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Abstract. Hybrid systems combine discrete and continuous dynamics,
which makes them attractive as models for systems that combine com-
puter control with physical motion. Verification is undecidable for hybrid
systems and challenging for many models and properties of practical in-
terest. Thus, human interaction and insight are essential for verification.
Interactive theorem provers seek to increase user productivity by allow-
ing them to focus on those insights. We present a tactics language and
library for hybrid systems verification, named Bellerophon, that provides
a way to convey insights by programming hybrid systems proofs.
We demonstrate that in focusing on the important domain of hybrid
systems verification, Bellerophon emerges with unique automation that
provides a productive proving experience for hybrid systems from a small
foundational prover core in the KeYmaera X prover. Among the automa-
tion that emerges are tactics for decomposing hybrid systems, discovering
and establishing invariants of nonlinear continuous systems, arithmetic
simplifications to maximize the benefit of automated solvers and general-
purpose heuristic proof search. Our presentation begins with syntax and
semantics for the Bellerophon tactic combinator language, culminating
in an example verification effort exploiting Bellerophon’s support for in-
variant and arithmetic reasoning for a non-solvable system.

1 Introduction

Cyber-Physical Systems combine computer control with physical dynamics in
ways that are often safety-critical. Reasoning about safety properties of Cyber-
Physical Systems requires analyzing the system’s discrete and continuous dy-
namics together in a hybrid system [2,13]. For example, establishing safety of an
adaptive cruise controller in a car requires reasoning about the computations of
the controller together with the resulting physical motion of the car.

Theorem proving is an attractive technique for verifying correctness prop-
erties of hybrid systems because it is applicable to a large class of hybrid sys-
tems [25]. Verification for hybrid systems is not semidecidable, thus requiring
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Table 1. Comparison to related verification tools and provers

Tool Small Core HS Library HS Auto Scriptable External Tools

KeYmaera X Yes Yes Yes Yes SC

SpaceEx No No Yes No SC

Isabelle,Coq,HOL Yes No No Yes No

KeYmaera 3 No Yes Yes SC SC

human assistance along two major dimensions. First, general-case hybrid sys-
tems proving requires identifying invariants of loops and differential equations,
which is undecidable in both theory and practice. Second, the remaining veri-
fication tasks consist of first-order logic over the reals with polynomial terms.
Decision procedures exist which are complete in theory [7], but are only complete
in practice if a human provides additional guidance. Because both these dimen-
sions are essential to hybrid systems proving, innovating along these dimensions
benefits a wide array of hybrid systems verification tasks.

We argue that trustworthy and productive hybrid systems theorem proving
requires: 1) a small foundational core; 2) a library of high-level primitives au-
tomating common deductions (e.g., computing Lie Derivatives, computing and
proving solutions of ODEs, propagating quantities across dynamics in which
they do not change, automated application of invariant candidates, and conser-
vation/symmetry arguments); and 3) scriptable heuristic search automation.

Even though these ingredients can be found scattered across a multitude
of theorem provers, their combination to a tactical theorem proving technique
for hybrid systems is non-obvious. Table 1 compares several tools along the di-
mensions that we identify as crucial to productive hybrid systems verification
(SC indicates a soundness-critical dependency on user-defined tactics or on an
external implementation of a more scalable arithmetic decision procedure).

General purpose theorem provers, such as Coq [20] and Isabelle [23], have
small foundational cores and tactic languages, but their tactic languages and
automation are not tailored to the needs of hybrid systems. This paper addresses
the problem of getting from a strong mathematical foundation of hybrid systems
[27] to a productive hybrid systems theorem proving tool. Reachability analysis
tools, e.g. SpaceEx [11], provide automated hybrid systems verification for linear
hybrid systems, but at the expense of a large trusted codebase and limited ways
of helping when automation fails, which is inevitable due to the undecidability
of the problem. KeYmaera’s [29] user-defined rules are no adequate solution
because they enlarge the trusted codebase and are difficult to get right.

KeYmaera X [12] is structured from the very beginning to maintain a small
and trustworthy core, upon which this paper builds the Bellerophon tactic lan-
guage. Using these logical foundations [27], we develop a set of automated de-
duction procedures. These procedures manifest themselves as a library of hybrid
systems primitives in which complex hybrid systems can be interactively verified.
Finally, heuristic automation tactics written in Bellerophon automatically apply
these primitives to provide automation of hybrid systems reachability analysis.

http://keymaeraX.org/
http://symbolaris.com/info/KeYmaera.html
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Table 2. Hybrid Programs

Program Statement Meaning

α;β Sequentially composes α and β.
α ∪ β Executes either α or β.
α∗ Repeats α zero or more times.
x := θ Evaluates term θ and assigns result to x.
x := ∗ Assigns an arbitrary real value to x.
{x′

1 = θ1, ..., x
′
n = θn&F} Continuous evolution within F along this ODE.

?F Aborts if formula F is not true.

Contributions. This paper demonstrates how to combine a small foundational
core [27], reusable automated deductions, and problem-specific proof-search tac-
tics into a tactical theorem prover for hybrid systems. It presents Bellerophon, a
hybrid systems tactics language and library implemented in the theorem prover
KeYmaera X [12]. Bellerophon includes a tactics library which provides the de-
cision procedures and heuristics necessary for a productive interactive hybrid
systems proving environment. We first demonstrate the interactive verification
benefits of Bellerophon through interactive verification of a simple hybrid system,
which is optimized to showcase a maximum of features in a minimal example.
In the process, we also discuss significant components of the Bellerophon stan-
dard library that enable such tactical theorem proving. We then present two
examples of proof search procedures implemented in Bellerophon, demonstrat-
ing Bellerophon’s suitability for implementing reusable proof search heuristics
for hybrid systems. Along the way, we demonstrate how the language features
of Bellerophon support manual proofs and proof search automation.

2 Background

This section reviews hybrid programs, a programming language for hybrid sys-
tems; differential dynamic logic (dL) [24–27] for specifying reachability properties
about hybrid programs; and the theorem prover KeYmaera X for dL [12].

Hybrid (dynamical) systems [2, 26] are mathematical models for the inter-
action between discrete and continuous dynamics, and hybrid programs [24–27]
their programming language. The syntax and informal semantics is in Table 2.

The following hybrid program outlines a simple model of a skydiver who
deploys a parachute to land at a safe speed. Here, we illustrate the rough program
structure to become acquainted with the syntax. We will fill in the necessary
details (e.g., when to deploy the parachute exactly) for a proof later in Section 4.

Example 1 (Skydiver model).
(
(?Dive ∪ r := p)︸ ︷︷ ︸

ctrl

; {x′ = v, v′ = f(v, g, r)}︸ ︷︷ ︸
plant (continuous dynamics)

)∗
0 A continuous evolution along the differential equation system x′

i = θi for an arbitrary
duration within the region described by formula F . The &F is optional so that e.g.,
{x′ = θ} is equivalent to {x′ = θ&true}.
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Example 1 describes a skydiver whose ctrl chooses nondeterministically to
continue diving if the formula Dive indicates it is still safe to do so, or to deploy
the parachute (r := p). The skydiver’s altitude x then follows a differential
equation, where the velocity v non-linearly depends on v itself, gravity g and
drag coefficient r. This process may repeat arbitrarily many times (indicated by
the repetition operator ∗). Because there is no evolution domain constraint on
plant, each continuous evolution has any arbitrary non-negative duration e ∈ R.

Differential dynamic logic (dL) [24–27] is a first-order multimodal logic for
specifying and proving properties of hybrid programs. Each hybrid program
α has modal operators [α] and ⟨α⟩, which express reachability properties of
program α. The formula [α]ϕ expresses that the formula ϕ is true in all states
reachable by the hybrid program α. Similarly, ⟨α⟩ϕ expresses that the formula ϕ
is true after some execution of α. The dL formulas are generated by the grammar

ϕ ::= θ1 ∽ θ2 | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ↔ ψ | ∀xϕ | ∃xϕ | [α]ϕ | ⟨α⟩ϕ

where ϕ and ψ are formulas, α ranges over the hybrid programs of Table 2, and
∽ is a comparison operator =, ̸=,≥, >,≤, <, and θ is a term of real arithmetic.

Model 1 (Safety specification for the skydiver)

x ≥ 0 ∧ . . .︸ ︷︷ ︸
initial condition

→ [
(
(?Dive ∪ r := p)︸ ︷︷ ︸

ctrl

; {x′ = v, v′ = f(v, g, r)}︸ ︷︷ ︸
plant

)∗
] (x=0 → |v|≤|m|)︸ ︷︷ ︸

post cond.

The formula above expresses that if the skydiver, among other things, starts
diving at some non-negative altitude x, then it is always the case that if they
touch ground (x = 0) they do so softly with a safe descending speed (|v|≤|m|,
because both v and m are always negative).

KeYmaera X Bellerophon is part of KeYmaera X, an axiomatic theorem prover
for dL [12]. Its uniform substitution mechanism [27] enables a trusted core of only
about 1,700 lines of Scala. This is far smaller than other hybrid systems verifi-
cation tools and compares favorably even with many other LCF-style provers.
While verified real arithmetic solving is possible via witnesses [30], KeYmaera X
uses external real arithmetic solvers in practice for their superior performance.

3 The Bellerophon Tactic Language

Bellerophon is a programming language and standard library for automating
proof constructions and proof search operations of the KeYmaera X core. As
in other LCF-style provers, Bellerophon is not soundness-critical. This frees us
to provide courageous reasoning strategies that enable users to perform high-
level proofs about hybrid systems while still benefiting from the high degree of
trustworthiness that comes from a small soundness-critical core and the cross-
verification of dL in Isabelle and Coq [4]. A basic use of Bellerophon is to re-
cover a convenient sequent calculus for dL [24] from the simpler Hilbert calculus-
based core [27] of KeYmaera X. This demonstrates that Bellerophon is expres-
sive enough to implement the automation capabilities of the predecessor prover
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KeYmaera [29] from a smaller set of primitives. Beyond that, Bellerophon is used,
e.g. for programming both individual proofs and custom proof search procedures.

This section presents the basic constructs of the Bellerophon language. Read-
ers familiar with tactic languages for interactive theorem provers (e.g., [20]) will
find many constructs familiar, but should pay particular attention to the dis-
cussion of Bellerophon’s standard library. For usability, traceability and educa-
tional purposes, Bellerophon tactics can be written in a hierarchical structure
that maps to the graphical tree structure of the resulting dL sequent proof [21].

This dL proof motivates the constructs of our language and standard library.

Proof 1 (Skydiver sequent proof sketch) The proof starts from the initial
conjecture (Model 1) at the bottom, phrased as a sequent. Each sequent has
the shape assumptions ⊢ obligations, which means from the assumptions left
of the turnstile ⊢, we have to prove any formula on the right. Horizontal lines
indicate that the sequent below the horizontal line is proved when the sequent
above the horizontal line is proved, justified by the tactic that is annotated left
of the horizontal bar (the corresponding operator is highlighted in boldface and
red). For example, the first step prop makes all conjuncts left of an implication
available as assumptions, so the goal x ≥ 0 ∧B → C below the line becomes
x ≥ 0, B ⊢ C above the line. When proof rules (e.g., andR) result in multiple
subgoals, each subgoal continues in a separate branch and all need to be proved.

andR

. . .

testb
Γ ⊢ Dive → [ode](x=0 → |v|≤|m|)
Γ ⊢ [?Dive?Dive?Dive][· · ·](x=0 → |v|≤|m|)

. . .

assignb
Γ ⊢ [ode(p)](x=0 → |v|≤|m|)

Γ ⊢ [r := pr := pr := p][· · ·](x=0 → |v|≤|m|)

choiceb
Γ ⊢ [?Dive][· · ·](x=0 → |v|≤|m|)∧∧∧ [r := p][· · ·](x=0 → |v|≤|m|)

composeb
Γ ⊢ [{?Dive∪∪∪ r := p}][{p′ = v, v′ = f(v, g, r)}](x=0 → |v|≤|m|)

prop
x ≥ 0, . . . ⊢ [{?Dive ∪ r := p};;;{x′ = v, v′ = f(v, g, r)}](x=0 → |v|≤|m|)

⊢ x ≥ 0∧∧∧ . . .→→→[{?Dive ∪ r := p}; {x′ = v, v′ = f(v, g, r)}](x=0 → |v|≤|m|)
Each of the steps in the sequent proof above is a built-in tactic:

prop Exhaustively applies propositional proof rules in the sequent calculus.
composeb Splits sequential composition [α;β]P into nested modalities [α][β]P .
choiceb Splits choice [α ∪ β]P into a conjunction of subsystems [α]P ∧ [β]P .
andR, implyR, existsL, . . . are the right conjunction rule (∧R), the right

implication rule (→R) and left existential rule (∃L) as usual in sequent cal-
culus. Throughout the paper, we will make use of standard propositional
sequent calculus tactics that follow this naming convention.

testb Makes test condition [?Q]P available as assumption Q→ P .
assignb Makes effect of assignment [x := t]P (x) available as update to P (t) or

as assumption x = t with proper renaming of other occurrences of x.

Bellerophon programs, called tactics, are functions mapping lists of sequents
to (lists of1) sequents. Built-in tactics (ranged over by τ) are implemented in

1 Tactics may map a single sequent to a list of sequents; the simplest example of
such a tactic andR corresponds to the proof rule ∧R, which maps a single sequent
Γ ⊢ A ∧B,∆ to the list of subgoals Γ ⊢ A,∆ and Γ ⊢ B,∆.
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Table 3. Meaning of tactic combinators

Language Primitive Operational Meaning

e ::= τ Built-in tactic
| e(v) Applies a tactic e to a (list of) positions or formulas
| e1 ; e2 Sequential Composition: Applies e2 on the output of e1
| e1 | e2 Either Composition: Applies e2 if applying e1 fails
| e∗ Saturating Repetition: Repeatedly applies e as long as it

is applicable (diverging if it stays applicable indefinitely)
| ?(e) Optional: Applies e if e does not result in an error
| <(e1, e2, . . . en) Applies e1 to the first of n subgoals, e2 to the second, etc.
| abbrv P (x) = ϕ in e Replaces all occurrences of ϕ with P (x) in the current

subgoal, and then applies e. After e, remaining occur-
rences of P (x) are uniformly substituted back to ϕ

Scala. Proof developers can combine existing tactics using the constructs de-
scribed in Table 3. Built-in programs are implemented as a sequence of operations
on a data structure that can only be created or modified by the soundness-critical
core of KeYmaera X, thereby ensuring soundness of built-in tactics.

Built-in Tactics. Bellerophon is both a stand-alone language and a domain-
specific language embedded in the Scala programming language. Built-in tactics
directly manipulate the KeYmaera X core to transform formulas in a validity-
preserving manner. Bellerophon programmers can construct new tactics either
by writing new built-in tactics in Scala, or else by combining pre-existing tac-
tics using the combinators described in Table 3. KeYmaera X ships with a large
library of tactics for proof construction and proof search. Some built-in tactics –
the propositional rules and choiceb for example – are straight-forward applica-
tions of the axioms in [27]. Others provide a significant amount of automation on
top of the axiomatic foundations. For example, prop combines propositional se-
quent calculus rules to an automated proof search procedure that often performs
numerous simpler proof steps automatically.

Parameters. Most tactics are parameterized by formulas, locators, or both.
Formula parameters are provided whenever the behavior of a tactic is depen-
dent upon a particular formula; for example, the loop and differential induc-
tion tactics take an invariant formula as parameter. Locators specify where in
a sequent a tactic should be applied. The simplest form of locator is an ex-
plicit position. Negative positions refer to formulas to the left of the turnstile
(⊢) and positive positions refer to formulas to the right of the turnstile,2 e.g.,
−1 :A, −2 :B, −3 :C ⊢ 1 :D, 2 :E with annotated formula positions. In
addition to explicit positions, Bellerophon provides indirect locators: (i) e(R)
applies e to the first applicable position3 in the succedent; (ii) e(Rlast) applies
e to the last position in the succedent. e(L) and e(Llast) behave accordingly
in the antecedent.

2 The addressing scheme extends to subformulas and subterms in a straight-forward
way. Interested readers may refer to the Bellerophon documentation for details.

3 Tactic e is applicable at a position pos if e(pos) does not result in an error.
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Basic Combinators. Tactics are executed sequentially using the ; combinator.
In e; f , the left tactic e is executed on the current subgoal and then the right
tactic f is executed on the result of the left tactic’s execution. The | combinator
attempts multiple tactics – moving from left to right through a list of alterna-
tives. The ∗ combinator in e∗ repeats the tactic e as long as it is applicable.
Many proof search procedures are expressible as a repetition of choices.
Branching. Proof search often results in branching. For example, a canonical
proof of the induction step of Model 1 decomposes into two cases: a diving case
corresponding to the control decision ?Dive and a deployed parachute case cor-
responding to the control decision r := p. Proof 1 from above in the dL sequent
calculus visually emphasizes the branching structure, which can be helpful for
structuring tactics too. The < combinator expresses how a proof decomposes
into cases. An explicit tactic directly performing Proof 1 without any search is:

Listing 1.1. A Structured Bellerophon Tactic for a Branching Proof

1 prop ; composeb(1) ; choiceb(1) ; andR(1) ; <(
2 testb(1) ; ..., /* tactic for left branch of andR */
3 assignb(1) ; ... /* tactic for right branch of andR */
4 )

Equivalently, the proof search tactic unfold automates proofs such as List-
ing 1.1 by applying all propositional and dynamical axioms until encountering a
loop program or a differential equation, where cleverness might be needed.

4 Demonstration of Tactical Hybrid Systems Proving

In this section, we demonstrate that the Bellerophon standard library’s tech-
niques for invariance properties, conservation properties, and real arithmetic
simplifications, as implemented in KeYmaera X, make it a convenient mech-
anism for interactively verifying hybrid systems. The proof developed in this
section is at http://web.keymaeraX.org/show/itp17/skydiver.kya

Model 2 fills in the details of the skydiver model, which guarantees landing
at a safe speed if the parachute opens early enough.

Model 2 (Safety specification for the skydiver model)

x ≥ 0 ∧ g > 0 ∧ 0 < a = r < p ∧ −
√

g

p
< v < 0 ∧m < −

√
g

p
∧ T ≥ 0 (init)

→ [
{
(?

(
r = a ∧ v − g · T > −

√
g

p

)
︸ ︷︷ ︸

Dive

∪ r := p); (ctrl)

t := 0; {x′ = v, v′ = r · v2 − g & x ≥ 0 ∧ v < 0 ∧ t ≤ T} (plant)}∗
](x = 0 → |v|≤|m|) (post cond.)

Opening the parachute is a discrete control decision. The diver’s physics
are modeled as an ODE, accounting for both gravity and drag, which changes

http://web.keymaeraX.org/show/itp17/skydiver.kya
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when the parachute opens. This example is carefully crafted to demonstrate
many of the challenges in hybrid systems reasoning while retaining relatively
simple dynamics. Qualitative changes happen to the continuous dynamics after
a discrete state transition, the dynamics are non-linear, and the property of
interest is not directly inductive.

We model a gravitational force (g > 0), a drag coefficient (r) which depends
on whether the parachute is closed (air a) vs. open (parachute p), the skydiver’s
altitude x ≥ 0 and velocity v < 0. The time between control decisions is bounded
by the skydiver’s reaction time T . We also assume that the diver does not pass
through the earth x ≥ 0 and (to streamline this presentation) that v < 0.

The controller contains two options for our skydiver. The left choice lets
a closed parachute (r = a) stay closed if the speed after one control cycle is
definitely safe, computed by over-approximating as if gravity were the only force

(v− g · T > −
√

g
p ). The right control choice opens the parachute, after which it

stays open (as r ̸= a). For simplicity, we say the parachute opens instantantly.
The safety theorem says when the skydiver hits the ground, the velocity is at

most a specified safe landing speed |v|≤|m|, v < 0. We assume the parachute is

initially closed (r = a), the speed initially safe (v > −
√

g
p ), and the safe landing

speed faster than the limit speed of the parachute (m < −
√

g
p ).

Loop Invariants Verifying a system loop begins with identifying a loop invari-
ant J that is true initially, implies the post-condition and is preserved by the
controller. Each formula of the initial condition in Model 2 is invariant except
r = a; therefore, we will proceed with the following invariant J :

(x ≥ 0 ∧ v < 0)︸ ︷︷ ︸
ev.dom.

∧
(
g > 0 ∧ 0 < a < p ∧ T ≥ 0 ∧m < −

√
g

p

)
︸ ︷︷ ︸

diff. inductive

∧ v > −
√

g

p︸ ︷︷ ︸
hard

(1)

Note that J holds initially and implies formula |v|≤|m| because v > −
√

g
p >

m. These facts prove automatically. Therefore, the core proof needs to prove
J → [ctrl; plant]J . We express the proof thus far with the following tactic:

Listing 1.2. Loop Induction Tactic

1 implyR(1); loop(J, 1); <(QE,QE,nil)

The implyR tactic corresponds to the right implication rule (→R) in sequent
calculus; the first argument states that we should apply this proof rule at the first
position in the succedent. The loop tactic uses the dL axioms about loops to de-
rive three new subgoals: (1) the loop invariant holds initially (init → J); (2) the
loop invariant implies the post condition (J → post cond.); and (3) the loop in-
variant is preserved throughout a single iteration of the loop (J → [ctrl; plant]J).
The loop rule in KeYmaera X is derived in Bellerophon from axioms and auto-
matically retains assumptions about constants that do not change in the system.
The nil tactic has no effect and is used in <() to keep subgoal (3) unchanged.
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The branching combinator <() allows us to isolate each of these three sub-
tasks from one another. Subgoals (1) and (2) are proven using a Real Arithmetic
solver (QE, for Quantifier Elimination), since the arithmetic is easy enough here.

Decomposing Control Programs This model’s control program is simple. It
checks if it is safe to keep the parachute closed, or sets r to open the parachute
(at any time, but at the latest when it is no longer safe to keep it closed).
Therefore, we will immediately symbolically execute the control program and
consider the two resulting subgoals, both of which are reachability conditions on
purely continuous dynamical systems. This splitting could be done manually, as
in Listing 1.1. But we decide to split it automatically using the unfold tactic.

Listing 1.3. Decomposing Control Programs

1 implyR(1); loop(J, 1); <(QE,QE,unfold)

ODE Tactics in the Standard Library The rest of the proof will make use
of several tactics in the Bellerophon standard library:

boxAnd Splits [α](P ∧Q) into separate postconditions [α]P and [α]Q.
dC(R) Proves a new property R of an ODE and then restricts the differential

equation to remain within the evolution domain R (differential cut).
dW Proves [x′ = f(x)&Q]P by proving that domain Q implies postcondition P .
dI Proves [{x′ = f(x)}]P by proving P and its differential P ′ along x′ = f(x).
dG(y’=ay+b,R) Adds new differential equation y′ = ay+b to [x′ = f(x)&Q]P ,

and replaces the post condition by equivalent formula R (possibly mentioning
the fresh differential ghost variable y).

These tactics perform significant automation on top of the dL axioms. For exam-
ple, dI performs automatic differentiation via exhaustive left-to-right rewriting
of our axiomatization of differentials (e.g., (s · t)′ = s′t+ st′) and propagates the
local effect of the differential equation. The dI tactic preserves initial value con-
straints for variables that are not changed by the differential equation. It often
performs hundreds of axiom applications automatically. The difference between
the sound Differential Induction axiom [27] and the automation provided by the
dI tactic is an exemplary demonstration of the difference between a theoretically
complete mathematical/logical foundation, and a pragmatically useful tactical
library.

We are now ready to consider two purely continuous subgoals of the form
J → [plant(r)]J : one where r = a (the parachute is closed) and one where r = p
(the parachute is open), which are both true for different reasons.

Closed Parachute: Chaining Inequalities We first consider the r = a case,
in which the parachute is closed. Symbolically executing the control program
results in a remaining subgoal that requires us to prove:

J ∧ v − g · T > −
√
g/p→ [{x′ = v, v′ = a · v2 − g&x ≥ 0 ∧ v < 0 ∧ t ≤ T}]J
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We use boxAnd to work on the conjuncts of the loop invariant J (1) separately,
since each are preserved for different reasons. The proofs for the first two sets
of loop invariants in J (labeled ev. domain and diff. induction) are identical
to the r = p case and will be discussed later. Here, we focus on the formula

J ∧v−g ·T > −
√

g
p → [{x′ = v, v′ = a ·v2−g&x ≥ 0∧v < 0∧t ≤ T}]v > −

√
g
p ,

which handles the third conjunct of J (see (1), labeled hard).

Compute that v ≥ v0 − g · t ≥ v0 − g · T > −
√

g
p , where v0 is the value of v

before the ODE. In Bellerophon proofs for differential equations, we use old(v)
to introduce initial values; you can read old(v) and v0 inter-changeably here.

Each of the subformulas in the postcondition above is a differentially in-
ductive invariant, or else is valid after the domain constraint is automatically
augmented with constants g > 0∧p > 0. Therefore, we use a chain of dC justified
either by dI or by dW for each inequality in this tactic:

Listing 1.4. A Chain of Inductive Inequalities

1 /* Key lemmas proofs of lemmas */
2 dC(v>=old(v)-g()*t,1); <(nil , dI(1));
3 dC(old(v)-g()*t>=old(v)-g()*T,1); <(nil , dW(1);QE);
4 dC(old(v)-g()*T>-c,1); <(nil , dI(1));
5 dW(1) ; QE

The argument is a sequence of differential cuts, each of which has a simple
proof, and whose conjunction implies the post-condition. Each of the nil tactics
in the <() passes along a single subgoal to the next tactic, so that at the end
we have a long conjunction in our domain constraint containing each of the
cuts. This style of proof is pervasive in hybrid systems verification, and easily
expressed in Bellerophon. One key feature that makes this proof so concise is
the use of old(v), which introduces a variable v0 that remembers the initial
value of v. Tactic dW;QE on line 3 proves the cut from the evolution domain
constraint.4

The inequalities in the evolution domain of the differential equation system
are now sufficiently strong to guarantee the postcondition, so we use dW to obtain

a final arithmetic subgoal: Γ ⊢ v ≥ v0 − g · t ≥ v0 − g · T > −
√

g
p → v > −

√
g
p ,

where Γ contains constants propagated by the rule dW (unlike the DW axiom).
Although this arithmetic fact is obvious to us, QE will take a substantial

amount of time to prove this property (at least 15 minutes on a 32 core machine
running version 10 Mathematica and version 4.3.7 of KeYmaera X). This is
a fundamental limitation of Real Arithmetic decision procedures, which have
extremely high theoretical and practical complexity [9].

The simplest way to help QE is to introduce a simpler formula that captures
the essential arithmetic argument: e.g., cut in ∀a, b, c, d (a ≥ b ≥ c > d→ a > d)

4 The attentive reader will notice we use g() instead of g. This is to indicate that the
model has an arity 0 function symbol g(), rather than an assignable variable. This
syntactic convention follows KeYmaera X and its predecessors.
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and then instantiate this formula with our chain of inequalities. We take this
approach for demonstration (see the implementation). As an alternative, trans-
forming and abbreviating formulas in Bellerophon achieves a similar effect.

Open Parachute: Differential Ghosts We now consider case 2, where the
parachute is already open (r = p). After executing the discrete program the
remaining subgoal is: J → [{x′ = v, v′ = p·v2−g & x ≥ 0 ∧ v < 0 ∧ t ≤ T︸ ︷︷ ︸

evolution domain constraint

}]J .

The proof proceeds by decomposing the post-condition J into three separate
subgoals, one for each conjunct in (1). In Listing 1.5, the boxAnd tactic uses
axiom [α](P ∧ Q) ↔ [α]P ∧ [α]Q from left to right, to rewrite the instance of
[α](P ∧Q) to separate corresponding conjuncts [α]P ∧ [α]Q. The first set of for-
mulas in J (labeled ev. domain) are not differentially inductive, but are trivially
invariant because the evolution domain constraint of the system already contains
these properties. Differential weakening by dW is the appropriate proof technique
for these formulas, see line 1 in Listing 1.5. The second set of formulas (labeled
diff. inductive) are not implied by the domain constraint, but are inductive along
the ODE because the left and right sides of each inequality have the same time-
derivative (0). Differential induction by dI is the appropriate proof technique
for establishing the invariance of these formulas, see line 2 in Listing 1.5.

Listing 1.5. Differential Weakening and Differential Induction

1 boxAnd(1); andR(1); <(dW(1);QE , nil);
2 boxAnd(1); andR(1); <(dI(1) , nil)

The third conjunct (labeled hard) requires serious effort: we have to show

that v > −
√

g
p is an invariant of the differential equation. This formula is not a

differentially inductive invariant because it is getting less true over time. To be-
come inductive, we require additional dynamics to describe energy conservation.
The Bellerophon library provides a tactic to introduce additional dynamics as
differential ghosts into a differential equation system. Often, differential ghosts

can be constructed systematically. Here, we want to show v > −c where c =
√

g
p ,

so we need a property with a fresh differential ghost y that entails v+c > 0, e.g.,
y2(v + c) = 1. The formula y2(v + c) = 1 becomes inductively invariant when
y′ = − 1

2p(v−c). In summary, tactic dG in Listing 1.6 introduces y′ = − 1
2p(v−c)

into the system and rewrites the post-condition to y2(v + c) = 1 with the addi-
tional assumptions that y does not contain any singularities (p > 0 ∧ g > 0).

Listing 1.6. Finishing the parachute open case with a ghost

1 dG(y'=-1/2*p*(v-(g()/p)ˆ(1/2)), p>0&g()>0&yˆ2*(v+c)=1, 1) ;
2 dI(1.0); QE

Tactic dG results in a goal of the form ∃y[· · · ](p > 0∧g > 0∧y2(v+c) = 1), so
in line 2 of Listing 1.6 we apply dI at the first child position 1.0 of succedent 1 in
context of the existential quantifier to show that the new property y2(v+ c) = 1
is differentially invariant with the differential ghost y.

http://web.keymaeraX.org/show/itp17/skydiver.kya
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If a system avoids possible singularities, the ODE tactic in the Bellerophon
standard library automatically computes the differential ghost dynamics (here
y′ = − 1

2p(v − c)) and postcondition (here y2(v + c) = 1) with the resulting
proof. Additionally, notice that dG conveniently constructs the axiom instance of
DG [27], saving the proof developer from manually constructing such instances.

The proof in Listing 1.6 completes the invariant preservation proof for r = p.
The full proof artifact for the skydiver demonstrates how Bellerophon addresses
each of the major reasoning challenges in a typical hybrid systems verification
effort.

5 Automatic Tactics in the Bellerophon Standard Library

This section presents two significant automated tactics in the Bellerophon stan-
dard library: a heuristic tactic for invariants of ODEs, and a general-purpose
hybrid systems heuristic building upon ODE automation. These tactics use our
embedding of Bellerophon as a DSL in Scala, the KeYmaera X host language.5

The combination of a tactical language and a general-purpose functional
language allow us to more cleanly leverage complicated computations, such as
integrators and invariant generators, without losing the high-level proof struc-
turing and search strategy facilities provided by Bellerophon. Significant further
Bellerophon programs that ship with KeYmaera X include an automated de-
duction approach to solving differential equations [27], the proof-guided runtime
monitor synthesis algorithm ModelPlex [22] and real arithmetic simplification
procedures. KeYmaera X provides an IDE [21] for programming Bellerophon
tactics and inspecting their effect in a sequent calculus proof.

The purpose of this section is to explain, at a high level, how Bellerophon
provides ways of automating hybrid systems proof search. We only present sim-
plified versions of tactics and briefly discuss relevant implementation details.

5.1 Tactical Automation for Differential Equations

Automated reasoning for ODEs is critical to scalable analysis of hybrid systems.
Even when human interaction is required, automation for simple reachability
problems – such as reachability for solvable or univariate subsystems – stream-
lines analysis and reduces requisite human effort.

The skydiver example above illustrated the interplay between finding differ-
ential invariants and proving with differential induction and differential ghosts.
The tactic ODE in the Bellerophon standard library automates this interplay for
solvable systems and some unsolvable, nonlinear systems of differential equa-
tions, see Listing 1.7. The ODEStep tactic directly proves properties by dif-
ferential induction, with differential ghosts, and from the evolution domain
constraints. The ODEInvSearch tactic cuts additional differential invariants,

5 Advanced automation generally uses the EDSL. Programs written in the EDSL are
executed using the same interpreter as programs written in pure Bellerophon.

http://web.keymaeraX.org/show/itp17/skydiver.kya
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thereby strengthening the evolution domain constraints for ODEStep to ulti-
mately succeed. Tactic ODE succeeds when ODEStep finds a proof; if ODEStep
does not yet succeed, ODEInvSearch provides additional invariant candidates
with differential cuts dC or by solving the ODE. This interaction between ODEStep
and ODEInvSearch is implemented in Listing 1.7 by mixing recursion and repe-
tition. Repetition is used in ODE so that ODEStep is prioritized over ODEInvSearch
each time that a new invariant is added to the system. Recursion is used in
ODEInvSearch so that a full proof search is started every time an invariant is
successfully added to the domain constraint by dC. The ODEInvSearch tactic
calls ODEStep on its second subgoal (the “show” branch of the dC) because
differential cuts can be established in the right order without additional cuts.

Listing 1.7. Automated ODE Tactic for Non-Solvable Differential Equations

1 ODEStep(pos) = dI(pos) | dgAuto(pos) | dW(pos) | ...
2 ODEInvSearch(pos) = dC(nextCandidate); <(ODE(pos), ODEStep(pos))
3 | solve(pos)
4 ODE(pos) = ( ODEStep(pos) | ODEInvSearch(pos) )*

The ODEStep tactic finds a proof with dI when the post-condition is dif-
ferentially inductive, meaning that the vector field of the differential equation
points into the set described by the differential equation. The dgAuto tactic will
also attempt to make properties differentially inductive by constructing differen-
tial ghosts for the postcondition, such as the ghosts introduced in the skydiver
example. In case the evolution domain of a differential equation system is suf-
ficiently strong, tactic dW succeeds from just the evolution domain constraints.
The ODEStep tactic implemented in KeYmaera X contains other proof search
techniques (marked . . . above) that are guaranteed to terminate but refrain from
performing differential cuts.

The invariant search ODEInvSearch constructs candidates for differential
invariants heuristically [28], see dC(nextCandidate) in Listing 1.7, or system-
atically for solvable differential equations with solve. Tactic solve follows an
axiomatic ODE solver approach [27] that implements a solver in terms of the
differential invariants, cuts, and ghosts reasoning principles to avoid a trusted
built-in rule for solving differential equations (such trusted built-in rules are
necessary in other hybrid systems tools, e.g., in KeYmaera [29]).

The ODE tactic described above is an idealized version of the ODE tactic
implemented in KeYmaera X, which contains additional automated search pro-
cedures and specializes proof search based upon the shape of the post-condition.

5.2 Tactical Automation for Hybrid Systems

The solve and ODE tactics provide some automation for continuous systems
proofs. The master tactic builds on these to provide a full heuristic for hy-
brid systems in the canonical form init → [{ctrl; plant}∗]safe. Tactic master
combines the three basic reasoning principles that together cover the reasoning
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tasks arising in hybrid systems models of the above shape: propositional rea-
soning, symbolic execution of hybrid programs, and reasoning about loops and
differential equations.

Listing 1.8. Proof Search Automation for Hybrid Systems

1 master = OnAll(prop | step | close | QE | loop | ODE)*

In such proofs, branching is prevalent, e.g., due to non-deterministic choices
in programs, as well as loop and differential induction. In the proofs so far we
specified explicitly how the proof proceeds on each branch using <(). This ap-
proach is useful to specifically tailor tactics and provide user insight to certain
subgoals. In a general-purpose search tactic, however, we neither know a priori
how many branches there will be, nor how the specific subgoals on each branch
are tackled best. The Bellerophon library lets us specify such general-purpose
proof search with tactic alternatives |, repetition ∗, and continuing proof search
on all branches with OnAll. The prop tactic is executed first on each sub-
goal. Running prop moves init into the antecedent in the initial theorem, but
also performs propositional reasoning on each new subgoal generated by the
proof. This enables propositional simplifications both after symbolic execution
and loop/ differential induction, as well as to uncover propositional truths han-
dled by close and thereby avoid potentially expensive arithmetic reasoning in
QE. The step tactic picks the canonical dynamical axioms for a formula (by in-
dexing techniques) and applies it in the canonical direction. For example, when
applied to [α∪β]P , the step tactic will produce a new subgoal [α]P ∧ [β]P . The
step tactic focuses on the portions of a program that do not need any decisions
such as invariants for loops or differential equations. The loop tactic generates
loop invariants [28] and performs loop induction for the outer control loops,
whereas ODE handles differential equations. The KeYmaera X implementation
of master contains several optimizations to the ordering of tactics based upon
empirical experience.

The ODE and master tactics demonstrate how Bellerophons’s combinators
are used to construct proof search procedures out of components available in the
Bellerophon standard library.

6 Related Work

The novel contributions of this paper are the design and implementation of a
tactics language and library for hybrid systems which have shown themselves to
make tactical proving fruitful for realistic hybrid systems verification tasks.
Tactics Programming Languages Tactics combinators appear in many general-
purpose proof assistants, such as NuPRL [8], MetaPRL [15], Isabelle [3], Coq [20],
and Lean [1]. However, our goals differ: all of the above aim to work for as
many proving domains as possible, while we optimize for hybrid systems prov-
ing. In pursuing this aim, we have developed a unique, extensive suite of tactical
automation for hybrid systems resting on a small trusted core. We integrate
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key techniques for continuous systems (ODE solving, invariant generation, and
conservation reasoning via differential ghosts) with heuristic simplifications for
arithmetic that speed up the use of external real-closed field solvers.
Arithmetic Proving Proving theorems of first-order real arithmetic should not
be confused with formalizing real analysis, though both are valuable. General-
purpose proof assistants have been used to formalize much of real analysis [5,
14,19,31], and in fact some such formalizations [16,17] have been used to prove
the soundness of dL’s proof calculus on which KeYmaera X and Bellerophon
rest [4]. However, the style of proof used is different: like other domains in which
general-purpose provers excel, formalized analysis benefits from the forms of au-
tomation that these provers do well, such as automatically expanding definitions
and applying syntactic simplification rules. Because hybrid systems verification
is less definition-heavy and because simplification rules alone (e.g. ring axioms)
do not make real arithmetic tractable, real arithmetic proofs face problems for
which existing automation is insufficient. Since arithmetic proofs do arise in these
provers as well, we believe our techniques to be of broader interest. While we pro-
vide new automation for important tasks, this does not preclude us from using
existing tactical techniques for the subtasks where they are most appropriate,
such as propositional reasoning and decomposing composite hybrid systems.
Tactical Proving Styles A set of patterns and anti-patterns have been pro-
posed for Coq tactic programming in Ltac [6]. The suggestion is to use general-
purpose automation as much as possible, conveying any problem-specific details
through hints or lemmas. In keeping with this philosophy, the canonical usage
of Bellerophon is to provide loop and sequences of differential invariants as hints
to the automated master tactic. This reduces the proof to arithmetic. At this
point the user can steer the proof further, e.g. by using Bellerophon’s equational
rewriting mechanisms to reduce complex arithmetic to simpler lemmas. This
tactical proof-by-hint style can be mixed freely with other styles provided by
the KeYmaera X user interface. For example, a user might use the UI to identify
and apply an arithmetic simplification, at which point the corresponding tactic
is generated automatically. They might then integrate this tactic into a larger
proof-search algorithm which then solves similar proof cases automatically.
Analysis Tools for Hybrid Systems Compared with other hybrid system
analysis tools such as PHAver [10], SpaceEx [11], and dReach [18], Bellerophon
enjoys the ability to handle a broad class of systems from a small trusted core
provided by the host prover KeYmaera X. The addition of Bellerophon to KeY-
maera X increases the class of systems for which verification is practical by using
proof scripting to solve problems that would be too tedious and time-consuming
otherwise.

7 Conclusion and Future Work

Bellerophon and its standard library support both interactive and automated
theorem proving for hybrid systems. The library provides users with a clean in-
terface for expressing common insights that are essential in hybrid systems veri-
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fication tasks. Bellerophon combinators allow users to combine these base tactics
in order to implement proofs and proof search procedures. Through Bellerophon,
KeYmaera X provides sound tactical theorem proving for hybrid systems.

Bellerophon provides a useful basis upon which further sound hybrid sys-
tems verification algorithms can be implemented succinctly. The small core of
KeYmaera X is solely responsible for soundness, but provides enough flexibility
to reason in many radically different ways about hybrid systems. Bellerophon
makes this flexibility easily accessible for programming both high-level hybrid
systems verification strategies and concrete case study proofs. Fruitful directions
for future work include developing more expressive proof structuring languages
and extending the tactic library with more proof techniques that leverage ODE
analysis software to produce dL proofs.
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