
This space is reserved for the EPiC Series header, do not use it

ARCH-COMP19 Category Report:
Hybrid Systems Theorem Proving

Stefan Mitsch1, Andrew Sogokon1, and Yong Kiam Tan1

Xiangyu Jin2, Bohua Zhan2, Shuling Wang2, and Naijun Zhan2

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
{smitsch,asogokon,yongkiat}@cs.cmu.edu

2 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences
{jinxy,bzhan,wangsl,znj}@ios.ac.cn

Abstract
This paper reports on the Hybrid Systems Theorem Proving (HSTP) category in the

ARCH-COMP Friendly Competition 2019. The most important characteristic features
of the HSTP category remain as in the previous edition [MST+18]: i) The flexibility of
programming languages as structuring principles for hybrid systems, ii) The unambiguity
and precision of program semantics, and iii) The mathematical rigor of logical reason-
ing principles. The HSTP category especially features many nonlinear and parametric
continuous and hybrid systems. Owing to the nature of theorem proving, HSTP again
accommodates three modes: A) Automatic in which the entire verification is performed
fully automatically without any additional input beyond the original hybrid system and
its safety specification. H) Hints in which select proof hints are provided as part of the
input problem specification, allowing users to communicate specific advice about the sys-
tem such as loop invariants. S) Scripted in which a significant part of the verification
is done with dedicated proof scripts or problem-specific proof tactics. This threefold split
makes it possible to better identify the sources of scalability and efficiency bottlenecks in
hybrid systems theorem proving. The existence of all three categories also makes it easier
for new tools with a different focus to participate in the competition, wherever they focus
on in the spectrum from fast proof checking all the way to full automation. The types of
benchmarks considered and experimental findings are described in this paper as well.

1 Introduction
This report summarizes the experimental results of the Hybrid Systems Theorem Proving
(HSTP) category in the ARCH-COMP19 friendly competition. It is largely based on the
previous edition of the HSTP category [MST+18]. The benchmark examples in the HSTP
competition strive for a large variety in hybrid systems modeling patterns of basic extent to
provide a low entry barrier for tools as well as examples at scale to identify opportunities for
improving on proof automation, scalability and efficiency. The almost 160 examples in the
benchmark competition are grouped into the following categories:

• Hybrid systems design shapes: small-scale examples over a large variety of model shapes
to test for prover flexibility.

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

• Nonlinear continuous models: test for prover flexibility in terms of generating and proving
properties about continuous dynamics.

• Hybrid systems case studies: hybrid systems models and specifications at scale to test for
application scalability and efficiency.

In each of these categories, tools can select the degree of automation as follows, depending
on their focus in the spectrum from fast proof checking to full proof automation:
(A) Automated: hybrid systems models and specifications are the only input, proofs and

counterexamples are produced fully automatically.
(H) Hints: select proof hints (e.g., loop invariants) are provided as part of the specifications.
(S) Scripted: significant parts of the verification is done with dedicated problem-specific scripts

or tactics.
All benchmark examples are available at https://github.com/LS-Lab/KeYmaeraX-projects/
tree/master/benchmarks and specified in differential dynamic logic (dL) [Pla08, Pla17], whose
format and ASCII syntax are presented in Section 2. The participating tools are presented in
Section 3. An overview of the examples together with the findings from the competition is given
in Section 4.

2 Problem Format
All benchmarks in the Hybrid Systems Theorem Proving (HSTP) category are written in dif-
ferential dynamic logic (dL) [Pla08, Pla17] which has axioms and an unambiguous semantics
available [BRV+17] in KeYmaera 3, KeYmaera X, Isabelle/HOL, and Coq. To make it easier
for tools to participate in the HSTP category, almost all benchmarks in the HSTP category are
differential dynamic logic formulas of the particular safety form

φ→ [α]ψ (1)

where
φ is a real arithmetic formula describing the initial conditions,
ψ is a real arithmetic formula describing the postcondition / set of safe states, and
α is the hybrid system described using hybrid programs as a program notation.

The dL formula (1) means that if the system starts in a state satisfying the initial condition
φ, then all final states of all possible runs of the hybrid system α satisfy postcondition ψ. The
operators / statements of hybrid programs are summarized in Table 1. Those of logical formulas
in dL are summarized in Table 2. In particular, the hybrid program α contains both the discrete
and continuous dynamics of the hybrid system.

An example with a purely continuous system is:

−4
5 < x < −1

3 ∧−1 ≤ y < 0 → [x′ = 2x− 2xy, y′ = 2y − x2 + y2]
(
x+y ≤ 1∧ (x 6= 0∨y 6= 0)

)
(2)

An example with a trivial hybrid system is:

v ≥ 0 ∧A > 0 ∧ b > 0→ [
(
?v ≤ 5; a :=A ∪ a :=−b); {x′ = v, v′ = a& v ≥ 0}

)∗] v ≥ 0 (3)

This particular example is completely trivial, because the postcondition v ≥ 0 directly follows
from the evolution domain constraint v ≥ 0 in the differential equation. But safety properties
become more exciting and more challenging when the postcondition is a different one. For
example, x ≥ 10 to say that the position is at least 10 always is much more complicated (and
not even true for the above example).

2

https://github.com/LS-Lab/KeYmaeraX-projects/tree/master/benchmarks
https://github.com/LS-Lab/KeYmaeraX-projects/tree/master/benchmarks

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

Table 1: Statements of hybrid programs (Q is a first-order formula, α, β are hybrid programs)

Statement Effect
α; β sequential composition where β starts after α finishes
α ∪ β nondeterministic choice, following either alternative α or β
α∗ nondeterministic repetition, repeating α n times for any n ∈ N
x := θ discrete assignment of the value of term θ to variable x (jump)
x := ∗ nondeterministic assignment of an arbitrary real number to x(
x′1 = θ1, . . . , continuous evolution of xi along the differential equation system

x′n = θn&Q
)
x′i = θi of any non-negative duration
restricted to remain in evolution domain Q throughout

?Q test if formula Q holds at current state, abort program otherwise
if(Q)α run α if Q is true at current state, do nothing otherwise
if(Q)α elseβ run α if Q is true at current state, run β otherwise

Table 2: Operators of differential dynamic logic (dL) formulas

dL Operator Meaning
θ1 ∼ θ2 comparison true iff θ1 ∼ θ2 with operator ∼ ∈ {>,≥,=, 6=,≤, <}
¬φ negation / not true if φ is false
φ ∧ ψ conjunction / and true if both φ and ψ are true
φ ∨ ψ disjunction / or true if φ is true or if ψ is true
φ→ ψ implication / implies true if φ is false or ψ is true
φ↔ ψ bi-implication / equivalent true if φ and ψ are both true or both false
∀xφ universal quantifier true if φ is true for all values of variable x in R
∃xφ existential quantifier true if φ is true for some values of variable x in R
[α]φ [·] modality / box true if φ is true after all runs of hybrid program α
〈α〉φ 〈·〉 modality / diamond true if φ is true after at least one run of α

Note that the operator precedence is such that unary operators bind stronger than binary
operators and, just like in regular expressions, ; binds stronger than ∪. In particular, the
controller in (3) is (?(v ≤ 5); a :=A) ∪ a :=−b .

ASCII syntax. The benchmark examples are specified in the dL ASCII syntax and grouped
into .kyx files, each containing several named archive entries. The ASCII syntax is a straight-
forward ASCII rendition of Tables 1 and 2, e.g., using A->B for A→ B and using A&B for A∧B.
The ASCII notation alpha++beta is used for alpha ∪ beta. For improved readability in longer
examples, braces {...} are used for grouping differential equation systems and other program
operators. Like in C programs, assignments etc. end with explicit semicolons.

Archive entries follow the general shape below, listing optional definitions, system variables,
a (safety) specification in dL, and optional tactic scripts. The example (3), specialized, just
for the sake of illustration, to the case where A = 5, is written in ASCII KeYmaera X input
as follows. Unlike the ProgramVariables and Problem block, the Definitions and Tactic
blocks are optional. The symbols defined in the Definitions can be used in the Problem block
or in other definitions. All examples are additionally provided in the format of the previous
edition [MST+18] of the HSTP category.

3

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

ArchiveEntry "Benchmark Example 1"

Definitions /∗ definitions cannot change their value ∗/
Real A() = 5; /∗ real−valued maximum acceleration defined to be 5 ∗/
Real b(); /∗ real−valued braking, undefined so unknown value ∗/
Bool geq(Real x, Real y) <−> x>=y; /∗ predicate geq defined to be formula x>=y ∗/
HP drive ::= { /∗ program drive defined to choose either ∗/

?v<=5; a:=A(); /∗ maximum acceleration if slow enough ∗/
++ a:=−b(); /∗ or braking, nondeterministically ∗/

};
End.

ProgramVariables /∗ program variables may change their value over time ∗/
Real x; /∗ real−valued position ∗/
Real v; /∗ real−valued velocity ∗/
Real a; /∗ current acceleration chosen by controller ∗/

End.

Problem /∗ conjecture in differential dynamic logic ∗/
v>=0 & A()>0 & b()>0 /∗ initial condition ∗/
−> /∗ implies ∗/
[/∗ all runs of this hybrid program ∗/
{ /∗ braces {} group programs ∗/
drive ; /∗ expand program drive here as defined above ∗/
{ x’=v, v’=a & v>=0 } /∗ differential equation system ∗/

}∗ @invariant(v>=0) /∗ loop repeats, with @invariant contract ∗/
] v>=0 /∗ safety/postcondition after hybrid program ∗/

End.

Tactic "Automated proof in KeYmaera X"
master

End.

Tactic "Scripted proof in Bellerophon tactic language"
implyR(1) ; loop({‘v>=0‘}, 1) ; <(/∗ < splits separate branches ∗/
closeId , /∗ initial case: shown with close by identity ∗/
QE, /∗ postcondition: prove by real arithmetic QE ∗/
/∗ induction step: decomposes hybrid program semi−explicitly ∗/
composeb(1) ; solve(1.1) ; choiceb(1) ; andR(1) ; <(/∗ controller branches ∗/
composeb(1) ; testb(1) ; master, /∗ decompose some steps then ask master ∗/
assignb(1) ; QE /∗ assignment, then real arithmetic ∗/

)
)

End.

End. /∗ end of ArchiveEntry ∗/

4

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

Background. A short survey on differential dynamic logic and hybrid programs can be found
in a LICS’12 tutorial [Pla12a], a tutorial on its modeling principles in STTT [QML+16], a
research monograph [Pla10b], and a comprehensive introduction in a textbook [Pla18]. The
precise mathematical semantics of differential dynamic logic and its hybrid programs can be
found in the literature as well, for example the most recent details in [Pla17], and a brief version
in the LICS’12 tutorial [Pla12a].

3 Participating Tools
KeYmaera X. KeYmaera X [FMQ+15] is a theorem prover for the hybrid systems logic
differential dynamic logic (dL). It implements the uniform substitution calculus of dL [Pla17].1
KeYmaera X supports systems with nondeterministic discrete jumps, nonlinear differential
equations, nondeterministic input, and it provides invariant construction and proving tech-
niques for differential equations [SGJP16, PT18]. Unlike numerical hybrid systems reachability
analysis tools, KeYmaera X also supports unbounded initial sets and unbounded time analysis.
KeYmaera X participates in v4.4.3 (2018) and the latest v4.6.3 (2019).

KeYmaera X comes with automated proof search procedures that can be steered in the fol-
lowing ways: annotations in the input models provide additional design insight and, if available,
are used to steer the invariant generation techniques in KeYmaera X; fine-grained control over
proofs is available with proof scripts [FMBP17].

Extension with and experimentation in proof search without reducing trust in the prover is
made possible on top of a small trusted kernel that checks all reasoning steps for soundness.
The prover kernel contains a list of sound dL axioms that are instantiated using a uniform
substitution proof rule [Pla17]. This approach isolates all soundness-critical reasoning in the
prover kernel and obviates the intractable task of ensuring that each new proof search algorithm
is implemented correctly. New proof search algorithms are always sound and can either be
programmed directly in Scala (or Java) or can simply be added as a tactic in the hybrid
systems tactic language Bellerophon [FMBP17].

The proof automation for differential equations makes use of insights on how to prove all
invariants of differential equations [PT18]. Tactical implementations allow KeYmaera X to
soundly reduce ODE invariance questions to a small number of core ODE axioms and real
arithmetic. The proof tactic is optimized for fast proofs of commonly used invariants, e.g.,
barrier certificates [PJP07]. All real arithmetic questions that arise in the proofs are rigorously
checked, including the ones that arise from the use of barrier certificates. This guarantees that
any barrier certificate that proves with KeYmaera X is a true barrier certificate, rather than
the result of numerical or floating-point errors.

To prove properties of differential equations, KeYmaera X combines an axiomatic differen-
tial equation solver [Pla17] and local fixedpoint computation for differential invariants [PC09a]
with tactics based on differential equation axiomatization [PT18], and Pegasus: a toolbox for
automatically generating continuous invariants for systems of ordinary differential equations.
Given a system of ODEs subject to an evolution domain constraint, a set of initial states, and a
set of unsafe states, Pegasus will attempt to automatically generate a continuous invariant that
is sufficient to prove that the ODE cannot continuously evolve into an unsafe state from any of
its initial states while respecting the evolution constraint. Pegasus is implemented in Mathe-
matica and is able to connect to Matlab; at present it implements an array of techniques from
qualitative analysis and discrete abstraction [SGJP16] for constructing continuous invariants

1This dL uniform substitution calculus is also formally verified in Isabelle/HOL and Coq [BRV+17].

5

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

and is additionally capable of searching for barrier certificates (using both sum-of-squares opti-
mization [PJ04] and linear programming [SC+13]), as well as Darboux polynomials (by making
use of algorithms developed for the Prelle-Singer procedure [Man93]). The methods for con-
tinuous invariant generation within Pegasus are deployed in a targeted fashion, and depend on
the nature of the verification problem: the important features of the problem are extracted by
the tool in a pre-processing step which suggests promising strategies for invariant generation
base on those features.

KeYmaera 3. KeYmaera 3 [PQ08] is the previous generation theorem prover for differential
dynamic logic dL. Unlike its successor KeYmaera X, the older KeYmaera 3 directly implements
a sequent calculus for differential dynamic logic [Pla08], instead of a uniform substitution cal-
culus. What KeYmaera X implements from a few simple modular axioms, KeYmaera 3 uses
several dedicated proof rules for [Pla08, Pla10a, Pla12b]. This leads to a more directly usable
but substantially bigger soundness-critical prover kernel of about 66000 lines of code written
in a mix of Java and Scala. In some cases, one single proof rule use, e.g., for solving differ-
ential equations in KeYmaera 3 corresponds to thousands of axiom uses in KeYmaera X. The
impact on soundness, however, is that the ODE solver of KeYmaera 3 is trusted while that of
KeYmaera X is not trusted, because each of its outputs is verified with a proof.

For proof automation, KeYmaera 3 implements a simple but fast fixpoint loop [PC09a]
for generating loop invariants of hybrid systems and differential invariants of differential equa-
tions. It provides an array of different SMT strategies for splitting real arithmetic subquestions
[Pla10b]. Changing proof search procedures in KeYmaera 3 (beyond choosing from the list of
predefined ones) is significantly more complicated and, notably, soundness-critical.

HHL Prover. HHL prover [WZZ15] is an interactive theorem prover for verifying hybrid
systems modelled by Hybrid CSP (HCSP) [He94, ZWR96]. It implements the Hybrid Hoare
Logic (HHL) [LLQ+10], a Hoare style logic for reasoning about HCSP, in the proof assistant
Isabelle/HOL [NWP02].

HCSP extends CSP by introducing continuous variables, differential equations, and inter-
ruptions by domain boundary and communication. Given an HCSP process P , an HHL spec-
ification takes the form {Pre} P {Post; HF}, where Pre and Post are pre-/post-conditions in
first-order logic, and HF is a history formula in duration calculus [ZH04] for specifying time-
related properties held throughout the whole execution interval. HHL defines a set of proof
rules for deducing such specifications for HCSP. HHL prover formalizes HCSP and HHL for
proving partial correctness of hybrid systems.

For reasoning about differential equations, HHL includes a proof rule that reduces the specifi-
cation of the continuous evolution to be proved to the synthesis problem of differential invariants
for the corresponding differential equations. HHL prover resorts to an external invariant gener-
ator based on quantifier elimination or sum-of-squares (SOS) relaxation, to automatically solve
the unproven constraints containing unknown differential invariants. The invariant generator
relies on the solvers for quantifier elimination and semi-definite programming for constructing
differential invariants. In the newest version of HHL prover, we removed the dependency on
Mathematica for the SOS-based invariant generator.

For the newest version of HHL prover, we also borrow some idea from [Pla18] and add
the differential cut and ghost rules to the HHL framework. Differential cut rule strengthens
the domain of differential equations by an invariant property proved to hold throughout the
continuous evolution, while the differential ghost rule adds new continuous variables with new
differential equations without affecting the original differential equations. These rules make

6

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

reasoning about differential equations more flexible. For differential invariants, the current
version of HHL prover resorts to external tools for both invariant verification and generation.
Stating proof rules for reasoning about differential invariants within Isabelle is left open for
future work.

For the newest version of the HHL Prover, we added an invariant checker using quantifier
elimination from the external tool Redlog. Invoking Redlog from Isabelle follows the same
pattern as for invariant generation. First, the goal to be proved, which may contain both
entailments (of the form p =⇒ q) and preservation of invariant by a differential equation
(of the form exeFlow(x′ = f(x), I) =⇒ I), is translated from Isabelle’s abstract syntax tree
to JSON format. Next, the JSON file is translated to the input for Redlog using a Python
script. In this step, preservation of invariant is converted to appropriate entailments involving
the domain of evolution and the Lie derivative of the invariant. Finally, Redlog is invoked on
the output of the Python script and checks each of the resulting entailments. This sequence is
implemented as a bash script and invoked by an oracle in Isabelle, which checks the final output
produced by Redlog. The entire process is automatic, after the user supplies the invariant in
usual mathematical notation, and a list of constants that are relevant for quantifier elimination.

We translated a subset of the examples in the basic design shapes and the nonlinear con-
tinuous models of the benchmarks to HCSP. There are some essential differences between the
semantics of dL and HCSP. In particular, in HCSP, evolution by a differential equation cannot
stop before reaching the boundary (or interrupted by a communication). Also, there is no
assignment to an arbitrary value (x := ∗) in HCSP. As a result, some of the examples cannot
be translated naturally. For those examples that can be translated naturally, we proved some
of them in Isabelle, with the help of invariant checking using Redlog.

4 Benchmarks
One of the strengths of hybrid systems theorem proving as a verification technique is its support
for combined automated and interactive verification steps as well as its applicability to proof
search and proof checking. The benchmark examples were analyzed in three modes:

Automated The specification is the only input to the theorem prover. Proofs and counterex-
amples are obtained fully automated to highlight the capabilities of theorem provers in
terms of invariant generation, proof search, and proof checking.

Hints Known design properties of the system, such as loop invariants and invariants of dif-
ferential equations, are annotated in the model and allowed to be exploited during an
otherwise fully automated proof to highlight the capabilities of theorem provers in terms
of proof search and proof checking.

Scripted User guidance with proof scripts is allowed to highlight the capabilities of theorem
provers in terms of proof checking.

The benchmark examples are structured into 3 categories: hybrid systems design shape
examples to test for system design variations at a small scale, nonlinear continuous models to
test for continuous invariant construction and proving capabilities, and hybrid systems case
studies to test for prover scalability.

Experimental setup. The machines used to run the benchmark examples are listed in Ap-
pendixA: KeYmaera X 4.4.3 and KeYmaera X 4.6.3 (in automated (A), hints (H), and scripted

7

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

0 100 200 300 400
0

20

40

60

Time Budget [s]

N
um

be
r
So

lv
ed

KeYmaera X 4.4.3 (A)
KeYmaera X 4.4.3 (H)
KeYmaera X 4.4.3 (S)
KeYmaera X 4.6.3 (A)
KeYmaera X 4.6.3 (H)
KeYmaera X 4.6.3 (S)

KeYmaera 3 (A)

Figure 1: Computation times: Basic benchmark examples. Ranked accumulated time bud-
gets [s], which are the number of examples solved within a total accumulated time budget

(S) mode) and KeYmaera 3 (in automated (A) mode) participated on all benchmark sets and
were executed on the same machine Mk, and therefore their computation times are directly
comparable. HHL Prover participated with the Chinese train control system, lunar lander
descent guidance, and roller-coaster safety case studies, as well as on a subset of the hybrid
systems design shapes and the nonlinear continuous models on its own machine Mhhl. The
execution time measurements were taken separately on a fresh prover instance for each exam-
ple in the benchmark set. Proof attempts were aborted after a category-specific timeout, well
above the longest successful solution in the category. The competition results are presented
with accumulated execution times after examples are ranked according to their execution time.

4.1 Hybrid Systems Design Shapes
Category overview. In this category (unmodified from 2018 [MST+18]), basic examples2

test for proof automation techniques for a large variety of system designs: event-triggered
systems, time-triggered systems, systems with nested loops and differential equations, and
systems with model-predictive control. Instead of focusing on particularly complex systems,
this set of examples strives at a certain degree of coverage of qualitatively different kinds of
systems and their different typical shapes. The benchmark examples are grouped as follows:
Static semantics correctness 9 examples with various sequential orders and nested struc-

tures of assignments, differential equations, and loops.
Dynamics 30 examples with differential equations ranging from solvable to nonlinear.
LICS Tutorial 9 dL tutorial examples [Pla12a] ranging from basic time-triggered motion con-

trol to model-predictive control.
STTT Tutorial 12 dL modeling tutorial examples [QML+16] ranging from basic discrete

event-triggered and time-triggered control for straight-line motion to speed control with
a trajectory generator and lane-keeping with two-dimensional curved motion.

2https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/benchmarks/basic.kyx

8

https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/benchmarks/basic.kyx

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

Competition results. Proof attempts were aborted after a timeout of 300 s in the basic
category, with the longest successful solution after about 80 s. The results for the basic category
in terms of accumulated execution times are shown in Fig. 1. For example, the fastest 30 fully
automated examples can all be solved in cumulative time 10.5 s in KeYmaera 3 vs. 57.5 s in
KeYmaera X 4.4.3 vs. 43.1 s in KeYmaera X 4.6.3 (note that the sets of fastest examples are
not necessarily the same). The main insight from Fig. 1 is that automated proof search with
a fixpoint loop in KeYmaera 3 is faster than the proof search in KeYmaera X for the solved
examples, but KeYmaera X solves a larger portion of the benchmark set with the additional
time it takes. Hints and proof scripts in KeYmaera X help speed up a little bit and solve
additional examples. This indicates that the primary impact of further proof automation for
the basic category of benchmarks will not be the resulting speed but the number of examples
that can be proved fully automatically.

4.2 Nonlinear Continuous Models
Category overview. This set of 99 nonlinear continuous safety verification problems3 is
based on the problems proposed in [SGJ16] and significantly extended from [MST+18]. The
problems in this benchmark set were gathered from published papers in the area of continuous
safety verification and invariant generation for nonlinear systems ([DGXZ17, LZZ11, DCKB17,
SGS14, SGJP16]). The bulk of the problems in the benchmark set feature planar (i.e., 2-
dimensional) polynomial systems of ODEs in which the safety property is known to hold for
unbounded time. The ODEs are furthermore autonomous (i.e., do not explicitly depend on
the independent time variable t); this fact presents no real restriction since non-autonomous
ODEs can be brought into autonomous form by augmenting the dynamics with t′ = 1. Certain
non-polynomial systems of ODEs can likewise be brought into polynomial form by introducing
fresh variables in a process called re-casting [SV87]. While we stress that the existing set of
nonlinear polynomial ODE safety benchmarks can in no way be said to be representative (owing
to its small size), the general class of problems which fits into this category is highly important.

x

y

Figure 2: Nonlinear con-
tinuous safety verification
problem. No initial state
(green rectangle) can evolve
into unsafe states (red half-
plane) along the trajectories.

Example 4.1. The nonlinear system from [DLA06, Ex. 5.2. ii]
that was shown in (2) has the following dynamics:

x′ = 2x− 2xy,
y′ = 2y − x2 + y2.

Taking the initial states to be − 4
5 < x < − 1

3 ∧ −1 ≤ y < 0
and (x = 0 ∧ y = 0) ∨ x + y > 1 to be the forbidden states, the
verification problem is illustrated in Fig. 2.

Competition results. Proof attempts in the nonlinear cat-
egory were aborted after a timeout of 300 s, above the longest
successful solution of about 126 s in automated mode and 243 s
in scripted mode. Fig. 3 plots the accumulated execution times
for the nonlinear category after examples are ranked according
to their execution time. The main insight from Fig. 3 is that the
invariant construction [SGJP16] and proving techniques [PT18]

3https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/benchmarks/nonlinear.kyx

9

https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/benchmarks/nonlinear.kyx

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

0 200 400 600 800 1,000

0

20

40

60

80

Time Budget [s]

N
um

be
r
So

lv
ed

KeYmaera X 4.4.3 (A)
KeYmaera X 4.4.3 (H)
KeYmaera X 4.4.3 (S)
KeYmaera X 4.6.3 (A)
KeYmaera X 4.6.3 (H)
KeYmaera X 4.6.3 (S)

KeYmaera 3 (A)

Figure 3: Computation times: Nonlinear benchmark examples. Ranked accumulated time bud-
gets [s], which are the number of examples solved within a total accumulated time budget.
Automation in KeYmaera X 4.6.3 outperforms hints and automation and is on par with script-
ing in KeYmaera X 4.4.3. KeYmaera X 3 solves only a small number of nonlinear examples.

of KeYmaera X significantly outperform and improve upon KeYmaera 3 the extent to which
continuous dynamics can be analyzed fully automatically. Even proof hints have a negligible
impact compared to full automation.4 The results in scripted mode (S) emphasize the general-
ity of the implemented proving techniques for differential equations: proof scripts with barrier
certificates that were generated outside KeYmaera X solve almost all the remaining exam-
ples. This highlights a potential to improve automated invariant construction with methods to
construct barrier certificates, which are plagued by numerical robustness issues.

4.3 Hybrid Systems Case Study Benchmarks
Category overview. The benchmark examples in this category are selected to test theorem
provers for scalability and efficiency on examples of a significant size and interest in applica-
tions and extended over [MST+18]. The benchmark examples5 are inspired from prior case
studies on train control [PQ09, ZLW+14], flight collision avoidance [PC09b], robot collision
avoidance [MGVP17], a lunar lander descent guidance protocol [ZYZ+14a], and rollercoaster
safety [BLCP18a].

European train control system (ETCS). This benchmark on automated train control
bases on the safety analysis [PQ09] of the cooperation protocol in the European Train Control
System [ERT02, DHO03], which specifies the interaction between an automated train protection
system and a radio-block controller. The radio-block controller (purely discrete dynamics) may

4But this observation could be sensitive to the chosen benchmarks.
5https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/benchmarks/advanced.kyx

10

https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/benchmarks/advanced.kyx

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

q q q q
ST x1 x2 x3

MAFS CO

TCC RBC

CTCS-2 CTCS-3

ppppppppppppppppppp
p p p p p p p p p p p p p p p p p p p

ppppppppppppppppppp
p p p p p p p p p p p p p p p p p p p

Figure 4: A combined scenario of CTCS-3.

at any time issue speed limits that take effect at certain positions; the train must respect these
speed limits (hybrid dynamics of train controller and train motion).
E-1 (ETCS: Essentials) Describes the core safety theorem: a time-triggered train controller

never violates the posted speed limit.
E-2 (ETCS: Proposition 1 (Controllability)) Describes the motion of a train on brakes

and translates it into a stopping distance. Tests a prover’s ability to show equivalence
between a hybrid systems specification in dL and it’s core information in terms of stopping
distance in real arithmetic.

E-3 (ETCS: Proposition 4 (Reactivity)) Describes the motion of a train when accelerat-
ing for a bounded amount of time and the necessary distance to a full stop. Tests a
prover’s ability to work with universally quantified assumptions and/or analyze programs
in the context of universally quantified input.

The benchmark tests a prover’s ability to handle dL safety properties (modal formulas) in
various places of a specification, for example, as proof obligations and as assumptions.

Chinese train control systems (CTCS). This case study is about modeling and verifica-
tion of a combined operational scenario of Chinese Train Control System Level-3 (CTCS-3). It
originates from an under-specification error of the System Requirements Specification (SRS) of
CTCS-3, revealed during a spot testing of the system, which caused a train to stop unexpect-
edly. It has been studied in [ZLW+14, ZZW+13, ZZWF15] and the failure was reproduced by
simulation and also formally verified.

The combined scenario integrates the movement authority (MA) scenario, the level transi-
tion (from CTCS-2 to CTCS-3) scenario, as well as the mode transition (from Full Supervision
mode to Calling On mode, FS to CO for short) scenario of CTCS-3. The combined scenario is
shown in Fig. 4, which occurs under the following situation:

• The train has got enough MA to complete the combined scenario, and
• There are two adjacent segments in the MA, divided by location x2. At x2, the level

transition from CTCS-2 to CTCS-3, and the mode transition from FS to CO, will occur
simultaneously, and

• The train starts to move at location ST , and has an agreement from RBC (Radio Block
Center) to start level transition at x1 and complete the level transition at x2.

According to the SRS, the combined scenario is required to satisfy a liveness property: the
train can eventually move beyond the location x2 with a positive speed, with both the level
transition and mode transition completed successfully.

However, the under-specified SRS fails to guarantee the liveness property. Basically, for
safety reasons, to switch from FS mode to CO mode under CTCS-3, the driver’s confirmation
is required before the switching point x2 to upgrade the speed limit of the CO mode, which is
originally set to 0. However, in the old version of the SRS, such a confirmation request is not

11

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

explicitly specified to be issued to the driver during a region where the train is co-supervised by
both CTCS-2 and CTCS-3 (x1 to x2 in Fig. 4). As a result, the speed limit of the CO segment
cannot be upgraded and remains 0, which forces the train to stop at x2. Thus the verification
objective for this case study is to prove on the underspecified model the negation of the liveness
property, that is, the train must stop at x2.

Roundabout air traffic conflict resolution (ATC). Air traffic conflict resolution ma-
neuvers with curved flight dynamics exhibit nontrivial interactions of discrete and continuous
dynamics. The roundabout benchmark [PC09a] is based on [TPL+96, TPS98, HHMW00,
MF01, DPR05, PC09b, PKV09] to analyze collision freedom of planar roundabout maneuvers
in air traffic control that should guarantee safe spatial separation of aircraft throughout their
flight. The scale of this benchmark can be adjusted easily with the number of aircraft involved
in the conflict resolution maneuver: additional aircraft increase the number of variables in the
benchmark and introduce additional invariants that must be found, but analysis is separable
into pairwise collision freedom questions.
A-2 (ATC: 2 Aircraft Tangential Roundabout Maneuver) Describes the circular con-

flict resolution of two aircraft in a planar roundabout collision avoidance maneuver.
A-3 (ATC: 3 Aircraft Tangential Roundabout Maneuver) Circular conflict resolution

of three aircraft in planar roundabout collision avoidance maneuvers. Safety of the entire
system is collision-freedom between all three aircraft pairs.

A-4 (ATC: 4 Aircraft Tangential Roundabout Maneuver) Circular conflict resolution
of four aircraft in planar roundabout collision avoidance maneuvers. Safety of the entire
system is collision-freedom between all six aircraft pairs.

The benchmark tests a prover’s ability to analyze nested loops and multiple nonlinear dif-
ferential equations. At larger numbers of aircraft it also tests the scale of reasoning about
nonlinear dynamics by identifying and splitting analysis into isolated sub-questions.

Robot collision avoidance (RX). This benchmark bases on [MGVP17] and analyzes obsta-
cle avoidance in ground robot navigation. The benchmark uses models and safety properties to
analyze collision avoidance safety in the presence of stationary obstacles and moving obstacles.

Static Passive Passive-friendlyOrientation

Passive-friendly

Pass parking Avoid/Follow Head-on Turn

Orientation

Static
Passive

Figure 5: Robot collision avoidance properties: benchmark tests static safety and passive safety.

The resulting real arithmetic formulas describing the Euclidian distance between robot and
obstacle after symbolic execution are challenging for current solvers and may require overap-
proximation and simplification in the theorem prover steering the backend decision procedures.

R-1 (Robot collision avoidance: static safety) ensures that no collisions can happen with
stationary obstacles. Tests a prover’s ability to handle mixed solvable (longitudinal robot

12

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

acceleration) and nonlinear (rotational robot motion) continuous dynamics, and its ability
to overapproximate norms (Euclidian distance overapproximated to infinity norm).

R-2 (Robot collision avoidance: passive safety) ensures that no collisions can happen
with stationary or moving obstacles while the robot moves. The size of the resulting
real arithmetic formulas are challenging for current solvers even after overapproximation
of Euclidian distances. Tests a prover’s ability to steer backend decision procedures by
selecting relevant assumptions, using monotonicity arguments to eliminate variables, and
simplify arithmetic.

This benchmark tests a prover’s ability to analyze mixed solvable and nonlinear differential
equations, overapproximation of norms, and arithmetic simplifications.

Lunar Lander Descent Guidance (LLDG). The lunar lander control program is a closed
loop system, which is composed of the lander’s dynamics and the guidance program for the slow
descent phase. The guidance program is executed periodically with a fixed sampling period.
At each sampling point, the current state of the lander is measured by inertial measurement
unit or various sensors. Processed measurements are then input into the guidance program,
which outputs control commands, e.g. the magnitude and direction of thrust, to be imposed
on the lander’s dynamics in the following sampling cycle. The mathematical description of
the lander’s dynamics as well as the guidance program of the slow descent phase can be found
in [ZYZ+14b, ZWZ16].

Rollercoaster Safety (RCS). The roller-coaster safety case study [BLCP18b] is a bench-
mark in component-based verification combining smaller-scale components with non-trivial con-
tinuous dynamics to a full large-scale hybrid system. The components represent motion of a
coaster car along geometrical primitives (straights, arcs) that can be connected to form com-
plicated track shapes of varying scale.

Competition results. Proof attempts in the hybrid systems case study category were aborted
after a timeout of 1500 s, with the longest successful proof after about 1400 s. KeYmaera 3 and
KeYmaera X participated on the full benchmark set (CTCS and LLDG attempted only in au-
tomated (A) mode, RCS only in scripted mode; future verification of CTCS and LLDG with
hints and scripts is planned). HHL Prover participated on the CTCS, LLDG, and RCS case
study.

Again, the fixpoint loop invariant generation technique in KeYmaera 3 solves examples fast,
while hints and proof scripts in KeYmaera X help scale. The results point out a potential to im-
prove tactic implementation efficiency, since on the hybrid systems case studies that KeYmaera 3
can solve automatically it outperforms proof checking from hints in KeYmaera X. The ETCS
benchmark examples feature solvable continuous dynamics, which unsurprisingly leads to a sig-
nificant computation time difference between the ODE solution sequent rule in KeYmaera 3
and the proof-producing tactic in KeYmaera X. The ATC benchmark examples highlight a
particularly useful proof scalability technique in KeYmaera 3, which splits conjunctive safety
properties into separate proof obligations. This technique is mimicked in the KeYmaera X
4.6.3 scripted mode to reduce computation time, for example, in ATC A-4 from 1306 s to 148 s,
but requires further tactic improvements to get to the computational efficiency of KeYmaera 3.
The robot collision avoidance benchmark examples illustrate where current automation fails to
find invariants and identify the necessary arithmetic simplifications for backend procedures to

13

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

0 400 800 1,200 1,600 2,000

2

4

6

8

Time Budget [s]

N
um

be
r
So

lv
ed

KeYmaera X 4.4.3 (A)
KeYmaera X 4.4.3 (H)
KeYmaera X 4.4.3 (S)
KeYmaera X 4.6.3 (A)
KeYmaera X 4.6.3 (H)
KeYmaera X 4.6.3 (S)

KeYmaera 3 (A)

Figure 6: Computation times: Case study benchmark examples. Ranked accumulated time
budgets [s], which are the number of examples solved within a total accumulated time budget

complete in reasonable time; proof checking from hints and scripts for arithmetic simplifications
illustrate potential ways forward to improve proof search automation.

Note HHL Prover. The CTCS case study is identical to the previous edition [MST+18]: a
Simulink/Stateflow model has been built for the combined scenario in the CTCS-3 case study.
Applying the tool Sim2HCSP to the Simulink/Stateflow model, seven files were generated which
describe the HCSP model as well as the goal to be verified. Then using HHL Prover, the goal
was proved successfully as a theorem, taking 59 seconds to finish on the Mhhl platform with
Intel Core i7-4790 CPU 3.60GHZ and 16GB memory. In particular, during the interactive proof
process, certain differential invariants were manually fed into the HHL specification.

In the LLDG case study, the entire Isabelle theory including the model, specification, and
proof for the entire example is 327 lines long. By applying HHL prover, the unproven subgoals
related to differential invariants are transformed to a set of SOS constraints with respect to
the user-defined invariant template, and then the SOS-based invariant generator is invoked on
these constraints to synthesize a satisfying invariant.

In the RCS case study, the roller coaster example [BLCP18b] was converted to HCSP. The
conversion is natural, as the differences between dL and HCSP does not produce any problems.
The proof makes use of invariant checking using Redlog, as well as the newly added differential
ghost rule. The entire Isabelle theory (including the model, specification, and proof for all ten
parts of the example) is 1141 lines long.

14

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

0 500 1,000 1,500 2,000 2,500 3,000

0

50

100

150

Time Budget [s]

N
um

be
r
So

lv
ed

KeYmaera X 4.4.3 (A)
KeYmaera X 4.4.3 (H)
KeYmaera X 4.4.3 (S)
KeYmaera X 4.6.3 (A)
KeYmaera X 4.6.3 (H)
KeYmaera X 4.6.3 (S)

KeYmaera 3 (A)

Figure 7: Ranked accumulated time budgets [s]: number of examples solved in total accumu-
lated time budget (steeper is better). Result summary: KeYmaera 3 sets out faster, but KeY-
maera X 4.6.3 closes the performance gap of KeYmaera X 4.4.3 (curves are steeper longer).
KeYmaera 3 solves less examples, especially among those with nonlinear dynamics. KeY-
maera X scales better; hints and scripts increase the number of solved examples and reduce
computation time.

5 Conclusion and Outlook

The hybrid systems theorem proving friendly competition focuses on the characteristic features
of hybrid systems theorem proving: flexibility of programming language principles for hybrid
systems, unambiguous program semantics, and mathematically rigorous logical reasoning prin-
ciples.

The (almost 160) benchmark examples are chosen to reflect a large variety of hybrid systems
model shapes and scales to test hybrid systems theorem provers both for their flexibility to
analyze typical modeling styles and for their scalability. More potential benchmark examples
are always welcome in future years of the competition! The hybrid systems theorem proving
category allows tools to choose their operating mode on the spectrum from fast proof checking
of scripted proofs, hint-supported proof search and checking, to full automation.

The results, summarized in Figures 7–9, show significant improvements over theorem prover
generations (KeYmaera X compared to its predecessor KeYmaera 3) in handling continuous
dynamics fully automatically, but also highlight that the tactics in KeYmaera X, even though
they are closing the gap, can still learn in terms of performance from the proof search and check-
ing procedures of KeYmaera 3. The comparison between KeYmaera X 4.4.3 and KeYmaera X
4.6.3 illustrates the benefit of separating tactics and core in the KeYmaera X architecture:
proof automation in KeYmaera X 4.6.3 is now at the level of scripted proving in KeYmaera X
4.4.3, while additional scripted functionality became available that is expected to trickle down
to automation in future years.

15

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

Ba
sic

(A
)

Ba
sic

(H
+S
)

No
nli
ne
ar
(A
)

No
nli
ne
ar
(H
+S
)

Ad
van

ced
(A
)

Ad
van

ced
(H
+S
)0%

20%

40%

60%

80%

100%

Automated
Scripted
Unsolved

(a) KeYmaera X 4.4.3: Number solved au-
tomated (A), hints (H), and scripted (S)

Ba
sic

(A
)

Ba
sic

(H
+S
)

No
nli
ne
ar
(A
)

No
nli
ne
ar
(H
+S
)

Ad
van

ced
(A
)

Ad
van

ced
(H
+S
)0%

20%

40%

60%

80%

100%

Automated
Scripted
Unsolved

(b) KeYmaera X 4.6.3: Number solved
automated (A), hints (H), and scripted (S)

Figure 8: Result summary: KeYmaera X 4.6.3 automation is now at the level of KeYmaera X
4.4.3 scripting; additional scripting in KeYmaera X 4.6.3 increases the number of solvable
examples.

0 200 400 600 800 1,000

0

20

40

60

80

Time Budget [s]

N
um

be
r
So

lv
ed

Basic (60 total) Nonlinear (99 total) Advanced (10 total)

(a) KeYmaera X 4.6.3

0 200 400 600 800 1,000
0

20

40

60

80

Time Budget [s]

(b) KeYmaera 3

Figure 9: Result summary: Number of examples solvable fully automatically (A) with individual
time budgets. KeYmaera X solves more examples, especially among those with nonlinear
dynamics.

16

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

Acknowledgments. This material is based upon work supported by the National Science
Foundation under CNS-1739629, by the AFOSR under grant number FA9550-16-1-0288, and
by the United States Air Force and DARPA under Contract No. FA8750-18-C-0092. The views
and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution,
the U.S. government or any other entity. Yong Kiam Tan was also supported by A*STAR,
Singapore. Bohua Zhan is supported by CAS Pioneer Hundred Talents Program under grant
No. Y9RC585036. Xiangyu Jin, Shuling Wang, and Naijun Zhan are funded partly by NSFC
under grant No. 61625206 and 61732001, by “973 Program” grant No. 2014CB340701 and by
the CAS/SAFEA International Partnership Program for Creative Research Teams.

References

[BLCP18a] Rose Bohrer, Adriel Luo, Xue An Chuang, and André Platzer. CoasterX: A case study in
component-driven hybrid systems proof automation. IFAC-PapersOnLine, 2018. Analysis
and Design of Hybrid Systems ADHS.

[BLCP18b] Rose Bohrer, Adriel Luo, Xue An Chuang, and André Platzer. Coasterx: A case study in
component-driven hybrid systems proof automation. In 6th IFAC Conference on Analysis
and Design of Hybrid Systems, ADHS 2018, Oxford, UK, July 11-13, 2018, pages 55–60,
2018.

[BRV+17] Rose Bohrer, Vincent Rahli, Ivana Vukotic, Marcus Völp, and André Platzer. Formally
verified differential dynamic logic. In Yves Bertot and Viktor Vafeiadis, editors, Certified
Programs and Proofs - 6th ACM SIGPLAN Conference, CPP 2017, Paris, France, January
16-17, 2017, pages 208–221, New York, 2017. ACM.

[DCKB17] Adel Djaballah, Alexandre Chapoutot, Michel Kieffer, and Olivier Bouissou. Construction
of parametric barrier functions for dynamical systems using interval analysis. Automatica,
78:287–296, 2017.

[DGXZ17] Liyun Dai, Ting Gan, Bican Xia, and Naijun Zhan. Barrier certificates revisited. J. Symb.
Comput., 80:62–86, May 2017.

[DHO03] Werner Damm, Hardi Hungar, and Ernst-Rüdiger Olderog. On the verification of coop-
erating traffic agents. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem P. de Roever, editors, FMCO, volume 3188 of LNCS, pages 77–110. Springer, 2003.

[DLA06] Freddy Dumortier, Jaume Llibre, and Joan C Artés. Qualitative Theory of Planar Differ-
ential Systems. Springer, 2006.

[DPR05] Werner Damm, Guilherme Pinto, and Stefan Ratschan. Guaranteed termination in the ver-
ification of LTL properties of non-linear robust discrete time hybrid systems. In Doron A.
Peled and Yih-Kuen Tsay, editors, ATVA, volume 3707 of LNCS, pages 99–113. Springer,
2005.

[ERT02] ERTMS User Group. UNISIG: ERTMS/ETCS system requirements specification.
http://www.era.europa.eu, 2002. Version 2.2.2.

[FMBP17] Nathan Fulton, Stefan Mitsch, Rose Bohrer, and André Platzer. Bellerophon: Tactical
theorem proving for hybrid systems. In Mauricio Ayala-Rincón and César A. Muñoz,
editors, ITP, volume 10499 of LNCS, pages 207–224. Springer, 2017.

[FMQ+15] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer. KeY-
maera X: An axiomatic tactical theorem prover for hybrid systems. In Amy Felty and Aart
Middeldorp, editors, CADE, volume 9195 of LNCS, pages 527–538, Berlin, 2015. Springer.

[He94] J. He. From CSP to hybrid systems. In A Classical Mind, Essays in Honour of C.A.R.
Hoare, pages 171–189. Prentice Hall International (UK) Ltd., 1994.

17

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

[HHMW00] Thomas A. Henzinger, Benjamin Horowitz, Rupak Majumdar, and Howard Wong-Toi.
Beyond HYTECH: hybrid systems analysis using interval numerical methods. In Nancy A.
Lynch and Bruce H. Krogh, editors, HSCC, volume 1790 of LNCS, pages 130–144. Springer,
2000.

[LLQ+10] J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, and L. Zou. A calculus for hybrid
CSP. In APLAS 2010, volume 6461 of LNCS, pages 1–15. Springer, 2010.

[LZZ11] Jiang Liu, Naijun Zhan, and Hengjun Zhao. Computing semi-algebraic invariants for poly-
nomial dynamical systems. In Samarjit Chakraborty, Ahmed Jerraya, Sanjoy K. Baruah,
and Sebastian Fischmeister, editors, EMSOFT, pages 97–106. ACM, 2011.

[Man93] Yiu-Kwong Man. Computing closed form solutions of first order odes using the prelle-singer
procedure. Journal of Symbolic Computation, 16(5):423–443, 1993.

[MF01] Mieke Massink and Nicoletta De Francesco. Modelling free flight with collision avoidance.
In ICECCS, pages 270–280. IEEE Computer Society, 2001.

[MGVP17] Stefan Mitsch, Khalil Ghorbal, David Vogelbacher, and André Platzer. Formal verification
of obstacle avoidance and navigation of ground robots. I. J. Robotics Res., 36(12):1312–
1340, 2017.

[MST+18] Stefan Mitsch, Andrew Sogokon, Yong Kiam Tan, André Platzer, Hengjun Zhao, Xiangyu
Jin, Shuling Wang, and Naijun Zhan. ARCH-COMP18 category report: Hybrid systems
theorem proving. In Goran Frehse, Matthias Althoff, Sergiy Bogomolov, and Taylor T.
Johnson, editors, ARCH18. 5th International Workshop on Applied Verification of Con-
tinuous and Hybrid Systems, ARCH@ADHS 2018, Oxford, UK, July 13, 2018, volume 54
of EPiC Series in Computing, pages 110–127. EasyChair, 2018.

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof Assis-
tant for Higher-order Logic. Springer, Berlin, Heidelberg, 2002.

[PC09a] André Platzer and Edmund M. Clarke. Computing differential invariants of hybrid systems
as fixedpoints. Form. Methods Syst. Des., 35(1):98–120, 2009. Special issue for selected
papers from CAV’08.

[PC09b] André Platzer and Edmund M. Clarke. Formal verification of curved flight collision avoid-
ance maneuvers: A case study. In Ana Cavalcanti and Dennis Dams, editors, FM, volume
5850 of LNCS, pages 547–562, Berlin, 2009. Springer.

[PJ04] Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using barrier
certificates. In International Workshop on Hybrid Systems: Computation and Control,
pages 477–492. Springer, 2004.

[PJP07] Stephen Prajna, Ali Jadbabaie, and George J. Pappas. A framework for worst-case
and stochastic safety verification using barrier certificates. IEEE T. Automat. Contr.,
52(8):1415–1429, 2007.

[PKV09] Erion Plaku, Lydia E. Kavraki, and Moshe Y. Vardi. Hybrid systems: from verification
to falsification by combining motion planning and discrete search. Form. Methods Syst.
Des., 34(2):157–182, 2009.

[Pla08] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas., 41(2):143–
189, 2008.

[Pla10a] André Platzer. Differential-algebraic dynamic logic for differential-algebraic programs. J.
Log. Comput., 20(1):309–352, 2010.

[Pla10b] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dy-
namics. Springer, Heidelberg, 2010.

[Pla12a] André Platzer. Logics of dynamical systems. In LICS, pages 13–24, Los Alamitos, 2012.
IEEE.

[Pla12b] André Platzer. The structure of differential invariants and differential cut elimination.
Log. Meth. Comput. Sci., 8(4:16):1–38, 2012.

18

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

[Pla17] André Platzer. A complete uniform substitution calculus for differential dynamic logic. J.
Autom. Reas., 59(2):219–265, 2017.

[Pla18] André Platzer. Logical Foundations of Cyber-Physical Systems. Springer, Switzerland,
2018.

[PQ08] André Platzer and Jan-David Quesel. KeYmaera: A hybrid theorem prover for hybrid
systems. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, IJCAR,
volume 5195 of LNCS, pages 171–178, Berlin, 2008. Springer.

[PQ09] André Platzer and Jan-David Quesel. European Train Control System: A case study in
formal verification. In Karin Breitman and Ana Cavalcanti, editors, ICFEM, volume 5885
of LNCS, pages 246–265, Berlin, 2009. Springer.

[PT18] André Platzer and Yong Kiam Tan. Differential equation axiomatization: The impressive
power of differential ghosts. In Anuj Dawar and Erich Grädel, editors, LICS, New York,
2018. ACM.

[QML+16] Jan-David Quesel, Stefan Mitsch, Sarah Loos, Nikos Aréchiga, and André Platzer. How to
model and prove hybrid systems with KeYmaera: A tutorial on safety. STTT, 18(1):67–91,
2016.

[SC+13] Sriram Sankaranarayanan, Xin Chen, et al. Lyapunov function synthesis using handelman
representations. IFAC Proceedings Volumes, 46(23):576–581, 2013.

[SGJ16] Andrew Sogokon, Khalil Ghorbal, and Taylor T Johnson. Non-linear continuous systems
for safety verification (benchmark proposal). In ARCH@CPSWeek, volume 43, pages 42–
51. EasyChair, 2016.

[SGJP16] Andrew Sogokon, Khalil Ghorbal, Paul B. Jackson, and André Platzer. A method for in-
variant generation for polynomial continuous systems. In Barbara Jobstmann and K. Rus-
tan M. Leino, editors, VMCAI, volume 9583 of LNCS, pages 268–288. Springer, 2016.

[SGS14] Mohamed Amin Ben Sassi, Antoine Girard, and Sriram Sankaranarayanan. Iterative
computation of polyhedral invariants sets for polynomial dynamical systems. In CDC,
pages 6348–6353. IEEE, 2014.

[SV87] Michael A. Savageau and Eberhard O. Voit. Recasting nonlinear differential equations as
S-systems: a canonical nonlinear form . Mathematical Biosciences, 87(1):83 – 115, 1987.

[TPL+96] Claire Tomlin, George J. Pappas, John Lygeros, Datta N. Godbole, and Shankar Sastry.
Hybrid control models of next generarion air traffic management. In Panos J. Antsaklis,
Wolf Kohn, Anil Nerode, and Shankar Sastry, editors, Hybrid Systems IV, volume 1273 of
LNCS, pages 378–404. Springer, 1996.

[TPS98] Claire Tomlin, George J. Pappas, and Shankar Sastry. Conflict resolution for air traffic
management: a study in multiagent hybrid systems. IEEE Transactions on Automatic
Control, 43(4):509–521, Apr 1998.

[WZZ15] S. Wang, N. Zhan, and L. Zou. An improved HHL prover: an interactive theorem prover
for hybrid systems. In ICFEM 2015, volume 9407 of LNCS, pages 382–399. Springer, 2015.

[ZH04] C. Zhou and M.R. Hansen. Duration Calculus — A Formal Approach to Real-Time Sys-
tems. Monographs in Theoretical Computer Science. An EATCS Series. Springer-Verlag
Berlin Heidelberg, 2004.

[ZLW+14] Liang Zou, Jidong Lv, Shuling Wang, Naijun Zhan, Tao Tang, Lei Yuan, and Yu Liu.
Verifying Chinese train control system under a combined scenario by theorem proving.
In Ernie Cohen and Andrey Rybalchenko, editors, VSTTE 2013, volume 8164 of LNCS,
pages 262–280. Springer, 2014.

[ZWR96] Chaochen Zhou, Ji Wang, and Anders P. Ravn. A formal description of hybrid systems.
In Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems
III, volume 1066 of Lecture Notes in Computer Science, pages 511–530. Springer Berlin
Heidelberg, 1996.

[ZWZ16] Naijun Zhan, Shuling Wang, and Hengjun Zhao. Formal Verification of Simulink/Stateflow

19

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

Diagrams - A Deductive Approach. Springer, 2016.
[ZYZ+14a] Hengjun Zhao, Mengfei Yang, Naijun Zhan, Bin Gu, Liang Zou, and Yao Chen. Formal

verification of a descent guidance control program of a lunar lander. In Cliff B. Jones,
Pekka Pihlajasaari, and Jun Sun, editors, FM 2014: Formal Methods - 19th International
Symposium, Singapore, May 12-16, 2014. Proceedings, volume 8442 of Lecture Notes in
Computer Science, pages 733–748. Springer, 2014.

[ZYZ+14b] Hengjun Zhao, Mengfei Yang, Naijun Zhan, Bin Gu, Liang Zou, and Yao Chen. Formal
verification of a descent guidance control program of a lunar lander. In Cliff Jones, Pekka
Pihlajasaari, and Jun Sun, editors, FM 2014: Formal Methods, pages 733–748, Cham,
2014. Springer International Publishing.

[ZZW+13] Liang Zou, Naijun Zhan, Shuling Wang, Martin Fränzle, and Shengchao Qin. Verifying
Simulink diagrams via a Hybrid Hoare Logic prover. In EMSOFT, pages 1–10. IEEE Press,
2013.

[ZZWF15] Liang Zou, Naijun Zhan, Shuling Wang, and Martin Fränzle. Formal verification of
Simulink/Stateflow diagrams. In ATVA, volume 9346 of LNCS, pages 464–481. Springer,
2015.

20

ARCH-COMP19 Hybrid Systems Theorem Proving Mitsch et al.

A Specification of Machines
A.1 Mk

• Processor: Intel Xeon E5-1650 v2 @ 3.5GHz x 6
• Memory: 32GB
• Average CPU Mark on www.cpubenchmark.net: 12695 (full), 1990 (single thread)

A.2 Mhhl

• Processor: Intel Core i7-4790 CPU @ 3.6GHz
• Memory: 16GB
• Average CPU Mark on www.cpubenchmark.net: 9995 (full), 2284 (single thread)

21

www.cpubenchmark.net
www.cpubenchmark.net

	Introduction
	Problem Format
	Participating Tools
	Benchmarks
	Hybrid Systems Design Shapes
	Nonlinear Continuous Models
	Hybrid Systems Case Study Benchmarks

	Conclusion and Outlook
	Specification of Machines
	Mk
	Mhhl

