from Fig. 5 because the example’s system matrix has purely imaginary eigenvalues and
is consequently not diagonalizable (a key requirement for termination of the approach [7]).
13 By continuity of f(·), the vectors f(~x) are sufficiently close to f(~x0) for points ~x in a

small neighborhood around ~x0. Therefore, all ODE solutions in this neighborhood can only
cross f(~x0) · (~x− ~x0) in the same direction as f(~x0).
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x′1 = 2x1 − x2,
x′2 = −3x1 + x2.

(Fig. 5 middle example)
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x′1 = −2x1 + x2,

x′2 = x1 − 3x2.

(Fig. 5 right example)
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Fig. 6: A visualization of our implementation of the conic abstractions method
(each example is shown row-wise). The left figures show the generated conic
partition into 20 cones (alternating red and blue colors). The right figures
show the reachable set computation (in blue) from the same green initial sets
as in Fig. 5. These reachable sets, which are invariant sets, suffice to show that
the ODE never reaches any unsafe states (in red). The method automatically
produces finer partitions of the state space (using more cones) when the direc-
tion of the vector field changes more drastically. The top partition concentrates
several cones around its unstable manifold [13,85] (the line y = 1

6 (1 +
√

13)x),
while the bottom partition has more evenly spaced out cones.
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Fig. 7: Abstractions using locally transverse linear forms (shown as red lines)
generated from a grid of points (in black)

ciently fine partitioning using regular points, one has a good chance of finding
invariant regions in the abstraction. In problems where the evolution domain
constraint describes a bounded set, it is possible to obtain useful abstractions
by choosing a finite number of regular points ~x0 within the set and partition-
ing the constraint with the corresponding locally transverse linear forms (as
illustrated in Fig. 7). Of course, choosing “good” points is the main problem
in this method; one possibility is to use evenly-spaced points forming a grid
covering the evolution domain constraint.
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4.4 General-Purpose Methods

Beyond qualitative analysis, Pegasus implements several general-purpose in-
variant generation techniques which represent restricted, but tractable frag-
ments of the general method of template enumeration. The search for symbolic
parameters in these methods is not performed using real quantifier elimination,
but instead takes place in more tractable theories.

4.4.1 Polynomial First Integrals

A polynomial p ∈ R[~x] is a first integral [31, 2.4.1] (also see [65, §23]) of the
system ~x′ = f(~x) iff its Lie derivative p′ with respect to the vector field f
is the zero polynomial. First integrals are also known as conserved quantities
because they have an important property: their value never changes along the
solutions to ODEs; that is to say, for any k ∈ R, p = k is an invariant of
the system.14 For a single first integral p, if one were to use (the signs of)
the polynomial p − k to build an abstraction, the abstract state space would
not feature any transitions between its states (illustrated in Fig. 8). Thus, one
has the freedom to choose values k for which the resulting discrete abstraction
suitably partitions the state space. For example, if the initial states lie entirely
within p < k and the unsafe ones within p > k, then p < k is an invariant
separating those sets.

p < k p = k p > k

Fig. 8: Discrete abstraction with first integral p− k (k ∈ R)

Pegasus can search for all polynomial first integrals up to a configurable
degree bound by solving a system of linear equations whose solutions provide
the coefficients of the bounded degree polynomial template for the first inte-
gral. This is known as the method of undetermined coefficients; we illustrate
the main steps of the method in the following example.

Example 2 (Kasner’s equations) Consider the non-linear system of ODEs de-
scribing a special case of Einstein’s gravitational equations [37]

x′1 = x2x3 − x21 ,
x′2 = x3x1 − x22 ,
x′3 = x1x2 − x23 ,

and a polynomial template of maximum degree 2 in the state variables x1, x2, x3:

p~a,2 = a0+a1x1+a2x2+a3x3+a4x
2
1+a5x1x2+a6x1x3+a7x

2
2+a8x2x3+a9x

2
3 .

14 Strictly speaking, first integrals and conserved quantities are not the same: a first integral
may only be considered a conserved quantity in regions where it is defined. In this case,
however, polynomial functions are defined everywhere in Rn and the two notions coincide.
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Computing the Lie derivative of this template with respect to the system, i.e.

(p~a,2)′ =
∂p~a,2

∂x1
x′1 +

∂p~a,2

∂x2
x′2 +

∂p~a,2

∂x3
x′3 gives a degree 3 parametric polynomial:

(p~a,2)′ = −a1x21 + a3x1x2 + a2x1x3 − a2x22 + a1x2x3 − a3x23 − 2a4x
3
1

+ (a6 − a5)x21x2 + (a5 − a6)x21x3 + (a8 − a5)x1x
2
2

+ (2a4 + 2a7 + 2a9)x1x2x3 + (a8 − a6)x1x
2
3 − 2a7x

3
2

+ (a5 − a8)x22x3 + (a6 − a8)x2x
2
3 − 2a9x

3
3 .

In order to find a first integral, one is required to solve the equation (p~a,2)′ = 0,
but a polynomial is 0 precisely when all of its coefficients are 0. Thus, by
equating all coefficients of the Lie derivative to 0, finding a first integral reduces
to solving a linear system of equations over the symbolic coefficients a0, . . . ,a9:

−a1 = 0, a3 = 0, a2 = 0,−a2 = 0, a1 = 0,−a3 = 0,−2a4 = 0, (a6 − a5) = 0,

(a5 − a6) = 0, (a8 − a5) = 0, (2a4 + 2a7 + 2a9) = 0, (a8 − a6) = 0,

−2a7 = 0, (a5 − a8) = 0, (a6 − a8) = 0,−2a9 = 0 .

Solutions are efficiently found using linear algebra [31, §2.4.1]. In this example,
a non-trivial solution yields the polynomial first integral x1x2 + x1x3 + x2x3.
Moreover, all first integrals of degree (up to) two provide concrete instances
of the coefficients a and so must correspond to a solution of these equations.

When a polynomial first integral p is computed, one has the freedom of
choosing its initial value, which is guaranteed to remain invariant throughout
the evolution of the system. In the above example, one may choose any real
number k and partition the state space into invariant regions defined by the
sign conditions on the polynomial x1x2 + x1x3 + x2x3 − k. To obtain a tight
over-approximation of the reachable set from the initial set of states given in
the verification problem, one may choose k by maximizing and minimizing the
value of the first integral p on the initial set of states within the evolution
domain constraint, i.e., one may search for the real values (if they exist):

kmax = max
~x∈Init∩Q

p(~x) , kmin = min
~x∈Init∩Q

p(~x) .

If finite values kmax and kmin can be obtained, one may generate a contin-
uous invariant kmin ≤ p ∧ p ≤ kmax (or just p = kmin if kmax = kmin).

" Maximizing/minimizing multivariate polynomials subject to semi-algebraic
constraints often leads to irrational and real algebraic numbers as exact max-
ima/minima. Numerical algorithms will yield values that are near-optimal,
which may require them to be increased/decreased by some amount before a
genuine invariant is constructed as described above.

" The set Init ∩ Q may have multiple connected components, and tighter
invariants may be obtained from first integrals when the value k is optimized
subject to each connected component separately. A cheap way to approximate
the connected components is to normalize Init ∧Q to disjunctive normal form
and consider each disjunct as a separate component.
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If more than one independent first integral for a system is found, one may
construct finer abstractions and generate tighter invariants over-approximating
the reachable set. A particularly interesting case is when an n-dimensional
system of ODEs has n − 1 functionally independent algebraic first integrals:
such a system is said to be algebraically integrable [31,52]. In such a system,
given a state ~x0 ∈ Rn, one may evaluate the first integrals p1, p2, . . . , pn−1 at
that state to obtain a continuous invariant given by

p1 = p1(~x0) ∧ p2 = p2(~x0) ∧ · · · ∧ pn−1 = pn−1(~x0) .

If the first integrals are functionally independent, i.e. when the matrix

[∇p1 ∇p2 · · · ∇pn−1]

whose columns are formed by the gradients ∇pi ≡
(
∂pi
∂x1

, ∂pi∂x2
, . . . , ∂pi∂xn

)T
has

full rank at ~x0 (i.e. when the vectors ∇pi evaluated at ~x0 are linearly inde-
pendent, see e.g. [52]), the resulting conjunctive formula (locally) describes a
1-dimensional invariant curve in n-dimensional state space and provides the
tightest possible algebraic invariant containing ~x0.

Example 3 (Algebraic integrability) Consider the non-linear system

(a) Invariant surfaces p1 = 1 and p2 = 0 (b) Invariant curves through points

Fig. 9: Invariant level sets of two independent first integrals (left) whose in-
tersections define invariant curves (right)

x′1 = −x2 ,
x′2 = x1 ,

x′3 = x1x2 .

Using a quadratic polynomial template p~a,2 and solving the linear system of
equations corresponding to the equality (p~a,2)′ = 0 as described in Example 2,
one obtains the first integrals p1 = x21 + x22 and p2 = x21 + x3. The level
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sets described by p1 = k1 and p2 = k2 are invariants for any k1, k2 ∈ R.
A level set of a first integral corresponds to an invariant surface to which
the system’s vector field is tangent at all points on the surface. For example,
Fig. 9a illustrates two invariant surfaces of this system, which are described by
p1 = 1 (corresponding to the red cylinder) and p2 = 0 (corresponding to the
blue inverted parabolic surface). Taking ~x0 = (0, 1, 0)T , one can easily check
that the first integrals p1 and p2 are functionally independent:

[∇p1 ∇p2] =


∂p1
x1

∂p2
x1

∂p1
x2

∂p2
x2

∂p1
x3

∂p2
x3

 =

2x1 2x1
2x2 0
0 1

 , which at ~x0 becomes

0 0
2 0
0 1


and is full rank. Since the system of ODEs is 3-dimensional and we have
2 = 3 − 1 independent algebraic first integrals, this system is algebraically
integrable.15 Intuitively, the invariant level surfaces of first integrals will in-
tersect transversally (i.e. will not be tangent) if the first integrals are func-
tionally independent. Each such intersection results in an invariant which is
of lower dimension: for example, the intersection of the two invariant surfaces
in Fig. 9a (i.e. p1 = 1 ∧ p2 = 0) corresponds to the invariant space curve –
a one-dimensional object in 3-dimensional space – which contains the point
~x0 = (0, 1, 0)T , as illustrated in Fig. 9b by the middle curve going through the
red point ~x0.16 One may choose other points ~x0 and use them to evaluate the
first integrals p1(~x0) and p2(~x0), from which one can construct other invariant
curves described by p1 = p1(~x0) ∧ p2 = p2(~x0) (as in Fig. 9b).

4.4.2 Darboux Polynomials

Darboux polynomials were first introduced in 1878 [17] to study integrability
of polynomial ODEs. A polynomial p ∈ R[~x] is said to be a Darboux polynomial
for the system ~x′ = f(~x) if and only if p′ = αp for some polynomial α ∈ R[~x],
which is known as the cofactor of p. Like first integrals, discrete abstractions
produced with Darboux polynomials result in three states with no transitions
between them (as illustrated in Fig. 8, but with k = 0). Unlike first integrals,
only p = 0 is guaranteed to be an invariant of the system. Darboux polynomials
have been used for predicate abstraction of continuous systems by Zaki et
al. [97], who successfully applied them to verify electrical circuit designs.

The problem of generating Darboux polynomials is generally far more dif-
ficult than that of generating polynomial first integrals (which represent the
special case of Darboux polynomials where the cofactor α is 0 in the equation
p′ = αp). A modification of the method of undetermined coefficients described

15 In this example the first integrals are polynomial functions, but in general algebraic
first integrals need not be polynomial: e.g. they may be rational functions, as we shall see
in Sec. 4.4.3.
16 In fact, for this particular example this closed curve represents the periodic orbit (see

e.g. [13]) of the system through the point ~x0.
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in the previous section can likewise be applied to search for Darboux poly-
nomials. However, in order to apply this method, one is required to provide
a polynomial template for both the Darboux polynomial and for its cofactor.
Whenever one has a polynomial system of ODEs ~x′ = f(~x) in which the max-
imum polynomial degree of the components f1, f2, . . . , fn of f is some r ≥ 0,
then the maximum possible degree of the Lie derivative (w.r.t. this system) of
a polynomial p of maximum degree d is given by d + r − 1. Consequently, to
search for a Darboux polynomial of maximum degree d, the maximum degree
of the cofactor α in the equation p′ = αp that one needs to consider is given
by r − 1. To apply the method of undetermined coefficients, one requires a
template p~a,d for the Darboux polynomial and a separate template α~b,r−1 for
the cofactor. The equation to be solved is the following:

(p~a,d)
′ − α~b,r−1p~a,d = 0 .

By expanding the polynomial on the left-hand side and equating each of its
monomial coefficients to 0, one obtains a system of equations in the symbolic
parameters ~a,~b; however, while this system is linear in the parameter vari-
ables ~a and ~b considered separately, it is a non-linear system of equations in
~a,~b simultaneously. In practice, solving such a non-linear system is far more
computationally expensive than solving the linear systems for polynomial first
integrals; the näıve method of undetermined coefficients does not provide a
practically appealing solution for Darboux polynomial generation.

Fortunately, automatic generation of Darboux polynomials is an active area
of research, owing largely to their importance as a crucial component in the
Prelle-Singer method [67] for computing elementary closed-form solutions to
ODEs. In order to implement the Prelle-Singer method, more sophisticated
algorithms for Darboux polynomial generation have been developed in the
computer algebra community, e.g. two algorithms were reported by Man [47].
Indeed, in our experiments we have found the algorithms ps 1 and new ps 1

in [47] to be much more practical and implement them in Pegasus.

Remark 6 We remark also that several algorithms for generating (what are
essentially) Darboux polynomials have more recently been developed within
the verification community [39,68,76]. However, our experience with some of
these procedures has been less positive. The method in [68] was in practice
found to be very inefficient and incomplete, i.e. unable in general to find all
the Darboux polynomials matching a given polynomial template; the technique
described in [39] is significantly faster but is likewise incomplete.

" Determining whether an arbitrary system of polynomial ODEs possesses
a Darboux polynomial (and finding a bound on its degree if it does) remains
an open problem [98, §4.1].

4.4.3 Rational First Integrals

Beyond polynomial functions, a much larger class of algebraic conserved quan-
tities is that of rational first integrals; these are first integrals represented by
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rational functions, i.e. functions of the form a
b , where a, b are polynomials and

b 6= 0. Searching for this kind of first integral is (unsurprisingly) more difficult
than is the case with polynomials; however, it is made possible by exploiting
an idea from the seminal work of Darboux (see e.g. Schlomiuk [77]): multiple
Darboux polynomials can be combined to construct a rational first integral.

Theorem 1 Let p1, p2, . . . , pk be Darboux polynomials for the system ~x′ = f(~x),
with p′i = αipi, where αi is some polynomial cofactor for each i = 1, . . . , k. If

λ1α1 + λ2α2 + · · ·+ λkαk = 0 (3)

has a non-trivial integer solution, i.e. ~λ = (λ1, λ2, . . . , λk) ∈ Zk \{~0}, then the
system has a rational first integral r~λ ∈ R(~x) given by the product

r~λ = pλ1
1 pλ2

2 · · · p
λk

k .

Proof By applying the product rule to compute the Lie derivative r′~λ, we get

(pλ1
1 pλ2

2 · · · p
λk

k )′ = λ1p
λ1−1
1 p′1(pλ2

2 · · · p
λk

k ) + · · ·+ λkp
λk−1
k p′k(pλ1

1 · · · p
λk−1

k−1 )

= λ1p
λ1−1
1 α1p1(pλ2

2 · · · p
λk

k ) + · · ·+ λkp
λk−1
k αkpk(pλ1

1 · · · p
λk−1

k−1 )

= (λ1α1 + λ2α2 + · · ·+ λkαk)(pλ1
1 pλ2

2 · · · p
λk

k ).

From equation (3) it follows that r′~λ = 0 and r~λ is therefore a first integral. ut

Remark 7 Obviously, if the solution to (3) is such that ~λ ∈ Zk≥0, then the

first integral is polynomial; at least one negative component in ~λ is therefore
required in order to construct a non-polynomial rational first integral. We also
note that one may search for rational solutions to (3), i.e. ~λ ∈ Qk, which will
in general result in first integrals featuring radicals. Any such first integral
can be turned into a rational first integral by raising it to an integer power
corresponding to the least common multiple of the denominators of the rational
numbers λ1, . . . , λk. In general, λ1, . . . , λk need not be rational or even real
numbers in order for the construction given in Theorem 1 to work; however,
irrational solutions lead to first integrals that are not rational functions.

In light of the above theorem, a straightforward procedure for generating
rational first integrals (which has previously been suggested by Man [48]) in-
volves (i) generating Darboux polynomials p1, p2 . . . , pk for the system ~x′ = f(~x),
e.g. using an implementation of Man’s algorithms [47], and (ii) finding integer
(or rational) solutions to the linear system of equations (3) in Theorem 1. If
the coefficients of the cofactors α1, α2, . . . , αk in equation (3) are all ratio-
nal numbers, the problem reduces to solving a system of linear Diophantine
equations, for which there exist polynomial-time algorithms. If a rational first
integral r~λ = a

b is found, then a
b = l defines an invariant hypersurface for any

choice of l ∈ R, assuming b 6= 0; rewriting this, we get that a − lb = 0 is
invariant for any l ∈ R (when b 6= 0).
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(a) p1, p2, p3 = 0 (b) r~λ = 1
10

(c) r~λ = 1 (d) r~λ = −2

Fig. 10: Rational first integral r~λ constructed from three Darboux polynomials.
Zero sets of the three Darboux polynomials shown in solid green, blue and red.
Invariant level sets of the rational first integral shown in dashed black for values
r~λ = 1

10 , 1,−2, respectively

Example 4 Consider the following non-linear system of ODEs [22]:

x′1 = 6x41 + 27x31 − 9x21x2 + 42x21 − 24x1x2 + 21x1 + 4x22 − 7x2 + 4 ,

x′2 = 18x41 + 99x31 − 39x21x2 + 150x21 + 2x1x
2
2 − 80x1x2 + 71x1 + 12x22 − 21x2 + 12 .

Using our implementation of Man’s algorithm [47], we obtain the following
list of Darboux polynomials in under one second of computation time:

(p1, p2, p3) =

(
x1 −

x2
3

+
2

3
, x21 + 2x1 −

2x2
3

+
1

3
, x21 + 3x1 − x2 + 1

)
.

Solving equation (3) in Theorem 1, we obtain the solution (λ1, λ2, λ3) =
(2, 1,−1), from which we obtain the rational first integral (illustrated in Fig. 10)

r~λ = p21p
1
2p
−1
3 =

(x1 − x2

3 + 2
3 )2(x21 + 2x1 − 2x2

3 + 1
3 )

x21 + 3x1 − x2 + 1
.

Remark 8 Before attempting to search for algebraic first integrals (whether
polynomials or rational functions) it is helpful to have static criteria that
determine whether such first integrals can arise in a given system of ODEs.
Criteria for non-existence of various kinds of first integrals have been studied
by numerous authors (notably by Poincaré [98, §7.2]) and typically make use of
the linearization ~x′ = A~x of the system ~x′ = f(~x) around a point of equilibrium
(i.e. a point ~x∗ where f(~x∗) = ~0). In particular, a sufficient criterion for non-
existence of rational first integrals in non-linear systems of ODEs is given by
Shi [78, Theorem 1]; it requires that the eigenvalues λ1, . . . , λn of the matrix A
are such that k1λ1+ · · ·+knλn = 0 does not have a non-trivial integer solution
(k1, . . . , kn) ∈ Zn \ {~0}. A similar criterion, which furthermore accounts for
repeated eigenvalues, is given by Goriely [31, Ch. 5, Prop. 5.5].



Pegasus: Sound Continuous Invariant Generation 23

Combining Darboux Polynomials and Rational First Integrals. As a first hint
of its flexibility for combining invariant generation methods, Pegasus imple-
ments rational first integral generation by combining several ideas described
thus far in Section 4 as follows. This flexibility is further exploited in the dis-
cussion of strategies in Section 5.

1. Compute a list of Darboux polynomials p1, . . . , pk of some maximum poly-
nomial degree d using generation methods from Section 4.4.2.

2. Abstract the state space into sign invariant cells using those polynomials,
e.g., S1 ≡ p1 < 0 ∧ p2 = 0, S2 ≡ p1 < 0 ∧ p2 > 0, S3 ≡ p1 < 0 ∧ p2 < 0,
etc., as described in Section 4.1. Notably, the resulting abstraction has no
transitions between its discrete states, as illustrated in Fig. 8.

3. Prune away those invariant cells that do not intersect the initial set of
states, e.g., delete S1 if Init∩S1 = ∅ since S1 is then unreachable. Similarly,
prune away cells that do not intersect the unsafe set, e.g., delete S2 if
Unsafe ∩ S2 = ∅ because no initial states in S2 can reach the unsafe set.

4. The remaining unpruned conflict cells, say S3, define new invariant gen-
eration sub-problems, where the original evolution domain constraint Q is
restricted to Q ∧ S3. Each of the Darboux polynomials are sign-invariant
in these cells; moreover, those Darboux polynomials that are sign-definite
(either strictly positive or negative) in each cell, e.g. p1, p2 with evolution
domain constraint p1 < 0∧ p2 > 0 for S3, can be used to compute rational
first integrals r~λ (following Theorem 1). The denominator of r~λ is guar-
anteed to be a product of (powers of) sign-definite polynomials so these
rational functions are always defined within each conflict cell.

5. Using their respective rational first integrals r~λ, refine each conflict cell by
maximizing and minimizing the values of r~λ to obtain invariant sub-level
sets kmin ≤ r~λ ∧ r~λ ≤ kmax over the initial set (restricted to that cell), as
described in Section 4.4.1.

6. If conflict cells remain, increase the polynomial degree d and go to step 1.

Rational First Integrals of Linear Systems. In the case of linear systems of
ODEs ~x′ = A~x, more efficient methods exist that allow us to directly construct
rational first integrals from the eigenvalues and eigenvectors of the system
matrix A. These explicit constructions are described, e.g. in the work of Gor-
buzov & Pranevich [30] and Falconi & Llibre [21]; in Pegasus, we implement
and deploy the former techniques [30].

It is instructive to compare the results obtained by Lafferriere, Pappas and
Yovine [42] (which state that semi-algebraic reachable sets of linear ODEs
~x′ = A~x can be constructed from semi-algebraic initial sets in cases when A is
diagonalizable and all of its eigenvalues are rational) to essentially analogous
results independently obtained in the study of integrability of linear systems.
For instance, [30, Property 1.1] gives a sufficient condition for algebraic inte-
grability which states that a linear system ~x′ = A~x has a basis of rational first
integrals (i.e. is algebraically integrable) if all the eigenvalues of A are rational
and of multiplicity 1. Indeed, such a basis of rational first integrals enables
one to construct reachable sets described by polynomials.
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4.4.4 Barrier Certificates

The method of barrier certificates is a popular Lyapunov-like technique for
safety verification of continuous and hybrid systems [66]. Barrier certificates
are differentiable functions p that define an invariant region p ≤ 0 which sepa-
rates the initial states (wholly contained within p ≤ 0) from the unsafe states
(wholly contained within p > 0). In order to ensure continuous invariance of
the region defined by p ≤ 0, the Lie derivative p′ of the barrier certificate
needs to satisfy certain criteria; differences in these criteria give rise to a num-
ber of variations of barrier certificates in the literature. The original work by
Prajna and Jadbabaie [66] introduced convex barrier certificates, which em-
ploy the differential inequality p′ ≤ 0 to guarantee invariance of p ≤ 0 under
the flow of the system. Later work by Kong et al. [40] introduced so-called
exponential-type barrier certificates, which provide a generalization employing
the differential inequality p′ ≤ λp, where λ ∈ R; this was generalized further
yet in the work of Dai et al. [16], who introduced general barrier certificates
employing the differential inequality p′ ≤ ω(p), where ω is a specifically crafted
scalar function to guarantee invariance of p ≤ 0. All of the above developments
are fundamentally based on the classical notion of comparison systems [71, Ch
II, §3, Ch. IX] in the theory of ODEs. A unified understanding of these gener-
alizations is described in prior work [83], which introduces a further generaliza-
tion of the barrier certificate framework: vector barrier certificates, employing
multidimensional comparison systems in a way analogous to vector Lyapunov
functions introduced by Bellman [5].

Barrier certificates are practically interesting because one may apply the
method of undetermined coefficients to automatically search for them using
tractable techniques: either sum-of-squares programming (SOS) [66] or linear
programming (LP) [95]. Pegasus is able to search for convex [66], exponential-
type [40], and vector barrier certificates [83] using both SOS and LP tech-
niques. However, the resulting barrier certificates often suffer from numerical
inaccuracies arising from the use of semidefinite solvers and interior point
methods [72]. Pegasus currently uses a simple rounding heuristic on the nu-
merical result and explicitly checks invariance for the resulting (exact) barrier
certificate candidates using real quantifier elimination. An example of a barrier
certificate generation technique implemented in Pegasus, and an illustration
of its numerical issues is given next.

Example 5 Consider the safety verification problem illustrated in Fig. 11 (left).
The task is to generate an invariant showing that ODE solutions starting
within the initial set Init (in green) do not enter the unsafe set Unsafe (in
red). A candidate continuous invariant p ≤ 0 (shown in blue in Fig. 11, left) is
found using numerical barrier certificate generation techniques.

The (exponential-type) barrier certificate p is generated from a polynomial
template p~a,d of degree d over variables x, y, by solving (and then substituting)
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Fig. 11: (Left) A candidate invariant generated using numerical barrier cer-
tificates (in blue) for the safety verification problem of showing that solutions
from the green initial state never reach the red unsafe states. (Right) A zoomed
out view of the safety verification problem, showing that the candidate invari-
ant is, in fact, not an invariant of the ODE because some states can exit the
invariant (highlighted with a dashed red circle).

for appropriate concrete values of the template coefficients ~a. For clarity below,
the notation p~a,d is used in steps where the generation algorithm produces
constraints on the coefficients ~a, while p always refers to the final, generated
barrier certificate. Logically, it suffices to find real values for ~a so that the
following formulas are simultaneously valid:

Init → p~a,d ≤ 0 , (4)

Unsafe → p~a,d > 0 , (5)

(p~a,d)
′ ≤ λp~a,d . (6)

Constraints (4) and (5) ensure that the generated barrier separates the
initial set from the unsafe set, e.g., in Fig. 11 (left) the green initial region is
wholly contained in the blue candidate invariant region p ≤ 0, while the red
unsafe region lies entirely outside. Constraint (6) ensures that the sub-level set
p ≤ 0 is a continuous invariant, intuitively, the vector field points “inwards”
along the boundary of p ≤ 0 (blue region in Fig. 11), so it is impossible to flow
from within p ≤ 0 to p > 0. A more general version of these constraints, and
a soundness proof, is available elsewhere [40].

Sum-of-squares (SOS) programming [53] provides a tractable way of solving
for the coefficients ~a. Suppose that Init ,Unsafe are described with polynomial
inequalities Init ≡

∧a
i=1 Ii ≥ 0, Unsafe ≡

∧b
i=1 Ui ≥ 0. Inequalities (4)–(6)

are respectively implied by the following SOS inequalities, where ε > 0 is a
small positive constant and σIi , σUi

are template SOS polynomials [53]:

− p~a,d −
a∑
i=1

σIiIi ≥ 0 , (7)

p~a,d −
b∑
i=1

σUi
Ui − ε ≥ 0 , (8)

λp~a,d − (p~a,d)
′ ≥ 0 . (9)
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Sum-of-squares solvers, such as SOSTOOLS [53], witness the inequali-
ties (7)–(9) by finding an SOS representation for their left-hand side. For
example, a set of polynomials g1, . . . , gn satisfying the polynomial identity
−p~a,d −

∑a
i=1 σIiIi =

∑n
i=1 g

2
i proves (7) because the RHS of this inequal-

ity is a sum-of-squares, which is non-negative. These polynomial identities are
found efficiently by semidefinite programming [55], which is also where numer-
ical solvers are used. In practice, Pegasus loops through a range of values for
the parameters d, λ, ε as well as the degrees of the SOS polynomials σIi , σUi

and attempts to solve these constraints for each concrete choice of parameters.

While efficient, the use of numerical solvers has its drawbacks, e.g. because
the generated coefficients ~a need not truly satisfy all the required constraints.
This is why Pegasus (and KeYmaera X) treats the generated barrier certificate
p only as a candidate invariant and performs additional arithmetical checks
to ensure that the constraints are truly met. As a cautionary example, Fig. 11
(left) rather misleadingly suggests that p ≤ 0 is an invariant within its small
plot domain. Indeed, Fig. 11 (right) is a zoomed out version of the same plot
which shows that the constraint (6) fails to hold for larger values of x, y.

Linear programming (LP) was employed as an alternative to sum-of-squares
programming by Sankaranarayanan et al. [75] to generate Lyapunov functions,
and later applied by Yang et al. [95] to similarly generate barrier certificates.
The main idea behind this approach is to employ a linear relaxation, whereby
non-negativity of a polynomial p is witnessed, subject to non-negativity of (ba-
sis) polynomials p1, p2, . . . , pk, i.e. p1 ≥ 0 ∧ p2 ≥ 0 ∧ · · · ∧ pk ≥ 0→ p ≥ 0 is re-
duced to the existence of non-negative Lagrangian multipliers λ1, λ2, . . . , λk
such that λ1p1 + λ2p2 + · · ·+ λkpk = p.

In cases when the evolution domain constraint Q is described by a con-
junction of polynomial inequalities Q ≡ q1 ≥ 0 ∧ · · · ∧ ql ≥ 0 (e.g. in the case
of hyperboxes or polyhedra), one may form all products pi = qα1i

1 · · · qαli

l up
to some maximum total degree and use them to solve the linear relaxation
for p1 ≥ 0 ∧ · · · ∧ pk ≥ 0 → p~a,d ≥ 0 using linear programming, obtaining a
polynomial which is non-negative on Q. The conditions for barrier certificates
are encoded in an obvious way.

" In using convex optimization methods to search for barrier certificates, one
is not concerned with optimizing the value of any particular objective function
(the zero function suffices); one is rather interested in finding a feasible solu-
tion to a set of constraints. For LP, it is possible to use an SMT solver which
supports the theory of linear real arithmetic (LRA, e.g., as supported by Z3) to
search for models of formulas describing the constraints to obtain instantia-
tions of the parameter variables in the template; however, in our experience,
implementations of linear programming solvers (especially employing interior
point algorithms) in Mathematica and MATLAB offer considerably better per-
formance compared to Z3 (which implements the Dual Simplex algorithm [20]).
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5 Strategies for Invariant Generation

The implementation of primitive invariant generation methods from Section 4
in a single framework is a significant undertaking in itself. The overall goal
behind Pegasus, however, is to enable these heterogeneous methods to be effec-
tively deployed and fruitfully combined into strategies for invariant generation
that are tailored to specific classes of verification problems. Different invariant
generation strategies are invoked in Pegasus, depending on the classification
of the input problem it receives from the problem classifier. In this section,
and for the evaluation, we focus on the most challenging and general class of
non-linear systems in which no further structure is known or assumed beyond
the fact that the right-hand sides of the ODEs are polynomials.

5.1 Differential Saturation

The main invariant generation strategy Pegasus uses for general non-linear
systems is based on a differential saturation procedure [61]. Briefly, the proce-
dure loops through a prescribed sequence of invariant generation methods and
successively attempts to strengthen the evolution domain constraint using in-
variants found by those methods until the desired safety condition is proved.17

Notably, this loop allows Pegasus to exploit the strengths of different invari-
ant generation methods, even if it is a priori unclear whether one is better
than the other. The precise sequencing of invariant generation methods is also
important in this strategy to avoid redundancy. Pegasus orders the methods
by computational efficiency, e.g. it first searches for first integrals, followed by
Darboux polynomials and barrier certificates. This sequencing allows slower
methods to exploit invariants that are quickly generated by earlier methods.

Example 6 The synergy between individual methods exploited by differential
saturation is illustrated in Fig. 12 for an example from our benchmarks.

Initially (leftmost plot Fig. 12a), the entire plane (in blue) is under consid-
eration and Pegasus wants to show the safety property that trajectories from
the initial states (in green) never reach the unsafe states (in red). In the sec-
ond plot (Fig. 12b), Pegasus confines its search to the region x1 > 0 using the
generated Darboux polynomial x1. In the third plot (Fig. 12c), using x1 > 0,
qualitative analysis finds the invariant x2 > 0 (whose invariance depends on
x1 > 0) which further confines the evolution domain constraint. Finally (right-
most plot Fig. 12d), Pegasus finds a barrier certificate (of polynomial degree
2) that suffices to show the safety property within the strengthened evolution
domain constraint (which, by construction, is invariant). The final invariant
region contains several sharp corners and thus cannot be directly obtained as
the sub-level set of a single polynomial barrier certificate. Instead, it incorpo-
rates a conjunction of invariants discovered earlier by other means.

17 Pegasus partitions problems into subsystems according to variable dependencies in their
differential equations [61]. For x′1 = x1, x′2 = x1 +x2, for example, Pegasus first searches for
invariants involving only x1, before searching for those involving both x1 and x2.
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Fig. 12: Invariant synthesis using the differential saturation loop in Pegasus.
The domain under consideration at each step is shaded in blue and annotated
below each plot, with the polynomial p = 3
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Remark 9 Pegasus extracts proof hints from the internal reasoning sequence
used in its differential saturation strategy, e.g., it tracks the order of construc-
tion of the invariants x1 > 0, x2 > 0, . . . from Example 6 and how they were
individually proved. These hints are useful for deductive tools like KeYmaera X
because they can be used to guide its proofs for the generated invariants in
a corresponding, step-by-step manner, with the most appropriate verification
technique for the invariant used at each step.

Given an input safety verification problem, it is a priori unknown which
of the invariant generation methods used for differential saturation would suc-
ceed; and even for those that do succeed, it is difficult to predict the precise
duration required. The overall strategy in Pegasus imposes carefully balanced
timeouts, where each method called by differential saturation attempts to:

– detect their applicability efficiently to conserve time budgets for other
methods if they are not applicable,

– keep track of intermediate results and report partial results (if applicable)
when their individual timeouts are hit,

– efficiently check when they are done.

Pegasus uses configuration parameters to adjust timeouts and method be-
havior, e.g., maximum degree of barrier certificate templates. In addition, Pe-
gasus supports configuration of the overall strategy behavior in terms of com-
bining method results, how it handles method timeouts, and how it detects
when the methods succeeded. In the current implementation, and in Section 6,
we explore the following strategy configuration options:

C1 Auto-Reduction: whether or not to filter redundant invariants when com-
bining results

C2 Heuristic Search: whether or not to apply qualitative analysis and other
heuristic search methods

C3 Budget Redistribution: strict method timeouts or redistribution of unused
time budget to later methods

C4 Subsystem Splitting: whether or not to analyze subsystems separately
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Fig. 13: Invariant synthesis using differential divide-and-conquer in Pegasus.
The domain under consideration at each step is shaded in blue and annotated
below each plot, with the polynomial p = 11
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Option C1 allows Pegasus to find invariants of lower descriptive complexity,
which may be more insightful for users and easier to prove in KeYmaera X.
Options C2–C4 allow expert users finer control over how Pegasus searches
for invariants. For example, C4 is useful when the input problem is known to
consist of many subsystems of ODEs [61] that can be tackled separately. The
trade-off between these options is qualitatively evaluated in Section 6.

5.2 Differential Divide-and-Conquer

The differential saturation strategy uses a melting pot of primitive invariant
generation methods without (directly) adding more logical or mathematical
considerations. The differential divide-and-conquer (DDC) proof rule [81] is
an example logical technique that also fits well into the Pegasus framework.

Briefly, the rule says that if p = 0 is an invariant for both the forwards ODE
~x′ = f(~x) and the backwards ODE ~x′ = −f(~x), then the state space partitions
into three invariant subspaces p < 0, p = 0, p > 0, and it suffices to consider
the invariant generation sub-problems (restricted to each subspace) separately.
All Darboux polynomials p (Section 4.4.2) meet the forwards-and-backwards
invariance criteria and can be used to partition the state space. Indeed, this
DDC strategy is already implicitly used in the invariant generation method
for rational first integrals in Section 4.4.3, which partitions the state space
using Darboux polynomials, and then generates rational first integrals on the
resulting sub-problems. Pegasus generalizes this by looking for invariants on
each sub-problem instead, i.e., by replacing steps 4 and 5 from the method
described in Section 4.4.2 as follows:

4* For each unpruned conflict cell S, define a new invariant generation sub-
problem, with the original evolution domain constraintQ restricted toQ∧S.

5* Call the differential saturation strategy (Section 5.1) to find an invariant
on all newly generated sub-problems.

Example 7 The differential divide-and-conquer strategy is illustrated in Fig. 13
for a tweaked Example 6 with larger initial set and smaller unsafe set.
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As before, initially (leftmost plot Fig 13a), the entire plane (in blue) is
under consideration and Pegasus wants to show the safety property that tra-
jectories from the initial states (in green) never reach the unsafe states (in red).
Pegasus partitions the problem into three sub-problems, shown in the subse-
quent plots, using the Darboux polynomial x1; in those plots, only the part
of the plane relevant to each sub-problem is drawn.In the third plot (Fig. 13c,
the evolution domain constraint x1 = 0 is slightly (but soundly) enlarged to
−0.2 ≤ x1 ≤ 0.2 for visibility in the illustration as it would otherwise be an
infinitesimal line. In the second (evolution domain constraint x1 < 0, Fig. 13b)
and third (evolution domain constraint x1 = 0, enlarged in Fig. 13c) plots, the
sub-problems are proved trivially because they contain no unsafe states. In the
rightmost plot (Fig. 13d, evolution domain constraint x1 > 0), Pegasus finds
a barrier certificate (in blue) that solves the sub-problem.

6 Evaluation

This section presents a qualitative evaluation of the invariant generation ca-
pabilities of Pegasus and its interaction with the ODE proving tactics of KeY-
maera X. The insights obtained from these benchmarks provide useful default
configuration options for Pegasus, e.g., those described in Section 5.

6.1 Benchmark Suite

The benchmark suite consists of 150 continuous safety verification problems,
with 90 earlier problems [84] and 60 new ones, all drawn from the liter-
ature [1,6,16,19,22,27,30,32,35,36,39,44,45,54,70,74,82,83,95,96,97]. Some
are drawn from papers that present and discuss properties of a system of
ODEs without explicitly providing initial and safe conditions; in such cases,
we design our own initial and safe sets based on the provided discussion.

The suite consists of problems involving linear, affine, multi-affine, or (non-
linear) polynomial ODEs over a range of dimensions: 71 two-dimensional sys-
tems, 30 three-dimensional systems, 35 higher-dimensional (≥4, ≤16) systems,
and 14 product systems that were formed by randomly combining pairs of two-
and three-dimensional systems, see Fig. 14 (a), (b). The problems have a range
of topological and logical structures to test the applicability of various invariant
generation methods. A summary of the topological structure of the problems is
shown in Fig. 14 (c); the sets involved are either topologically bounded or un-
bounded (or None, when there is no evolution domain constraint), and either
topologically open or closed (or neither). A summary of the logical structure of
the problems is shown in Fig. 14 (d); the formulas involved are either described
algebraically by an equation, or by an atomic inequality, or, more generally, by
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a semi-algebraic formula involving conjunctions and disjunctions of equations
and inequalities. The experiment was run on commodity hardware.18

2-dim.

71

3-dim.

30

Higher-dim.

35
Product

14

(a) Differential Equation Dimension

Linear

17

Affine

6

Multi-affine

26

Homogeneous

5

Polynomial

96

(b) Differential Equation Class

Bounded Unbounded

Topology Open Closed Neither Open Closed Neither None

Initial Set (Pre.) 15 76 13 20 16 10 -
Unsafe Set (Neg. Post.) 1 49 2 26 57 15 -
Evolution Domain 0 26 0 3 10 0 111

(c) Problem topology

Logical Structure Algebraic Atomic Inequality Semi-algebraic None

Precondition 29 44 77 -
Postcondition 5 74 71 -
Evolution Domain 1 5 33 111

(d) Problem logical structure

Fig. 14: Benchmark suite classification among 150 benchmarks

6.2 Differential Saturation Performance

We analyze the differential saturation strategy compared to each invariant
generation method in isolation, measuring the duration of invariant generation,
duration of checking the generated invariants, and the total proof duration.
We analyze the effect of exposing proof hints with the generated invariants,
and the effect of strategy configuration options C1–C4 from Section 5.

6.2.1 Differential Saturation versus Individual Generation Methods

The results comparing differential saturation against individual methods for
each benchmark problem are shown in Fig. 15. Several experimental insights

18 MacBook Pro 2019 with 2.6GHz Intel Core i7 (model 9750H) and 32GB memory
(2667MHz DDR4 SDRAM), Mathematica 12.1 and MATLAB 2019b with SOSTOOLS 3.03.
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can be drawn from these results: (i) different invariant generation methods gen-
erally solve different subsets of the problems, (ii) invariant generation almost
always dominates total proof duration although invariant checking becomes
more expensive as problem dimension increases, (iii) when multiple methods
solve a problem, qualitative analysis and first integrals are often quickest,
followed by Darboux polynomials and then barrier certificates, (iv) the differ-
ential saturation strategy effectively combines invariant generation methods;
it solves 16 additional problems (of which 7 are product systems) that no indi-
vidual method solves by itself. Differential saturation is especially effective on
product systems because each part of the product may be only solvable using
a specific method. (v) Finally, the performance of Pegasus (with default con-
figuration) has remained relatively stable compared to its earlier version [84].
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(a) 90 benchmark problems from FM 2019 conference version [84]
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(b) 60 additional benchmark problems

Fig. 15: Comparison of invariant generation methods. Each column represents
one benchmark problem and the color encodes duration (lighter is faster).
Empty columns are unsolved. Legend: the combined Differential Saturation
(DS) strategy against Qualitative Analysis (QA), First Integrals (FI), Darboux
Polynomials (DP), and Barrier Certificates (BC), on total proof duration (T),
generation duration (G), and checking duration (C). Results for the earlier
implementation [84] (with new hardware, see Footnote 18) are also shown for
comparison (DS’19). The ODE classification for each problem is annotated at
the top: homogeneous polynomial (H), polynomial (P), linear (L), affine (A),
multi-affine (M), dashes indicate same class as the enclosing labels.
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To evaluate the effectiveness of combining methods by differential satu-
ration, Fig. 16 plots the accumulated duration for solving the fastest n out
of 150 benchmark problems. The main insights are: (i) differential saturation
solves the largest number of problems per accumulated time, i.e., despite se-
quentially executing invariant generation methods, it often succeeds in trying
out the most efficient method first and fails fast when earlier methods are
unsuitable; however, qualitative analysis (in isolation) generates some invari-
ants faster when the heuristics it employs for guessing invariant candidates are
successful, (ii) cumulatively, invariant generation duration dominates invariant
checking duration (note logarithmic scaling of the time axis in Fig. 16); this
effect is especially pronounced for barrier certificates, but can also be observed
in all other methods when solving more expensive (harder) problems, (iii) first
integrals are least expensive to check when they solve problems, (iv) qualita-
tive analysis is less expensive for generation than other methods, but is most
expensive for checking because the invariants it generates often have high de-
scriptive complexity and may not have simple invariance justifications.

6.2.2 Differential Saturation Configuration Options

Next, we explore the effect of configuration options on the invariant genera-
tion and subsequent checking duration by disabling features of the differential
saturation procedure. Specifically, we executed differential saturation with:

C1��AR No Auto-Reduction, which is expected to speed up generation but
may cause redundant cuts or unnecessarily complicated invariants.

C2��HS No Heuristic Search, which is expected to produce more principled
invariants and more specific proof hints but solve fewer problems.

C3��BR No Budget Redistribution, which is expected to result in a more pre-
dictable generation duration but solve fewer problems.

C4��SS No Subsystem Splitting, which is expected to result in faster perfor-
mance on problems without clear subsystems, but solve fewer prob-
lems overall (e.g., the product problems should benefit from C4).
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(a) Invariant generation (top) and checking (bottom) duration in multiples of differential
saturation (90 benchmark problems from FM 2019 conference version [84])
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(b) Invariant generation (top) and checking (bottom) duration in multiples of differential
saturation (60 additional benchmark problems)

Fig. 17: Influence of configuration options: no Auto-Reduction (C1��AR), no
Heuristic Search (C2��HS), no Budget Redistribution (C3��BR), no Subsystem
Splitting (C4��SS), and no Proof Hints (��PH). A ! mark indicates that the default
Differential Saturation (DS) configuration failed to generate or check that
problem, while one (or more) of the other configuration options succeeded.

��PH No Proof Hints, which is expected to slow down invariant checking
but have no effect on invariant generation.

Figure 17 shows the benefits and drawbacks of each configuration option
on the suite of benchmark problems, while Fig. 18 summarizes the cumulative
effect of configuration options. Since these configuration options are tuning pa-
rameters that offer fine-grained control over differential saturation for Pegasus,
their cumulative effect over all 150 problems is small, see Fig. 18.

Except for Heuristic Search (C2), disabling features results in similar (or
slightly faster) generation duration for most problems, but at the expense of
not solving others, see Figs. 17a and 17b (top). On three particular prob-
lems, disabling features helped Pegasus to solve the problem within the given
time budget. Overall, the configuration options have little net effect on most
problems but can make a difference on select problems:

– No Proof Hints (��PH): Several problems check slightly faster without follow-
ing the proof hints, which indicates that KeYmaera X’s checking procedure
is sometimes able to find more efficient proofs than the hints. However,
there are also problems that check slightly slower and several problems
that fail to check without proof hints. Conclusion: proof hints can be ex-
tremely helpful; they should be kept wherever possible, especially since



Pegasus: Sound Continuous Invariant Generation 35

they are inexpensive to produce in Pegasus. KeYmaera X could try its
default checking procedure first and fallback to hints if the default fails.

– No Auto-Reduction (C1��AR): significant increase in proof checking dura-
tion on several examples, but decrease in generation duration on several
examples as well. Conclusion: C1 auto-reduction is useful for checking but
at the expense of generation duration; it should be provided as an optional
post-processing step for users interested in more succinct invariants.

– No Heuristic Search (C2��HS): variable severe impact (both positive and
negative) on generation duration across examples, but fails to generate
invariants for several examples. However, checking duration is generally
improved for principled invariants generated without heuristics. Notably,
two problems were successfully solved solely by C2��HS out of all other
configuration options. Conclusion: C2 should be a configurable option for
users, but should typically be enabled when the ultimate goal is to solve a
given problem and invariant generation time is not a significant constraint.

– No Budget Redistribution (C3��BR): minor impact on both generation and
checking duration, except failing to solve one problem. Conclusion: C3 is
not very impactful, but could be left enabled by default as a failsafe.

– No Subsystem Splitting (C4��SS): minor impact on both generation and
checking duration for solved problems, but solves fewer problems (mostly
product system and higher-dimensional problems). Conclusion: C4 is a
useful technique in invariant generation and should typically be enabled.
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Fig. 18: Configuration options: cumulative logarithmic time (in seconds) taken
to solve the fastest n problems (more problems solved and flatter is better)

7 Related Work

Techniques developed for qualitative simulation have been applied to prove
temporal properties of continuous systems by Shults and Kuipers [79], as well
as Loeser, Iwasaki and Fikes [46]. Zhao [99] developed a tool, MAPS, to auto-
matically identify significant features of dynamical systems, such as stability
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regions, equilibria, and limit cycles. Since our ultimate goal is sound invariant
generation, we are less interested in a full qualitative analysis of the state space.
In the verification community, discrete abstraction of hybrid systems was stud-
ied by Alur et al. [2]. The case of systems whose continuous motion is governed
by non-linear ODEs was studied in the work of Tiwari and Khanna [88,90].
Tiwari studied reachability of linear systems [87], using information from real
eigenvectors and ideas from qualitative abstraction to generate invariants. Zaki
et al. [97] were the first to apply Darboux polynomials to verification of con-
tinuous systems using discrete abstraction. Numerous works employ barrier
certificates for verification [16,40,66,83,95]. Since we implement many of the
above techniques as methods for invariant generation in Pegasus, our work
draws heavily upon ideas developed previously in the verification and hybrid
systems communities. Previous work [81] introduced a construction of exact
abstractions and applied rudimentary methods from qualitative analysis to
compute invariants; in certain ways, our present work also builds on this ex-
perience, incorporating some of the techniques as special methods in a more
general framework. The coupling between KeYmaera X and Pegasus that we
pursue is quite distinct from the use of trusted oracles in the work of Wang
et al. [92] (for the HHL prover) and, notably, provides a sound framework
for reasoning with continuous invariants that is significantly less exposed to
soundness issues in external tools.

A complete semi-algorithm for computing algebraic invariants (described
by zero sets of polynomial functions) for polynomial systems of ODEs was
developed by Ghorbal and Platzer [27]. An interesting development along very
similar lines was also recently pursued by Boreale [11], whose method makes
use of the algebraic nature of the precondition (initial set) in the verification
problem in order to speed up the algebraic invariant generation. Both of these
(semi-)algorithms involve enumeration of polynomial templates; the biggest
practical difficulty stems from the computational cost of minimizing the rank of
symbolic matrices [27], and computing the generators of real radical ideals [11],
both of which are difficult problems with the latter having few algorithms
with robust implementations currently in existence.19 In the future, we hope
to extend Pegasus with an implementation of these techniques.

8 Outlook and Challenges

The improvements in continuous invariant generation have a significant impact
on the overall proof automation capabilities of KeYmaera X and serve to
increase overall system usability and improve user experience. Better proof
automation will certainly also be useful in future applications of provably
correct runtime monitoring frameworks, such as ModelPlex [50], as well as

19 Although an incomplete invariant generation procedure could still employ inexpensive
ad-hoc methods to compute generators of real radical ideals; likewise, generators of (com-
plex) radical ideals can be used instead in a sound but incomplete algebraic invariant gen-
eration algorithm [11, §5].
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frameworks for generating verified controller executables, such as VeriPhy [10].
Some interesting directions for extending our work include implementation of
reachable set computation algorithms for all classes of problems where this is
possible. For instance, semi-algebraic reachable sets for diagonalizable classes
of linear systems with tame eigenvalues [26,42], as well as more generally [1].
The complexity of invariants obtained using these methods may not always
make them practical, but they would provide a valuable fallback when simpler
invariants cannot be obtained using our currently implemented methods.

A more pressing challenge lies in expanding the collection of safety verifi-
cation problems for continuous systems. While we have done our best to find
compelling examples from the literature, a larger corpus of problems would
allow for a more comprehensive empirical evaluation of invariant generation
strategies and could reveal interesting new insights that can suggest more
effective strategies.

Correctness of decision procedures for real arithmetic is another important
challenge. For pragmatic reasons, KeYmaera X currently uses Mathematica’s
implementation of real quantifier elimination to check validity of first-order
real arithmetic formulas. Removing this reliance by efficiently building fully
formal proofs of real arithmetic formulas within dL (e.g. through exhibiting
appropriate witnesses or using proof-producing procedures; see [63] for an
overview) is an important task for the future.

Other important topics not addressed in this article concern stability and
robustness of continuous invariants [29,33,38,41]. These notions are important
in ensuring that the generated invariants are reflective of the real world, and
are not merely by-products of mathematical idealization.

9 Conclusion

Among verification practitioners, the amount of manual effort required for for-
mal verification of hybrid systems is one of the chief criticisms leveled against
the use of deductive verification tools. Manually crafting continuous invariants
may require expertise and ingenuity, just like manually selecting support func-
tion templates for reachability tools [23], and presents a major practical hurdle
in the way of wider industrial adoption of this technology. In this article, we
describe our development of a system designed to help overcome this hurdle
by automating the discovery of continuous invariants. To our knowledge, this
work represents the first large-scale effort in combining continuous invariant
generation methods into a single invariant generation framework and mak-
ing it possible to create more powerful invariant generation strategies. The
approach we pursue is unique in its integration with a theorem prover, which
provides formal guarantees that the generated invariants are indeed correct (in
the form of dL proofs, automatically). The results we observe in our evaluation
are highly encouraging and suggest that invariant discovery can be improved
considerably, opening many exciting avenues for applications and extensions.
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23. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems. In:
G. Gopalakrishnan, S. Qadeer (eds.) CAV, LNCS, vol. 6806, pp. 379–395. Springer
(2011). doi:10.1007/978-3-642-22110-1 30

24. Fulton, N., Mitsch, S., Bohrer, R., Platzer, A.: Bellerophon: Tactical theorem proving
for hybrid systems. In: M. Ayala-Rincón, C.A. Muñoz (eds.) ITP, LNCS, vol. 10499,
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9407, pp. 382–399. Springer (2015). doi:10.1007/978-3-319-25423-4 25

93. Weber, T.: Integrating a SAT solver with an LCF-style theorem prover. Electr. Notes
Theor. Comput. Sci. 144(2), 67–78 (2006). doi:10.1016/j.entcs.2005.12.007

94. Weber, T.: SMT solvers: new oracles for the HOL theorem prover. STTT 13(5), 419–429
(2011). doi:10.1007/s10009-011-0188-8

95. Yang, Z., Huang, C., Chen, X., Lin, W., Liu, Z.: A linear programming relaxation based
approach for generating barrier certificates of hybrid systems. In: J.S. Fitzgerald, C.L.
Heitmeyer, S. Gnesi, A. Philippou (eds.) FM, LNCS, vol. 9995, pp. 721–738 (2016).
doi:10.1007/978-3-319-48989-6 44

96. Yang, Z., Wu, M., Lin, W.: An efficient framework for barrier certificate generation of
uncertain nonlinear hybrid systems. Nonlinear Analysis: Hybrid Systems 36, 100837
(2020). doi:10.1016/j.nahs.2019.100837

97. Zaki, M.H., Denman, W., Tahar, S., Bois, G.: Integrating abstraction techniques for
formal verification of analog designs. J. Aeros. Comp. Inf. Com. 6(5), 373–392 (2009).
doi:10.2514/1.44289

98. Zhang, X.: Integrability of Dynamical Systems: Algebra and Analysis, Developments in
Mathematics, vol. 47. Springer. doi:10.1007/978-981-10-4226-3

99. Zhao, F.: Extracting and representing qualitative behaviors of complex systems in phase
space. Artif. Intell. 69(1-2), 51–92 (1994). doi:10.1016/0004-3702(94)90078-7

https://doi.org/10.1007/978-3-030-30942-8_10
https://doi.org/10.1145/1993886.1993935
https://doi.org/10.1007/3-540-36580-X_37
https://doi.org/10.1007/s10703-007-0044-3
https://doi.org/10.1007/978-3-540-78929-1_58
https://doi.org/10.1007/3-540-45873-5_36
https://doi.org/10.1007/3-540-45873-5_36
https://doi.org/10.1007/978-3-540-24743-2_40
https://doi.org/10.1007/978-3-540-24743-2_40
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1016/j.entcs.2005.12.007
https://doi.org/10.1007/s10009-011-0188-8
https://doi.org/10.1007/978-3-319-48989-6_44
https://doi.org/10.1016/j.nahs.2019.100837
https://doi.org/10.2514/1.44289
https://doi.org/10.1007/978-981-10-4226-3
https://doi.org/10.1016/0004-3702(94)90078-7

	Introduction
	Preliminaries
	Sound Invariant Checking and Generation
	Invariant Generation Methods in Pegasus
	Strategies for Invariant Generation
	Evaluation
	Related Work
	Outlook and Challenges
	Conclusion

