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Abstract

Wireless Sensor Networks in general and Body Sensor
Networks in particular enable sophisticated applications in
pervasive healthcare, sports training and other domains,
where interconnected nodes work together. Their main goal
is to derive context from raw sensor data with feature
extraction and classification algorithms. Body sensor net-
works not only comprise a single sensor type or family
but demand different hardware platforms, e.g., sensors to
measure acceleration or blood-pressure, or tiny mobile
devices to communicate with the user. The problem arises
how to efficiently deal with these heterogeneous platforms
and programming languages.

This paper presents a distributed signal processing frame-
work based on TinyOS and nesC. The framework forms the
basis for a Model-Driven Software Development approach.
By raising the level of abstraction formal models hide
implementation specifics of the framework in a Platform
Specific Model. A Platform Independent Model further lifts
modeling to functional and non-functional requirements in-
dependent from platforms. Thereby we promote cooperation
between domain experts and software engineers and facil-
itate reusability of applications across different platforms.

1. Introduction

Wireless Sensor Networks (WSNs) are applied in many
different fields, e.g., environmental monitoring, pervasive
healthcare, or sports training. WSNs could furthermore be
used in the context of body sensor networks consisting of
multiple interconnected nodes on, near, or even within a
human body, which together provide sensing, processing and
communication capabilities [1]. In comparison to traditional
WSNs body sensor networks (BSN) are even more restricted
in terms of hardware: they need to be smaller, less obtrusive
and consume less energy. Moreover BSNs often comprise
heterogeneous sensor types (e.g., physiological, biokinetic
and ambient sensors) that need to cooperate together to
measure a certain phenomenon.

[1] states that software engineers and domain experts, who
are responsible to specify requirements, should be able to

work together. In our opinion appropriate tool support is
needed that enables this cooperation and hides hardware
specifics from the domain experts. However, research to
date focuses rather on low-level implementation details (e.g.,
routing protocols or time synchronization), and how WSNs
can be applied in specific use cases. Therefore software
engineers are often forced to use specific hardware and
programming languages. This leads to applications that can
hardly be reused in different use cases; tools or frameworks
are scarcely available that help software engineers to reduce
development time and to support them in the development
process. An example for such a tool is YETI [2], consisting
of a TinyOS textual and graphical editor. Further tools are
compared in the taxonomy presented in [3]: they are all
useful during nesC programming, but lack abstraction from
low-level details. [4], however, states that “Raising the level
of abstraction for programmers will be key to the growth of
wireless sensor networks. Currently programmers deal with
too many low-level details regarding sensing and node-to-
node communication.”.

A framework abstracting from sensor specifics is TinyDB
[5] which provides a query language for sensor networks
similar to SQL. It simplifies querying sensor values and
also abstracts from different sensor platforms by means of
the query language. Furthermore aggregation functions like
minimum or maximum of sensor readings can be applied;
but these functions are too restricted to derive low-level
context from sensor readings, which hinders its use in body
sensor networks. We argue that a more flexible framework is
needed to efficiently make use of the local processing power
of motes. They are not only able to read sensor data but also
to locally extract features and derive context with classifiers.

The paper describes a signal processing software frame-
work prototype based on TinyOS and nesC to build context-
aware applications. Cooperation between domain experts
and software engineers, however, cannot be promoted with
such a framework. More abstract concepts are needed, which
hide hardware specifics and programming languages. We
propose that models could enable this cooperation. These
models should not only serve documentation purposes, but
rather be integrated into the development process as first-
class artifacts [6], which can then be systematically trans-
formed to source code—the main idea of Model-Driven



Software Development (MDSD). As BSNs may comprise
several different platforms, the model can be lifted to further
abstract from platform specifics. We therefore propose to
include different layers of models: Platform Independent
Models (PIMs) and Platform Specific Models (PSMs). A
PIM is used by a domain expert to model the functionality.
This PIM can then be automatically transformed to one or
more PSMs that are refined by a software engineer. The
integration of a PIM further raises abstraction, promotes
cooperation between domain experts and software engineers,
and allows the application of an MDSD approach in the
field of context-aware applications in general and WSNs and
BSNs in particular.

2. Related Work

Model-Driven Engineering (MDE) is a development ap-
proach using abstract models to describe systems; these
models are systematically transformed to concrete im-
plementations [7]. Model-Driven Software Development
(MDSD) applies MDE with a focus on building blocks
for software development processes. [8] defines MDSD
as a general term for techniques that generate executable
software from formal models. Model-Driven Architecture
(MDA)—a specification of the OMG—is an MDSD ap-
proach based on the Meta Object Facility (MOF) to en-
sure interoperability between models. It emphasizes the
separation between Platform Independent Models (PIMs)
and Platform Specific Models (PSMs) as stated in [9].
Gaps between different models are bridged with transforma-
tions. [10] differentiates between transformations generating
lower-level models from higher-level models (e.g., a PIM
to PSM transformation) and mapping models at the same
level of abstraction (e.g., PIM to PIM transformation). A
prominent transformation approach is the Atlas Transforma-
tion Language (ATL) described in [11], which supports both
imperative and declarative transformation rules.

In [12] pattern recognition systems are structured into five
steps: sensing, segmentation, feature extraction, classifica-
tion, and post-processing. Sensing collects raw sensor data,
segmentation filters raw data to remove noise and undesired
measurings, and feature extraction then reduces the data
volume and prepares data as feature vectors. Classifiers
decide to which category (context) a given feature vector
most probably belongs to. During post-processing we can
use domain knowledge to enhance the classifier’s output and
evaluate the costs that are incurred if we follow its deci-
sion. For detailed information on different context-awareness
frameworks and context-aware systems please refer to [13].

SPINE is a TinyOS-based software framework for BSN
signal processing applications [14]. The framework com-
prises signal processing components for sensor nodes run-
ning the TinyOS environment and Java components to
manage the sensor nodes from a central coordinator node

(star topology). The framework succeeds in abstracting from
low-level TinyOS programming, but we still find that it could
abstract from platform specifics even more rigorously.

The Context Recognition Network (CRN) Toolbox is
a C++ framework integrating hardware abstraction, filter
algorithms, feature extraction components and classifiers
in a configurable runtime to support rapid development
of context recognition applications [15]. It is designed for
deployment to embedded devices that support the POSIX
runtime environment. Although a graphical editor is pro-
vided it is not based on a formal meta-model and thus the
CRN Toolbox cannot fully benefit from an MDSD approach.

The discussed projects and frameworks do not specify
their architectures in formal meta-models. Therefore, they
lack interoperability, development support, and software
engineering methodology. Moreover, the projects make use
of configurable runtimes, which in our opinion lead to
undesired performance and memory losses. As we base our
modeling environment on formal meta-models we abstract
application development from specific platforms and can
thereby generate code exactly tailored to a use case’s re-
quirements and to different platforms (which could be easily
extended with SPINE and the CRN Toolbox).

[16] describes a modeling tool for wireless sensor network
applications that supports the software development process
with different levels of abstraction: domain experts model
WSN applications in a domain model. Implementation is
then detailed in a PIM; components are further refined in a
PSM, before code for a specific platform is generated. The
modeling tool is, however, too focused on wireless sensor
networks to be directly applicable to body sensor networks;
it does, e.g., not support cross-platform processing between
sensor nodes and coordinator. In fact, their domain model
corresponds to the PSM in our approach.

3. A TinyOS Signal Processing Framework

This section describes our software framework facilitating
creation of signal processing applications on the TinyOS-
2.x platform. TinyOS [17] is a component-based operating
system for wireless sensor networks abstracting hardware
resources in components. Its applications are programmed
using the nesC programming language [18] based on mod-
ules and configurations. Modules represent component im-
plementations whereas configurations are used to wire mod-
ules and other configurations together to form an application.

The nesC component specification is an ideal founda-
tion for an extensible signal processing framework, which
supports the steps in the pattern recognition lifecycle de-
scribed in [12]: sensing, segmentation, feature extraction,
classification and post-processing. The framework’s com-
ponents match these steps: Readers are used for sensing,
FeatureExtractors for segmentation and feature extraction,
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Figure 1. Sample signal processing application

Classifiers for classification. Post-processing can be real-
ized with feature extractors (e.g., smoothing the sequence
of a classifier’s predictions) or classifiers (e.g., multiple
classification or voting). Wired together the components
form signal processing pipelines according to the Pipes-and-
Filters architectural style defined in [19].

The framework’s foundation is the interface Filter. It spec-
ifies the process command to execute the filter’s functionality
such as e.g., reading data, extracting features, or classifying
data. Every filter component in a pipeline uses and provides
this interface. Thereby a preceding component can push
data into its successive component. The wirings represent
the pattern’s pipes. New components can be integrated
into the framework easily by implementing new modules,
which have to provide and/or use the interface Filter. A
configuration for the implemented module has to be provided
to allow programmers to easily wire the new component
together in an application. Fig. 1 shows the wiring of
a sample application that reads horizontal (x-)acceleration
values, applies a variance filter and broadcasts the result
into the network using a multihop protocol.

Every pipeline starts with a reader delivering sensor data;
we term semantically different data items Aspects (e.g., ver-
tical or horizontal acceleration). Aspects are aggregated into
data packets, pushed from component to component, and
processed by every filter along the pipeline. The AspectRead
interface wraps the TinyOS interface Read to assign a unique
identifier to every sensor reading by which aspects can
be distinguished. FeatureExtractor components modify data
(e.g., a MinFilter, or VarianceFilter) and produce one output
data packet for each incoming packet. Classifiers, in contrast,
consume data packets and reason for low-level context, e.g.,
by applying a threshold. They produce new aspects for their
successors.

Besides filters that transform raw sensor data we pro-
vide utility components which are useful to form flexible
applications. Splitters follow the Dispatcher Pattern in [20]
to split up a data packet’s aspects for different successors.
The splitter’s counterpart is the Merger: it aggregates aspects
of multiple data packets. Communication between a WSN’s
motes as well as communication to a gateway is integrated
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Figure 2. Platform specific meta-model

into the framework by means of a MultihopSender com-
ponent, which routes data packets through the network to a
receiver. An UARTSender component transfers data to a PC.

The framework’s filters are implemented in terms of
modules and configurations. Therefore the main task of the
software engineer is to wire components together to form a
signal processing pipeline. Every component has to be wired
to the PipelineM which implements the Boot’s interface
event boot to initialize all filters and to start the pipeline’s
reader. Furthermore the pipes between the components need
to be established by setting the components successors
(see Fig. 1). Nevertheless, programming nesC and other
component-based platforms—especially defining component
wiring—is error-prone and difficult to understand from
source code, although tools try to simplify programming
and provide editors that visualize the wiring. Unfortunately
incorrect wiring might not always lead to compile errors but
to semantic errors during execution which are even harder
to detect as debugging is scarcely supported. Moreover such
tools do not promote cooperation between domain experts
and software engineers. As motivated in the introduction
we propose formal models as abstractions from hardware
and implementation details to enable Model-Driven Software
Development (MDSD).

4. Platform Specific Modeling

A Domain Specific Langue (DSL), which focuses on the
domain of distributed signal processing, simplifies using the
described framework. In terms of MDSD DSLs are defined
in meta-models specifying the abstract syntax of the domain.
Fig. 2 shows the meta-model specific to the described signal
processing framework (a PSM in the sense of MDA).

A TinyOS application comprises one or more pipelines.
From a deployment view such an application can be hosted
on several nodes that together form a NodeGroup. Node
groups geographically close to each other are combined in
a Region. Within a region communication between nodes
is possible (the distance or differences in communication
protocols between nodes in different regions prohibits direct
communication) and represented by InternalLinks. Link de-



Figure 3. PSM model screenshot

tails (e.g., the routing protocol) are used to later generate
the correct sending and receiving filter in nesC source code.
If geographically separate regions want to communicate
with each other, they are connected with ExternalLinks.
The region’s ports represent gateway applications translating
from the in-network protocol to a different network, e.g.,
from Zigbee to a long range wireless protocol or to the
serial port on a PC. Every Connectable instance (region,
node group, and filter) defines interface contracts in the form
of aspects on input and output ports (an aspect defines a data
item’s format and its semantics). Connections can only be
specified between ports that share the same contract. The
example wiring of Fig. 1 is now represented in the model
shown in Fig. 3.

Models conforming to the meta-model represent signal
processing applications on an abstract level. The graphical
models are then used to create source code based on the
described framework. The Reader in the model specifies
the sampling interval; its out port specifies the aspect to
acquire the horizontal acceleration and the nesC component
actually handling sensor readings (cf. property view in Fig.
3). The reader in the model is transformed to ReaderC,
AspectReadM and AxcelXC with the corresponding wirings.
The TimerMilliC is derived from the sampling interval. The
VarFilter is transformed to the equivalent VarFilterC. The
pipe between Reader and VarFilter is transformed to a wiring
from the ReaderC’s used Successor interface to the VarFil-
terC’s provided Filter interface. The NodeGroup1 aggregates
the Reader and the Filter into a TinyOS application and
its accompanying MakeFile. In the example the node group
consists of four nodes as indicated by the number at the
top-right of the figure. The nodes form a mesh-network
which communicates its data to a gateway indicated with
the out port VAR on the node group and the out port
Gateway on the region. These ports are connected with
an internal link; the link’s routing protocol property is set
to multihop communication. Therefore a MultihopSenderC
instance is connected to the VarFilterC which is modeled
by the pipe between VarFilter and NodeGroup1’s out port.
Every component is wired to the pipeline’s used Filter

1: configuration NodeGroup1 { }
2: implementation {
3: components PipelineM, MainC;
4: components new ReaderC(1, 64) as Reader;
5: components new AspectReadM(uint16 t,
6: ACCEL X) as XRead;
7: components new AccelXC();
8: components new VarFilterC(5) as VarFilter;
9: components new MultihopSenderC(AM VAR ID,

10: sizeof(DataPacket), GATEWAY ID) as VAR;
11: PipelineM.Boot → MainC.Boot;
12: PipelineM.Filter → Reader;
13: PipelineM.Filter → VAR;
14: PipelineM.Filter → VarFilter;
15: PipelineM.StdControl → Reader;
16: Reader.AspectRead → XRead;
17: XRead.Read → AccelXC;
18: Reader.Successor → VarFilter;
19: VarFilter.Successor → VAR;
20: }

Figure 4. Generated nesC wiring code

interface (thereby the pipeline can initialize every filter on
startup). The ReaderC is furthermore wired to the pipeline’s
used StdControl interface to start data acquisition. Fig. 4
shows the source code generated from the model in Fig. 3
by applying the XPand template language [8].

Many applications, however, cannot be hosted on TinyOS
nodes in isolation; instead, the TinyOS platform is only a
part of a software system and cooperates with other plat-
forms to achieve the application functionality (e.g., TinyOS
sensors read data, preprocess it locally, and then transmit it
via a gateway to a PC for presentation or further process-
ing). Therefore, we raise the abstraction level to platform
independent models described in the next section.

5. Platform Independent Models

The PSM described in the previous section still focuses
on an implementation platform and therefore targets soft-
ware engineers. By raising the abstraction level to platform
independent models, we focus on the application’s functional
and non-functional requirements independent from hardware
and software platforms, deployment details, and component
framework implementations. Thereby, domain experts are
able to express their application domain knowledge and
the use case in a formal specification, instead of in in-
formal requirements documents. The focus on requirements
is twofold: Functional requirements are captured as signal
processing components ordered in a pipeline. Non-functional
requirements are described by properties on components.

Readers define the information available to the application
in terms of output interface contracts. Their non-functional



requirements capture user preferences and constraints as
informal descriptions (e.g., a user may dislike image sensors
due to privacy reasons but can imagine wearing accelerom-
eter sensors possibly integrated into clothing). Additionally,
the domain expert can observe characteristic behavioral
patterns and environmental settings that indicate if a certain
implementation is feasible or not. The functional require-
ments of feature extractors heavily depend on the use case.
It is therefore impossible to represent every specific feature
extractor within the platform independent meta-model. To
gain modeling flexibility we provide two different variants:
typed and generic feature extractors. Typed feature extractors
are predefined in the platform independent meta-model;
often, they are already implemented on many platforms.
Rarely used feature extractors are integrated as generic
feature extractors: they define their purpose, e.g., in terms
of a mathematical function, and are implemented later on a
specific platform. A classifier’s functional requirements are
defined with interface contracts, i.e., input aspects available
to the classifier and output aspects it needs to derive. Addi-
tionally, the classifier type—either supervised, unsupervised
or reinforcement learning algorithms [12]—and whether the
classification problem consist of a process that unfolds in
time suggesting e.g., a Hidden Markov Model, can be spec-
ified. Non-functional requirements describe the classifier’s
accuracy, precision, and recall.

The separation of the functionality of a system (repre-
sented in a PIM) and the adaption to specific platforms
(represented in PSMs) requires automatic model transfor-
mations. WSN and BSN applications often comprise func-
tionality that must be realized with cooperating platforms.
For example, if we want to monitor an individual to detect
behavioral patterns and present them to doctors, we would
certainly use two platforms: TinyOS to read and preprocess
sensor data, and a PC to host the user interface. Therefore,
it is necessary to split a single PIM up into several PSMs
during model transformation. The problem, however, arises
which components of the PIM can be transformed to which
specific platform. Additional problems are that multiple
platforms could be candidates to host a component and
that one platform could offer multiple specific types (e.g.,
the Java platform offers the writer types console writer
and file writer). The first issue can be solved with formal
platform descriptions, whereas the latter two need to be
manually specified during transformation. This transforma-
tion specification is captured in a transformation model,
which again conforms to a transformation meta-model. The
transformation meta-model comprises the transformation
specification of a PIM to one or more platforms. Each
platform independent filter is transformed to a platform
specific one (i.e., a PIM filter is a transformation’s source
model element, whereas the platform specific filter is a target
model element). Fig. 5 shows the model transformation
process in detail.
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Figure 5. Transformation example

A PIM that conforms to the PIM meta-model captures
the functionality (in this example, an aspect is read, filtered,
and then presented to the user). At the beginning of the
transformation process a transformation model instance is
automatically created: it includes the available platform de-
scriptions extracted from the PSM meta-models (the exam-
ple shows an instance of the transformation model including
the Java and the TinyOS platforms as possible transforma-
tion target platforms). The extracted platform descriptions
are presented in a graphical wizard to guide the software
engineer through the process of selecting possible platform
specific realizations. The specified mapping is stored in the
transformation model by adding source references (the PIM
components) to target model elements, specifying the PSM
model elements to be generated. After mappings for every
PIM component are specified the transformation is executed
to generate PSM model instances.

In case a PIM is transformed to more than one platform
connections that bridge platform boundaries cannot be real-
ized with in-process method calls (in contrast to connections
within the same platform). Therefore we generate in the
TinyOS PSM a Region with an output port representing a
gateway (the connection’s source platform) and a Receiver
component on the connection’s target platform respectively,
as depicted in the generated PSMs in Fig. 5. Region out
port and Receiver handle data marshalling and stream in-
formation between the two platforms. We used the Atlas
Transformation Language (ATL, [11]) for specifying the
transformations. For every supported platform a transfor-
mation from the platform independent meta-model to the
platform specific meta-model has to be developed.

Domain experts do usually not have expert knowledge
in programming, but should nevertheless be able to express
their domain knowledge in platform independent models.
Thus, an expressive mapping from the abstract syntax de-
fined by the meta-model to specific machine representations
and encodings must be defined: the so called concrete
syntax. We used the Graphical Modeling Framework (GMF),
see [21], to define graphical editors for PIMs and PSMs (cf.
the prototype screenshot shown in Fig. 3).



6. Conclusion and Further Work

In this paper we presented a modeling approach for dis-
tributed signal processing applications, which are hosted by
WSNs. The intrinsic complexity of such systems (different
hardware platforms and programming languages, recognition
of low-level context, and deployment options) requires ab-
stractions in the form of component frameworks and models.
In comparison to other modeling tools we additionally facil-
itate modeling across platforms with our notion of the PIM.
Thereby, domain experts are able to express their knowledge
on the application domain and use case independently from
the implementation platform in a formal specification. By
applying model transformations a PIM can be transformed
to multiple cooperating PSMs which can be further refined
by software engineers. This approach promotes cooperation
between domain experts and software engineers.

The signal processing framework to date provides infras-
tructure to easily build TinyOS applications but provides
only basic feature extractors and classifiers. Based on the
implementation of use cases we will continuously evolve our
framework. Experiences with the described modeling tools
showed that there exists a wide conceptual gap between PIM
and PSM which needs to be resolved in our ongoing work.
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