
Parallel Composition and Modular Verification
of Computer Controlled Systems in Differential

Dynamic Logic‹

Simon Lunel1,2, Stefan Mitsch3, Benoit Boyer1, and Jean-Pierre Talpin2

1 Mitsubishi Electric R&D Centre Europe, 1 allée de Beaulieu, CS 10806, 35708
Rennes CEDEX 7, FRANCE b.boyer@fr.merce.mee.com

2 Inria, Centre de recherche Rennes - Bretagne - Atlantique, Campus universitaire de
Beaulieu, 35042 Rennes Cedex, FRANCE jean-pierre.talpin@inria.fr

3 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
smitsch@cs.cmu.edu

Abstract. Computer-Controlled Systems (CCS) are a subclass of hy-
brid systems where the periodic relation of control components to time
is paramount. Since they additionally are at the heart of many safety-
critical devices, it is of primary importance to correctly model such sys-
tems and to ensure they function correctly according to safety require-
ments. Differential dynamic logic dL is a powerful logic to model hybrid
systems and to prove their correctness. We contribute a component-based
modeling and reasoning framework to dL that separates models into
components with timing guarantees, such as reactivity of controllers and
controllability of continuous dynamics. Components operate in parallel,
with coarse-grained interleaving, periodic execution and communication.
We present techniques to automate system safety proofs from isolated,
modular, and possibly mechanized proofs of component properties pa-
rameterized with timing characteristics.

1 Introduction

A computer-controlled system (CCS) is a hybrid system with discrete hardware-
software components that control a specific physical phenomenon, e.g. the water
level of a tank in a water-recycling plant. CCSs are widely used in industry
to monitor time-critical and safety-critical processes. While CCS defines a large
class of hybrid systems, systems mixing physical phenomena and natural discrete
interactions (e.g. a bouncing-ball) are neither CCSs nor the focus of this work,
although most could easily be given verification models in dL. Tools to model,
verify, and design CCSs need to capture mixed discrete and continuous dynamics,
as well as mixed logical, discretized real-time and continuous time in, resp.,
computer programs, electronics, and physics models.

‹ This material is based upon work supported by the United States Air Force and
DARPA under Contract No. FA8750-18-C-0092.

CCSs are difficult to model since they subsume the problem of designing
a software controller and its real-timed hardware. Our aim is to develop a
component-based approach to engineer such systems in a modular manner while
accounting for time domain boundaries across components. In component-based
design, a system is constructed from smaller elements that are modeled and in-
dividually verified, then assembled and checked for consistency to form larger
components and subsystems. The CCS components typically execute in parallel,
and concurrency must be accounted for in the envisioned verification framework.

In this paper, we contribute a component-based verification technique that
aims at the definition of a bottom-up and modular verification methodology
through a correct-by-construction system design methodology, in which compo-
nent contracts formalize the domain, timing, and invariants of components. The
proof of a system model is built by assembling the contracts of its components
through formally defined composition mechanisms. Contracts-based approaches
have been successfully implemented for several paradigms such as programming
languages [16] or automata [2], because contracts are very efficient to make proofs
easier scalable. Following the component-based design widely used for CCS, con-
tracts provide a natural way to get modularity and abstraction in proofs.

To meet the time-criticality requirements of CCSs, we start from earlier com-
positionality results in dL [7] to elaborate a timed model of parallel composition
as the foundation of our modeling and verification framework. In Sec. 3, we de-
tail modeling and verification in our framework on a simple system where only
one reactive controller monitors a plant. In Sec. 4, we generalize it to systems
where multiple controllers monitor multiple parallel plants; we show how to com-
pose: multiple reactive controllers into a component called Multi-Choice Reactive
Controllers (MRCtrl, see Sec. 4.1); multiple controllable plants together (see
Sec. 4.2); MRCtrl with controllable plants to form Multi Computer-Controlled
Systems (MCCS, see Sec. 4.3); and finally how MCCS compose (see Sec. 4.4).

2 Differential Dynamic Logic

This section briefly recalls differential dynamic logic (dL [13]) and its proof
system, which is implemented in the theorem prover KeYmaera X [3].

In dL, hybrid programs are used as a programming language for expressing
the combined discrete and continuous dynamics of hybrid systems (the programs
operate over mathematical reals). The syntax and semantics of hybrid programs
is summarized in Tab. 1. The set of reachable states from state ν by hybrid
program α is noted ρνpαq, and vxwν denotes the value of x at state ν. Hybrid
programs include discrete assignment x :“ θ and tests ?φ, as well as combinators
for non-deterministic choice (α Y β), sequential composition (α;β), and non-
deterministic repetition (α˚). The notation tx1 “ θ & Hu denotes an ordinary
differential equation (ODE) system (derivatives with respect to time) of the
form x11 “ θ1, . . . , x1n “ θn within evolution domain H. For example, the ODE
tt1 “ 1 & t ě 0u describes that variable t evolves with constant slope 1, where
t ě 0 discards any negative values. Formulas of dL formalize properties, Def. 1.

Table 1. Syntax and semantics of hybrid programs

Program Semantics

?φ Test whether formula φ is true, abort if false: ρνp?ϕq “ tν | ν |ù ϕu
x :“ θ Assign value of term θ to variable x:

ρνpx :“ θq “ tω | ω “ ν except that vxwω “ vθwνu
tx1 “ θ & Hu Evolve ODE x1 “ θ for any time tě0

with evolution domain constraint H true throughout:
ρνptx

1
“ θ & Huq “ tfprq | fp0q “ ν and for any duration r ě 0

fprq |ù x1 “ θ and fprq |ù Hu
α;β Run α followed by β on resulting state(s): ρνpα;βq “

Ť

ωPρνpαq
ρωpβq

αY β Run either α or β non-deterministically: ρνpαY βq “ ρνpαq Y ρνpβq
α˚ Repeat α n times, for any n P N:

ρpα˚q “
Ť

nPN ρpα
n
qwithα0

“?J and αn`1
“ αn;α

Definition 1 (dL formulas). The formulas φ, ψ of dL relevant in this paper
consist of the following operators:

φ, ψ ::“ φ^ ψ | φ_ ψ | φÑ ψ | φ | θ1 „ θ2| @x φ | Dx φ | rαsφ

Connectives φ^ ψ, φ_ ψ, φÑ ψ, φ, @x φ, and Dx φ are according to classical
first-order logic. Formula θ1 „ θ2 are any comparison operator „ Ptď,ă,“,‰
,ą,ěu and θi are real-valued terms in operators t`,´, ¨, {u. The modal operator
rαsφ is true iff φ holds in all states reachable by program α.

The notion of free and bound variables is defined in the static semantics
of dL [13] and useful to characterize the interaction of a program α with its
context. It is computed from the syntactic structure of programs: the bound
variables BVpαq can be updated by assignments (e.g. x :“ 10) or ODEs (e.g.
x1 “ 3) in α, whereas free variables FVpαq are those that the program depends
on. For example, in program α ” pv :“ a Y v :“ 2q; tx1 “ v & x ď 5u the free
variables are FVpαq “ ta, xu (the variable v is not free, because it is bound on
all paths of α and so the result of α does not depend on the initial value of v;
even though also modified, variable x is free because the result of α depends on
the initial value of x) and the bound variables are BVpαq “ tv, xu (variable a is
not bound because it is not modified anywhere in the program). We use Vpαq
to denote BVpαq Y FVpαq.

In [7], a component model Ci “ pdisci Y contiq
˚

is evaluated as the non-
deterministic interleaving of its discrete specifications disci and ODE conti “
tx1i “ θi & Hiu. For i P t1, 2u, the parallel composition of C1 and C2 builds
a component of the same structure, i.e. the dicrete parts disc1 and disc2 are
non-deterministically interleaved within the evolution of the ODE obtained from
the mathematical composition of cont1 and cont2. In dL, it is defined by

C1 b C2 “ pdisc1 Y disc2 Y tx
1
1 “ θ1, x

1
2 “ θ2 & H1 ^H2uq

˚
(1)

The logic dL further enjoys a proof calculus [12,13,14] based on uniform
substitution from axioms. Its base axioms are those of a classical first-order
sequent calculus, augmented with syntactical deconstruction of hybrid programs
α for goals of the form rαsφ and for iteration and ODEs [15].

3 Computer-Controlled Systems

We present a component-based approach to model and verify Computer Con-
trolled Systems (CCS) based on the parallel composition pattern proposed in [7].
We construct the proof of a CCS from the isolated sub-proofs of its components
by syntactically decomposing the CCS using the axioms of dL, so that the theo-
rems presented here can be implemented as tactics in the theorem prover KeY-
maera X. This enables automation to reduce the proof complexity of analyzing
a CCS to that of modularly analyzing its components.

In this section, we introduce the necessary concepts to adapt the framework
of [7] to systematically model CCSs modularly. We achieve modularity by limit-
ing the ways in which the free and bound variables of different components may
overlap, and by taking into account the timing constraints of CCSs. The idea is
to analyze the controllability of the plant, i.e. the period of time it can evolve
safely without intervention of a controller, and the reactivity of the controller, i.e.
the execution period of the controller. These concepts satisfy the associativity
property of parallel composition and the ability to retain contracts from [7].

3.1 Modeling CCS

A CCS is classically composed of a controller and a plant. The controller mea-
sures the state of the plant through sensing and regulates the behavior of the
plant through actuation. For example, the controller in the water tank regulates
the water level by opening or closing a faucet. The key trait of a CCS is the
periodic execution of the controller to regulate the plant. We associate periodic
values δ and ∆ with the controller and the plant, respectively: Control reactivity
δ models the period in which control is guaranteed to happen. Plant controlla-
bility ∆ models how long a plant can evolve safely without control intervention.

Time. To make timed reasoning available to any component, we use the ODE
Timeptq

.
“ tt1 “ 1 & t ě 0u. The hence defined global variable t represents

time passing with constant slope 1, initialized to 0.

Controller. The functional behavior of a controller is provided as a discrete
program ctrl and the associated reactivity δ. The controller acts at least every δ
units of time, see Def. 2.

Definition 2 (Reactive Controller). A reactive controller RCtrlpctrl, δq
with reactivity boundary δ and fresh timestamp τ has the program shape

RCtrlpctrl, δq
.
“ p?t ď τ ` δ; ctrl; τ :“ tq

Execution periodicity is ensured by a fresh variable τ time stamping (τ :“ t)
the last execution of ctrl. The prefixing guard ?t ď τ`δ forces ctrl to be executed
within δ time since its last execution τ . This pattern models control frequency,
since all runs not satisfying a test are aborted, see Sec. 2.

Example 1 (Water-level Controller). We consider the water level controller in a
water plant4. When the level reaches a maximum (resp. minimum) threshold, we
close the inlet faucet fin (resp. we open the inlet faucet). The resulting controller
has the program shape RCtrlpwlctrl, δwlctrlq i.e. p?t ď τ ` δwlctrl; wlctrl; τ :“ tq,
where δwlctrl “ 0.05s ensures a control frequency of at least 20Hz. The controller:

wlctrl
.
“ wlm :“wl;

`

p?wlm ě 6.5; fin :“ 0q Y p?wlm ď 3.5; fin :“ 1q
˘

measures the water level using wlm :“wl and then sets fin depending on whether
the water level exceeds the minimum threshold 3.5 or the maximum threshold
6.5. This controller makes implicit assumptions on the maximum inflow and
outflow of the water tank through the relation between its reactivity δwlctrl and
the thresholds on wlm.

Plant. The functional behavior of the plant is provided as an ODE system
tx1 “ θ & Hu with t R Vpx1 “ θq and the controllability bound ∆. Controllability
is implemented by adding the formula t ď ∆ to the evolution domain, see Def. 3.

Definition 3 (Controllable Plant). A controllable plant CPlantptx1 “ θ &
Hu, ∆q with controllability bound ∆ is a differential equation system of the shape
CPlantptx1 “ θ & Hu, ∆q

.
“ tx1 “ θ & H^t ď ∆u, combined with time defined

by Timeptq.

Example 2 (Water-level). The evolution of the water level wl in the tank is
determined by the difference between the inlet flow fin and the outlet flow fout .
The water level is always non-negative (H

.
“ wl ě 0), and so the controllable

water level is the ODE with controllability ∆wl “ 0.2s:

twl1 “ fin ´ fout , t1 “ 1 & t ě 0^ wl ě 0^ t ď ∆wlu

We compose the plant with the controller to a full system with repeated
interaction between the plant and the controller.

Full system. The full system is obtained by applying parallel composition as
defined in (1) to the plant and the controller, but with one important change:
the formula t ď ∆ is replaced by the formula t ď τ ` δ to ensure that the plant
suspends when the controller is expected to run, see Def. 4.

Definition 4 (Computer-Controlled System). A computer-controlled sys-
tem CCS is a parallel composition of a reactive controller RCtrlpctrl, δq and
a controllable plant CPlantptx1 “ θ & Hu, ∆q with δ ď ∆ and the resulting
hybrid program shape, assuming Timeptq and, initially, τ “ t:

CCS
.
“

`

tx1 “ θ & H ^ t ď τ ` δ
loooomoooon

δď∆

u YRCtrlpctrl, δq
˘˚

4 Adapted from http://symbolaris.com/info/KeYmaera-guide.html#watertank

Execution between the controller and the plant switches based on the variable
τ . At the beginning of each loop iteration, we have t ě τ . The difference t ´ τ
grows according to the evolution of time until the point t´ τ “ δ. At the latest,
then, the controller must act before the plant can continue. Safety requires δ ď ∆,
i.e. the reactivity of the controller is at most the controllability of the plant.
Otherwise, there may be runs of the whole system where the controller executes
too late for the plant to stay safe.

Example 3 (Water-tank). We compose the water level with its controller to ob-
tain the water tank system with the following behavior:

ˆ

twl1 “ fin ´ fout , t1 “ 1 & t ě 0^ wl ě 0^ t ď τ ` δwlctrlu

Y p?t ď τ ` δwlctrl; wlctrl; τ :“ tq

˙˚

The composition is possible because the reactivity of the controller (δwlctrl “

0.05s) does not exceed the controllability of the plant (∆wl “ 0.2s).

3.2 Modular Verification of a CCS

Based on the modular modeling capabilities offered by the concepts of Sec. 3.1
and through [7, Thm. 2], we provide techniques to verify the safety of a complete
system from safety proofs of its components (which can be reactive controllers,
controllable plants, or subsystems built from those following the computer-
controlled systems composition). The proofs of our theorems are syntactic using
the axioms of dL (as opposed to the semantic proofs in [7]) and are, thus, im-
plementable as tactics in the theorem prover KeYmaera X [3].

Environment. A description of the global system environment E characterizing
constants (either as exact values or through their relevant characteristics) is
necessary. We require that FVpEq X BVpαq “ H for all system components α
to ensure that the environment variables are constants: these constants are not
controlled, but can be read by all components. (e.g. , gravity constant g).

Example 4 (Water tank environment). In the water tank example, the environ-
ment Ewt

.
“ fout “ 0.75 ^ δwlctrl “ 0.05 ^ ∆wl “ 0.2 is the outlet flow fout of

0.75, plant controllability ∆wl of 0.2s, and controller reactivity δwlctrl of 0.05s.

Contracts. A designer specifies the assumptions Actrl and guarantees Gctrl of
the controller as well as the assumption Aplant and guarantees Gplant of the plant.
In order to be compositional, the guarantees of the controller must not refer to
outputs of the plant and inversely (FVpGctrlqXBVpplantq “ H and FVpGplantqX

BVpctrlq “ H). A component α satisfies its contract pAα, Gαq in environment
E under starting conditions Initα if formula pE ^ Aα ^ Initαq Ñ rα˚sGα is
valid (e.g. , proved using the dL proof calculus). Unlike the environment E ,
the initial conditions Initα and assumptions Aα of a component α can mention
assumptions about the state of other components.

Example 5 (Water tank contracts). The water-level controller assumes that the
actual water level in the tank ranges over the interval r3, 7s (as guaranteed by
the tank), and itself guarantees to drain the tank when the measured water
level approaches the upper threshold 6.5, and fill the tank when below the lower
threshold 3.5. The tank contract assumes that the tank is instructed correctly
to drain or fill, and then guarantees to keep the water level in the limits r3, 7s.

$

’

’

&

’

’

%

Awlctrl : Gwl

Gwlctrl : wlm ď 3.5 Ñ fin “ 1
6.5 ď wlmÑ fin “ 0
p3.5 ď wlm ď 6.5q Ñ pfin “ 0_ fin “ 1q

"

Awl : Gwlctrl

Gwl : 3 ď wl ď 7

These contracts assume that the measured water level is correct, i.e. it cor-
responds to the true water level in the tank, so Initctrl ” wl “ wlm and also
Initplant ” wl “ wlm. As we compose the controller and plant components to a
full system, where the plant evolves for some time between controller runs (and
thus measurements), we will need to find a condition that describes the relation-
ship between the true water level evolution and the measured water level.

Full system. The contract pActrl ^Aplant, Gctrl ^Gplantq for the full system is
the conjunction of the assumptions and of the guarantees.

Composition invariant. In the full system, the controller and the plant will
run in a quasi-parallel fashion, so time passes between controller runs and thus
in turn between measurements of the true plant values. With a composition
invariant Jcmp we describe the relationship between the true values of the plant
and the measured values in the controller. The formula Jcmp is a composition
invariant for two components α and β if the formulas Jcmp Ñ rαsJcmp and
Jcmp Ñ rβsJcmp are valid (components maintain the composition invariant),
and Initα ^ Initβ Ñ Jcmp is valid (composition invariant is initially satisfied).

Each component is responsible for satisfying its own guarantees and can
assume that others will satisfy its assumptions. We also require that other com-
ponents do not interfere with a component’s guarantees. This notion of non-
interference ensures that contracts focus on the behavior of their own component
(but nothing else), as intuitively expected.

Definition 5 (Non-interfering Controller and Plant). A controller ctrl
and plant tx1 “ θ&Hu are non-interfering if they do not influence the guarantees
of the respective other component, so FVpGctrlq X BVptx1 “ θ&Huq “ H and
FVpGplantq X BVpctrlq “ H, and if they do not share the same outputs, so
BVpctrlq X BVptx1 “ θ&Huq “ H.

For composition it is important that contracts are compatible, meaning that
they mutually satisfy their assumptions from their respective guarantees.

Definition 6 (Compatible Contracts). Contracts pAα, Gαq and pAβ , Gβq of
components α and β with composition invariant Jcmp are compatible if the for-
mulas Aα Ñ rβspGβ ^ Jcmp Ñ Aαq and Aβ Ñ rαspGα ^ Jcmp Ñ Aβq are valid.

Theorem 1 (Composition of Controller and Plant). Let RCtrlpctrl, δq
be a reactive controller satisfying its contract pActrl, Gctrlq and CPlantptx1 “
θ & Hu, ∆q be a controllable plant satisfying its contract pAplant, Gplantq. Fur-
ther let the components RCtrlpctrl, δq and CPlantptx1 “ θ & Hu, ∆q be non-
interfering, the contracts pActrl, Gctrlq and pAplant, Gplantq be compatible, and
Jcmp be a composition invariant. Then, the parallel composition CCS is safe,
i.e., pE ^Actrl ^ Initctrl ^Aplant ^ Initplantq Ñ rCCSspGctrl ^Gplantq is valid.

Proof. Adapts [7, Thm. 2] to a syntactic dL proof with loop invariant Actrl ^

Gctrl ^ Aplant ^ Gplant ^ Jcmp with differential refinement to replace δ with ∆,
see long version [8] for details. [\

Example 6 (Water-tank contract). The controller and the water-level are non-
interfering, their contracts compatible, and the controller is fast enough to keep
the plant safe (δwlctrl ď ∆wl). We apply Thm. 1 with the composition invariant
Jcmp

.
“ wl “ pfin´ foutqpt´τq`wlm to obtain that the composition is safe, i.e.

formula E ^ Initwl ^ Initwlctrl ^Awl ^Awlctrl Ñ rWater-tankspGwl ^Gwlctrlq

is valid. The composition invariant says how the true value wl deviates from the
last measured value wlm according to the flow fin ´ fout as time t´ τ passes.

Outlook We adapted parallel composition of [7] to model and prove computer-
controlled systems composed of two components, a reactive controller and a con-
trollable plant. Next, we extend this concept to arbitrarily nested combinations
of controllers and plants with a systematic integration of timed constraints.

4 Parallel Composition

We want to extend the integration of temporal considerations for every com-
ponent in a timed framework. The previous section shows the importance of
temporal considerations in CCS. Industrial systems combine CCS in parallel
and it is necessary to have a framework to handle temporal properties.

In order to reason about parallel execution of control software sharing compu-
tation resources, models of different costs (controllability, performance, latency,
etc) become important. For example, when two programs execute quasi-parallel
on a single CPU core, their computation resources are shared and execution
may mutually preempt. As a result, the worst-case execution times of the pro-
grams sum up to the total worst-case execution time of the composed system.
This requires designing plants with sufficiently longer controllability periods, and
controllers that react further in advance.

Based on the parallel composition pattern in [7] and the concepts of reactive
controller and controllable plant introduced above, here we present parallel com-
positions of component hierarchies, including composition of multiple reactive
controllers, multiple controllable plants, and mixed compositions. We retain the
algebraic properties of [7], commutativity and associativity, and present theorems
guaranteeing that the conjunction of contracts is preserved through composition.

Controllable plants are already hierarchically compositional per Def. 3. The
particular structure to enclose control programs with temporal guards in reac-
tive controllers, however, makes it necessary to extend the definition of reactive
controller (Def. 2) to a multi-choice reactive controller that combines choices
of each of its constituting atomic reactive controllers non-deterministically. We
associate a fresh variable τi with each atomic reactive controller ctrli. It is used
to specify the time stamp of the controller in an execution cycle.

Definition 7 (Multi-Choice Reactive Controller). A multi-choice reactive
controller MRCtrl

`
Ť

1ďiďn ctrli, δ
˘

with n control choices and overall reactivity
bound δ has the program shape

MRCtrl

˜

ď

1ďiďn

ctrli, δ

¸

.
“

˜

ď

1ďiďn

RCtrlpctrli, δq

¸

.

The parallel composition follows cases for purely discrete components, purely
continuous components or a mix of both, which we detail in the subsections
below. We illustrate each case with an example with two connected water-tanks,
one where the inlet flow of one is the outlet flow of the other, with respective
reactive controllers to ensure that they remain within a pre-defined range. The
first controller actuates on the inlet flow of the first tank, whereas the second
actuates on the outlet valve of the second tank.

4.1 Parallel Composition of Multi-Choice Reactive Controllers

We refine the parallel composition operator for multi-choice reactive controllers
to consider the controllability and reactivity bounds ∆ and δ of its components.
By definition, the controllability bound of composed components α and β is
always minp∆α, ∆βq of their individual bounds ∆α, ∆β . The reactivity bound
depends on the physical architecture that composes α and β. It is overapproxi-
mated by a max+ cost function C : R2 Ñ R such that Cpδα, δβq “ maxpδα, δβq
if α and β have controllers running independently (e.g. two ECUs or PLCs),
or else δα ` δβ , if both controllers execute on one resource. Notice that such a
definition is associative and commutative with respect to composition.

Modeling. We first define the parallel composition of discrete components, which
are multi-choice reactive controllers MRCtrlp

Ť

1ďiďn ctrli, δq. To the definition
in [7], we add the cost model C to combine individual bounds δ as that of the com-
posed system. The parallel composition is the non-deterministic choice between
all control choices in multi-choice reactive controllers MRCtrlp

Ť

1ďiďnα
αi, δαq

and MRCtrlp
Ť

1ďjďnβ
βj , δβq, but with the individual δα and δβ replaced by

the cost model Cpδα, δβq. Interleaving of controller executions occurs through
embedding the non-deterministic choice in the loop of a full system, see Thm. 2.

Definition 8 (Parallel Composition of Multi-Choice Controllers). Let
α and β be multi-choice reactive controllers ofshapes MRCtrlp

Ť

1ďiďnα
αi, δαq

and MRCtrlp
Ť

1ďjďnβ
βj , δβq. Their parallel composition α b β has shape:

MRCtrl

¨

˝

ď

1ďiďnα

αi Y
ď

1ďjďnβ

βj , Cpδα, δβq

˛

‚.

Example 7 (Composition of two water-level controllers). We compose two reac-
tive water-level controllers wlctrl1 (reactivity δwlctrl1 “ 0.05s) and wlctrl2 (reac-
tivity δwlctrl2 “ 0.02s) on one CPU. The multi-choice reactive controller resulting
from cost model Cpδwlctrl1 , δwlctrl2q “ δwlctrl1 ` δwlctrl2 is:

MRCtrl pwlctrl1 Y wlctrl2, δwlctrl1 ` δwlctrl2 q

“ RCtrlpwlctrl1, δwlctrl1 ` δwlctrl2q YRCtrlpwlctrl2, δwlctrl1 ` δwlctrl2q

“ p?t ď τ1 ` δwlctrl1 ` δwlctrl2 ; wlctrl1; τ1 :“ tq
Yp?t ď τ2 ` δwlctrl1 ` δwlctrl2 ; wlctrl2; τ2 :“ tq

where wlctrl1 follows Example 1 and
wlctrl2

.
“ wlm2 :“wl;

`

p?wlm2 ě 9.7; fout2 :“ 1q Y p?wlm2 ď 2.3; fout2 :“ 0q.

Algebraic properties. We retain commutativity and associativity of the parallel
composition operator defined in [7]. Commutativity implies that we are able
to decompose a system and associativity ensures that we can build it step-by-
step. The proof, detailed in the long version [8], relies on the commutativity and
associativity of both non-deterministic choice and cost model C.

Modular verification. We adapt [7, Thm. 2] by adding the condition that the
individual reactivity bound δα of a controller α must neither occur in its func-
tional behavior

Ť

1ďiďnα
αi nor in its guarantees. Failing to do so may prevent

to re-use a component proof.

Definition 9 (Non-interfering Controllers). Two controllers α and β are
non-interfering if they do not modify the same variables, i.e. the outputs are
separated (BVpαq XBVpβq “ H), and if they do not influence the guarantees of
the other component (FVpGαq X BVpαq “ H and FVpGβq X BVpβq “ H).

Theorem 2 (Composition of Multi-Choice Reactive Controllers). Let
α and β be non-interfering multi-choice reactive controllers with program shape
MRCtrlp

Ť

1ďiďnα
αi, δαq and MRCtrlp

Ť

1ďjďnβ
βj , δβq satisfying their compat-

ible contracts pAα, Gαq and pAβ , Gβq and let Jcmp be a composition invariant.
Then the parallel composition α b β is safe, i.e., pE^Aα^Initα^Aβ^Initβq Ñ
rpα b βq

˚
spGα ^Gβq is valid.

Proof. Similar to Thm. 1 using the additional condition that δα (resp. δβ) does
not appear in the functional behavior

Ť

1ďiďnα
αi (resp.

Ť

1ďjďnβ
βj) of the

controller, nor in its guarantee Gα (resp. Gβ). See long version [8]. [\

Non-interference of controllers and compatibility of contracts are standard
requirements when modeling a system compositionally and safely.

Example 8 (Safe composition of two water-level controllers). The contract of
the first reactive controller wlctrl1 is the same as in Example 5 with necessary
changes. The contract for the second controller is :

$

’

’

&

’

’

%

Awlctrl2 : J
Gwlctrl2 : wlm2 ď 2.3 Ñ fout2 “ 0

9.7 ď wlm2 Ñ fout2 “ 1
p2.3 ď wlm2 ď 9.7q Ñ pfout2 “ 0_ fout2 “ 1q

The controller actuates the outlet valve of the system (fout2). It is open if the
real water-level of the second tank is too close to the maximum threshold (10
here) to drain the tank and closed in order to fill the tank if too close to the
minimum threshold (2). The two controllers are non-interfering, the contracts
are compatible and they both satisfy their contracts (verified using the proof
calculus of dL). Hence, Thm. 2 guarantees that the parallel composition is safe,
i.e. that the contract pAwlctrl1 ^Awlctrl2 , Gwlctrl1 ^Gwlctrl2q is valid.

4.2 Parallel Composition of Controllable Plants

When composing two continuous components in parallel, the controllability of
the resulting system is the minimum of their individual controllability bounds
(which is obvious from the semantics of ODEs listed in Tab. 1: safety proofs hold
for any non-negative duration, so also for smaller durations).

Modeling Non-interference of controllable plants ensures that their combined
continuous dynamics stays true to the isolated dynamics, and that they do not
interfere with the guarantees of the respective other component.

Definition 10 (Non-interfering Plants). Two controllable plants α and β
with CPlantptx1 “ θ & Hu, ∆αq and CPlantpty1 “ η & Qu, ∆βq and contracts
pAα, Gαq and pAβ , Gβq are non-interfering if BVptx1 “ θ & Huq X FVpηq “ H
and BVpty1 “ η & QuqXFVpθq “ H, and if BVptx1 “ θ & HuqXFVpGβq “ H
and BVpty1 “ η & Quq X FVpGαq “ H.

Note that non-interference implies BVptx1 “ θ & HuqXBVpty1 “ η & Quq “ H.

Definition 11 (Parallel Composition of Controllable Plants). Let α and
β be non-interfering controllable plants CPlantptx1 “ θ & Hu, ∆αq and
CPlantpty1 “ η & Qu, ∆βq. The parallel composition α b β is an ODE
system of the shape CPlantptx1 “ θ, y1 “ η & H ^Qu,minp∆α, ∆βqq .

Example 9 (Composition of two water-level). Here, we compose the water level
dynamics of two tanks (twl11 “ fin ´ fout1, t

1 “ 1 & wl1 ě 0 ^ t ď ∆wl1u and
twl12 “ fout1 ´ fout2, t

1 “ 1 & wl2 ě 0 ^∆wl2u) to obtain a controllable plant
modeling the evolution of both water levels simultaneously. Their respective
controllability bounds are ∆wl1 “ 0.2s and ∆wl2 “ 0.15s. The controllable plant
resulting from the parallel composition expands to twl11 “ fin ´ fout1, wl

1
2 “

fout1 ´ fout2, t
1 “ 1 & wl1 ě 0^ wl2 ě 0^ t ď minp∆wl1 , ∆wl2qu.

Algebraic properties. Commutativity and associativity of the parallel composi-
tion pattern defined in [7] are preserved. The proof, detailed in the long ver-
sion [8], follows from commutativity and associativity of “,” in ODEs and of
operator min.

Modular verification. The conjunction of contracts is retained for parallel com-
position of continuous components, similar to parallel composition of controllers.

Theorem 3 (Composition of Controllable Plants). Let α and β be two
non-interfering controllable plants CPlantptx1 “ θ & Hu, ∆αq, CPlantpty1 “
η & Qu, ∆βq satisfying their respective compatible contracts pAα, Gαq, pAβ , Gβq,
and let Jcmp be a composition invariant. Then the parallel composition α b β
is safe, i.e., pE ^Aα ^ Initα ^Aβ ^ Initβq Ñ rpα b βq

˚
spGα ^Gβq is valid.

Proof. Similar to Thm. 1 after separating the non-interfering plants using the
inverse direction of the differential ghost axiom [13], see long version [8]. [\

Example 10 (Safe composition of two water-level). The contract for the first
water level is the same as in Example 5 with necessary changes. We guarantee
that the water level of the second tank is within 2 and 10, provided that there
is a controller which reacts appropriately. Its contract is:

"

Awl2 : Gwlctrl2

Gwl2 : 2 ď wl2 ď 10

We apply Thm. 3 to guarantee that the controllable plant modeling the evolution
of water levels in distinct connected tanks is safe, i.e. it satisfies the contract
pAwl1 ^Awl2 , Gwl1 ^Gwl2q.

4.3 Parallel Composition of Multi-Choice Reactive Controllers and
Controllable Plants

We present the composition of a multi-choice reactive controller with a control-
lable plant that may result from the composition of several atomic controllable
plants. We lift the definition of CCS (Sec. 3) to a general integration of control-
lability and reactivity.

Modeling We define a multi computer-controlled system MCCS as the parallel
composition of a multi-choice reactive controller with a controllable plant.

Definition 12 (Multi Computer-Controlled System). A multi computer-
controlled system is a parallel composition of a multi-choice reactive controller

MRCtrlp
Ť

1ďiďn ctrli, δq and a controllable plant CPlantpty1 “ θ & Hu, ∆q.
The parallel composition MCCS has the hybrid program shape:

ˆ

ty1 “ θ, t1 “ 1 & H ^
ľ

1ďiďn

t ď τi ` δ

loooooooomoooooooon

δď∆

u YMRCtrl
`
Ť

1ďiďn ctrli, δ
˘

˙˚

The formula
Ź

1ďiďn t ď τi` δ is the conjunction of the reactivity bounds of
all the n sub-controllers ctrli.

Modular verification Cor. 1 lifts Thm. 1 (for a single controller and a single
plant) to multi computer-controlled systems of possibly many controllers with a
controllable plant representing multiple simultaneous evolutions.

Corollary 1 (Composition of Multi-Choice Reactive Controller and
Controllable Plant). Let MRCtrlp

Ť

1ďiďn ctrli, δq be a multi-choice reactive
controller non-interfering with the controllable plant CPlantptx1 “ θ & Hu, ∆q
satisfying their compatible contracts pActrl, Gctrlq and pAplant, Gplantq. Further
let Jcmp be a composition invariant. Then, MCCS is safe, i.e., pE ^ Actrl ^

Initctrl ^Aplant ^ Initplantq Ñ rMCCSspGctrl ^Gplantq is valid.

Proof. Similar to the proof of Thm. 1, but with multi-choice reactive controller
instead of a single reactive controller. [\

4.4 Parallel Composition of Multi Computer-Controlled Systems

When composing multi computer-controlled systems, the combined reactivity of
all controllers must not exceed the combined (minimum) controllability bounds
of the plants. Otherwise, safety cannot be guaranteed, as elaborated next.

Modeling The parallel composition of two multi computer-controlled systems is
similar to the composition of a multi-choice reactive controller with a controllable
plant to obtain a multi computer-controlled system MCCS, but with extra care
for the combined reactivity bounds obtained from the physical cost model C.

Definition 13 (Parallel Composition of Multi Computer-Controlled
Systems). Let α and β be two multi computer-controlled systems with shapes

α
.
“

`

tx1 “ θ, t1 “ 1 & H ^
Ź

1ďiďn t ď τi ` δαu YMRCtrlp
Ť

1ďiďn αi, δαq
˘˚

,

β
.
“

`

ty1 “ η, t1 “ 1 & Q^
Ź

1ďjďm t ď τj ` δβu YMRCtrlp
Ť

1ďjďm βj , δβq
˘˚

.
The parallel composition α b β has the hybrid program shape:

¨

˚

˚

˚

˚

˚

˝

MRCtrl
`
Ť

1ďiďn αi, Cpδα, δβq
˘

YMRCtrl
`
Ť

1ďjďm βj , Cpδα, δβq
˘

Ytx1 “ θ, y1 “ η, t1 “ 1 & H ^Q

^
ľ

1ďiďn

t ď τi ` Cpδα, δβq ^
ľ

1ďjďm

t ď τj ` Cpδα, δβq
loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

Cpδα,δβqďminp∆α,∆βq

u

˛

‹

‹

‹

‹

‹

‚

˚

Algebraic properties We retain the commutativity and associativity properties
(under the condition that the provided max+ cost function C is commutative
and associative), essential for a modular component-based approach.

Proposition 1 (Commutativity and Associativity). Let α, β and γ be
multi computer-controlled systems. Then:

α b β “ β b α (Commutativity)
pα b βq b γ “ α b pβ b γq (Associativity)

Proof. Follows from Def. 13, see long version [8] for details. [\

Modular verification We retain also the respective contracts through the parallel
composition. We assume that the individual reactivity bound δα of the controller
does not occur in its functional behavior, nor in its guarantees.

Theorem 4 (Composition of Multi Computer-Controlled Systems).
Let α and β be non-interfering multi computer-controlled systems (with program
shape MCCSα and MCCSβ per Def. 12) satisfying their respective compatible
contracts pAα, Gαq and pAβ , Gβq, and let Jcmp be a composition invariant. Then
the parallel composition α b β is safe, i.e., pE ^ Aα ^ Initα ^ Aβ ^ Initβq Ñ
rα b βspGα ^Gβq is valid.

Proof. We use the commutativity and associativity of operator b to group the
multi-choice reactive controllers into a single discrete fragment and the control-
lable plants into a single continuous fragment. We prove contracts are retained
for the discrete fragment by Thm. 2 and for the continuous fragment by Thm. 3.
Finally, contracts are retained for the composition of discrete fragment to the
continuous fragment using Cor. 1, see long version [8]. [\

Outlook In this section, we presented how to extend our previous component-
based approach to take into account the timing constraints inherent in the design
of a Computer-Controlled System. We have proved that we retain the commu-
tativity and associativity, essential to scale up to realistic systems. Finally, we
state and prove theorems to retain contracts through the parallel composition.
Theses results give us confidence in the ability of our approach to be adapted to
new challenges that will arise when applied to realistic industrial systems.

5 Related Work

Recent component-based verification techniques [10,11] proposed a composition
operator in dL based on the modeling pattern pctrl; plantq

˚
to split verification

of systems into more manageable pieces. It focuses on separating self-contained
components (a controller monitoring its own plant) instead of separating discrete
and continuous fragments. This paper extends previous work [7] with capabilities
to handle timing relations of CCS upon composition (using max+ cost functions)

and syntactic proofs to facilitate implementation of the proposed techniques as
tactics in the theorem prover KeYmaera X.

Hybrid automata [1] are a popular formalism to model hybrid systems, but
composition of automata results in an exponential product automaton which is
intractable to analyze in practice. I/O hybrid automata [9] is an extension of
hybrid automata with explicit inputs and outputs. Assume-guarantee reason-
ing [4] on such automata tackles composability to prevent state-space explosion.
Yet, use is in practice restricted to linear hybrid automata. Differential Dynamic
Logic handles systems with ODEs (and not just linear ODEs), thus our approach
is more expressive.

Hybrid Communicating Sequential Processes (HCSP) [5] is a hybrid exten-
sion of the CSP framework. It features a native parallel composition operator
and communicating primitives in addition to standard constructs for hybrid sys-
tems (sequences, loops, ODEs) and a proof calculus has been proposed in [6].
In contrast, our parallel composition operator is not native and relies on usual
constructs of dL. The benefit is that we do not have to extend dL and check
the soundness of such extension, but it requires additional effort to mechanize it
into the theorem prover KeYmaera X. Also, our approach provides engineering
support for timing aspects and modular verification principles.

6 Conclusion

We presented a component-based verification technique for modularly design-
ing and verifyinf computer-controlled systems with special focus on timing con-
straints (reactivity and controllability) and modular verification. Our concepts
enable systematic modeling of CCS in a modular way while maintaining alge-
braic properties of composition patterns and preserving contract proofs through
composition. We additionally support reasoning on non-functional properties
(reactivity, controllability) through multiple compositions of reactive controllers
and plants. This paves the way to ultimately model complex cyber-physical sys-
tems (several controllers running in parallel according to a generic max+ cost
function that monitor different plants) from only simple, atomic components.
Verification of safety properties for the global system reduces to component
safety proofs with only mild assumptions on the reactivity of controllers (does
not exceed the controllability of plants) and compatibility between contracts.

As future work, we intend to allow more aggressive compositions to lift re-
strictions of the techniques presented here: allow some interference in the par-
allel composition of controllable plants and reactive controllers with additional
compatibility proofs (lift non-interference restriction of Cor. 1); allow time and
reactivity in the predictions and guarantees of controllers with refactoring tech-
niques to strengthen control choices upon composition (lift restriction of Thm. 4
that does not grant controllers to exploit their reactivity bounds δ for con-
trol decisions); and support fine-grained communication going beyond shared
variables with communication channels as in Hybrid Communicating Sequential
Processes. For proof automation, we intend to implement the theorems of this
paper as tactics in the KeYmaera X theorem prover.

References

1. Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin Ho. Hybrid
automata: An algorithmic approach to the specification and verification of hybrid
systems. In Hybrid systems, pages 209–229. Springer, 1993.

2. Albert Benveniste, Benôıt Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli, Werner
Damm, Thomas Henzinger, and Kim Guldstrand Larsen. Contracts for system
design. Technical report, 2012.

3. Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer.
Keymaera X: an axiomatic tactical theorem prover for hybrid systems. In Auto-
mated Deduction - CADE-25 - 25th International Conference on Automated De-
duction, Berlin, Germany, August 1-7, 2015, Proceedings, pages 527–538, 2015.

4. Thomas A Henzinger, Marius Minea, and Vinayak Prabhu. Assume-guarantee
reasoning for hierarchical hybrid systems. In International Workshop on Hybrid
Systems: Computation and Control, pages 275–290. Springer, 2001.

5. He Jifeng. From CSP to hybrid systems. In A classical mind, pages 171–189.
Prentice Hall International (UK) Ltd., 1994.

6. Jiang Liu, Jidong Lv, Zhao Quan, Naijun Zhan, Hengjun Zhao, Chaochen Zhou,
and Liang Zou. A calculus for hybrid CSP. In Asian Symposium on Programming
Languages and Systems, pages 1–15. Springer, 2010.

7. Simon Lunel, Benôıt Boyer, and Jean-Pierre Talpin. Compositional proofs in dif-
ferential dynamic logic. In Axel Legay and Klaus Schneider, editors, ACSD, 2017.

8. Simon Lunel, Stefan Mitsch, Benôıt Boyer, and Jean-Pierre Talpin. Parallel com-
position and modular verification of computer controlled systems in differential
dynamic logic. CoRR, abs/1907.02881, July 2019.

9. Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Hybrid I/O automata.
Inf. Comput., 185(1):105–157, 2003.

10. Andreas Müller, Stefan Mitsch, Werner Retschitzegger, Wieland Schwinger, and
André Platzer. A component-based approach to hybrid systems safety verification.
In Erika Abraham and Marieke Huisman, editors, IFM, volume 9681 of LNCS,
pages 441–456. Springer, 2016.

11. Andreas Müller, Stefan Mitsch, Werner Retschitzegger, Wieland Schwinger, and
André Platzer. Tactical contract composition for hybrid system component verifi-
cation. STTT, 20(6):615–643, 2018. Special issue for selected papers from FASE’17.

12. André Platzer. The complete proof theory of hybrid systems. In LICS, pages
541–550. IEEE, 2012.

13. André Platzer. A complete uniform substitution calculus for differential dynamic
logic. J. Autom. Reas., 59(2):219–265, 2017.

14. André Platzer. Logical Foundations of Cyber-Physical Systems. Springer, Cham,
2018.

15. André Platzer and Yong Kiam Tan. Differential equation axiomatization: The
impressive power of differential ghosts. In Anuj Dawar and Erich Grädel, editors,
LICS, pages 819–828, New York, 2018. ACM.

16. Julien Signoles, Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Pre-
vosto, and Boris Yakobowski. Frama-C: a software analysis perspective. Formal
Aspects of Computing, 27, 10 2012.

