ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models

Stefan Mitsch André Platzer

Computer Science Department, Carnegie Mellon University

RV, Sept. 24, 2014

Simplex for Hybrid System Models

Formal Verification in CPS Development

Formal Verification in CPS Development

Formal Verification in CPS Development

ModelPlex Runtime Model Validation

ModelPlex ensures that verification results about models apply to CPS implementations

ModelPlex Runtime Model Validation

ModelPlex ensures that verification results about models apply to CPS implementations

ModelPlex at Runtime

ModelPlex at Runtime

Compliance Monitor Checks CPS for compliance with model at runtime

- Model Monitor: model adequate?
- Controller Monitor: control safe?
- Prediction Monitor: until next cycle?

Fallback Safe action, executed when monitor is not satisfied

Challenge What conditions do the monitors need to check to be safe?

ModelPlex Approach

Is current CPS behavior included in the behavior of the model?

- CPS observed through sensors
- Model describes behavior of CPS between states

Detect non-compliance as soon as possible to initiate safe fallback actions

ModelPlex Approach

Is current CPS behavior included in the behavior of the model?

- CPS observed through sensors
- Model describes behavior of CPS between states

Detect non-compliance as soon as possible to initiate safe fallback actions

ModelPlex Approach

Is current CPS behavior included in the behavior of the model?

- CPS observed through sensors
- Model describes behavior of CPS between states

Detect non-compliance as soon as possible to initiate safe fallback actions

Outline

When are two states linked through a run of model α ?

Semantical: $(x^-, x^+) \in \rho(\alpha) < \text{reachability relation of } \alpha$

ullet Proof calculus of d ${\cal L}$ executes models symbolically

ullet Proof calculus of d $\mathcal L$ executes models symbolically

ullet Proof calculus of d ${\cal L}$ executes models symbolically

proof attempt
$$(x=x^-) \to \langle \mathsf{climb} \cup \mathsf{descend} \rangle \, (x=x^+)$$

$$\langle \mathsf{climb} \rangle \, (x=x^+) \quad \langle \mathsf{descend} \rangle \, (x=x^+)$$

• Proof calculus of $d\mathcal{L}$ executes models symbolically

proof attempt
$$(x = x^{-}) \rightarrow \langle \mathsf{climb} \cup \mathsf{descend} \rangle \, (x = x^{+})$$

$$\langle \mathsf{climb} \rangle \, (x = x^{+})$$

$$\langle \mathsf{descend} \rangle \, (x = x^{+})$$

$$F_{1} \, (x^{-}, x^{+})$$

$$F_{2} \, (x^{-}, x^{+})$$

• Proof calculus of $d\mathcal{L}$ executes models symbolically

proof attempt
$$(x = x^{-}) \rightarrow \langle \mathsf{climb} \cup \mathsf{descend} \rangle \, (x = x^{+})$$

$$\langle \mathsf{climb} \rangle \, (x = x^{+})$$

$$\langle \mathsf{descend} \rangle \, (x = x^{+})$$

$$F_{1} \, (x^{-}, x^{+})$$

$$F_{2} \, (x^{-}, x^{+})$$

Monitor:
$$F_1(x^-, x^+) \vee F_2(x^-, x^+)$$

 The subgoals that cannot be proved express all the conditions on the relations of variables imposed by the model → execute at runtime

ullet Proof calculus of d $\mathcal L$ executes models symbolically

prior state
$$x^ i-1$$
 $\xrightarrow{\text{Climb}}$ $\xrightarrow{\text{descend}}$ i posterior state x^+

Model Monitor

Immediate detection of model violation
→ Mitigates safety issues with safe fallback action

$$F_1(x^-, x^+)$$
 $F_2(x^-, x^+)$

Monitor: $F_1(x^-, x^+) \vee F_2(x^-, x^+)$

 The subgoals that cannot be proved express all the conditions on the relations of variables imposed by the model → execute at runtime

Outline

For typical models ctrl; plant we can check earlier

Semantical:
$$(x^-, x^+) \in \rho(\text{ctrl}) < \text{reachability relation of ctrl}$$

Offline

Semantical:

$$(x^-, x^+) \in \rho(\mathsf{ctrl})$$
 \updownarrow Theorem

 $\mathsf{Logic}\;(\mathsf{d}\mathcal{L}) : (x = x^{-}) \to \langle \mathsf{ctrl}_{(x)} \rangle \, (x = x^{+}) \, \diagup \, .$

starting at $x = x^$ exists a run of ctrl to a state where $x = x^+$

Offline

Semantical: $(x^-, x^+) \in \rho(\mathsf{ctrl})$ starting at $x = x^-$ exists a run of ctrl to a state where $x = x^+$ $d\mathcal{L}$ proof

Real arithmetic:

$$\begin{array}{c} \operatorname{Model} \alpha \\ \operatorname{prior state} x^{-} \stackrel{i-1}{\longleftarrow} \stackrel{\operatorname{ctrl}}{\longrightarrow} \stackrel{\operatorname{plant}}{\longrightarrow} \stackrel{i}{\longrightarrow} \\ \end{array}$$

Controller Monitor

Immediate detection of unsafe control before actuation

Safe execution of unverified implementations
in perfect environments

Semantical:
$$(x, x) \in p(\operatorname{Ctr})$$
 \updownarrow Theorem

Logic $(d\mathcal{L}):(x = x^-) \to \langle \operatorname{ctrl}_{(x)} \rangle (x = x^+)$
 \Leftrightarrow d \mathcal{L} proof

Real arithmetic: $F(x^-, x^+)$

Outline

Safe despite evolution with disturbance?

disturbance
$$t:=0$$
; $\left(\theta-\delta \leq \mathbf{x}' \leq \theta+\delta,\ t'=1\ \&\ H \land t \leq \varepsilon\right)$
Model α
prior state $x^ i-1$
Prediction Monitor before actuation posterior state x^+
Offline

posterior state
$$x^+$$
 within ε time

Offline

Logic (d \mathcal{L}): $(x = x^-) \to \langle \text{ctrl}_{(x)} \rangle \left(x = x^+ \land [\text{plant}_{(x)}] \varphi \right)$
 $\uparrow \quad \text{d} \mathcal{L} \text{ proof}$

Real arithmetic: $F(x^-, x^+)$

Invariant state φ implies safety (known from safety proof)

disturbance
$$t:=0$$
; $\left(\theta-\delta\leq\mathbf{x}'\leq\theta+\delta,\ t'=1\,\&\,H\land t\leq\varepsilon\right)$

Model α

prior state $x^{-}i-1 \rightarrow 0$

Prediction Monitor with Disturbance

Proactive detection of unsafe control before actuation despite disturbance

→ Safety in realistic environments

Offline

Logic (d
$$\mathcal{L}$$
): $(x = x^{-}) \rightarrow \langle \operatorname{ctrl}_{(x)} \rangle \left(x = x^{+} \wedge [\operatorname{plant}_{(x)}] \varphi \right)$

$$\uparrow \quad \mathsf{d} \mathcal{L} \text{ proof}$$

Real arithmetic: $F(x^-, x^+)$

Invariant state φ implies safety (known from safety proof)

Evaluation

Evaluated on hybrid system case studies

Cruise control

Ground robots

Model sizes: 5–16 variables

- Monitor sizes: 20–150 operations
 - with automated simplification to remove redundant checks
 - improvement potential: simplification for any monitor
- Theorem: ModelPlex is decidable and monitor synthesis fully automated in important classes

Conclusion

ModelPlex ensures that proofs apply to real CPS

- Validate model compliance
- Characterize compliance with model in logic
- Prover transforms compliance formula to executable monitor

Stefan Mitsch

smitsch@cs.cmu.edu www.cs.cmu.edu/~smitsch

Theorems

- State Recall (Online Monitoring)
- Model Monitor Correctness
- Controller Monitor Correctness
- Prediction Monitor Correctness
- Decidability and Computability

State Recall

V set of variables whose state we want to recall

$$\Upsilon_V^- \equiv \bigwedge_{x \in V} x = x^-$$
 characterizes a state prior to a run of α (fresh variables x^- occur solely in Υ_V^- and recall this state)

$$\Upsilon_V^+ \equiv \bigwedge_{x \in V} x = x^+$$
 characterizes the posterior states (fresh x^+)

Programs hybrid program α , α^* repeats α arbitrarily many times

Assume all consecutive pairs of states $(\nu_{i-1}, \nu_i) \in \rho(\alpha)$ of $n \in \mathbb{N}^+$ executions, whose valuations are recalled with $\Upsilon_V^i \equiv \bigwedge_{x \in V} x = x^i$ and Υ_V^{i-1} are plausible w.r.t. the model α , i. e., $\models \bigwedge_{1 \leq i \leq n} \left(\Upsilon_V^{i-1} \to \langle \alpha \rangle \Upsilon_V^i \right)$ with $\Upsilon_V^- = \Upsilon_V^0$ and $\Upsilon_V^+ = \Upsilon_V^n$.

Then the sequence of states originates from an α^* execution from Υ_V^0 to Υ_V^n , i. e., $\models \Upsilon_V^- \to \langle \alpha^* \rangle \Upsilon_V^+$.

Model Monitor Correctness

 $\models \phi
ightarrow [lpha^*] \psi \ \ lpha^*$ is provably safe

Definitions Let $V_m = BV(\alpha) \cup FV(\psi)$; let $\nu_0, \nu_1, \nu_2, \nu_3 \dots \in \mathbb{R}^n$ be a sequence of states, with $\nu_0 \models \phi$ and that agree on $\Sigma \backslash V_m$, i. e., $\nu_0|_{\Sigma \backslash V_m} = \nu_k|_{\Sigma \backslash V_m}$ for all k.

Model Monitor $(\nu, \nu_{i+1}) \models \chi_{\mathsf{m}}$ as χ_{m} evaluated in the state resulting from ν by interpreting x^+ as $\nu_{i+1}(x)$ for all $x \in V_m$, i. e., $\nu_{\downarrow +1}^{\nu_{i+1}(x)} \models \chi_{\mathsf{m}}$

Correctness If $(\nu_i, \nu_{i+1}) \models \chi_m$ for all i < n then we have $\nu_n \models \psi$ where

$$\chi_{\rm m} \equiv \left(\phi|_{\rm const} \to \langle\alpha\rangle \Upsilon_{V_m}^+\right)$$

and $\phi|_{\text{const}}$ denotes the conditions of ϕ that involve only constants that do not change in α , i. e., $FV(\phi|_{\text{const}}) \cap BV(\alpha) = \emptyset$.

Controller Monitor Correctness

 $\models \phi \rightarrow [\alpha^*] \psi \;\; \alpha^*$ is provably safe with invariant φ

Definitions Let α of the canonical form $\alpha_{\rm ctrl}$; $\alpha_{\rm plant}$; let $\nu \models \phi|_{\rm const} \wedge \varphi$, as checked by $\chi_{\rm m}$; let $\tilde{\nu}$ be a post-controller state.

Controller Monitor $(\nu, \tilde{\nu}) \models \chi_c$ as χ_c evaluated in the state resulting from ν by interpreting x^+ as $\tilde{\nu}(x)$ for all $x \in V_c$, i. e., $\nu_{x^+}^{\tilde{\nu}(x)} \models \chi_c$

Correctness If $(\nu, \tilde{\nu}) \models \chi_c$ where

$$\chi_{\rm c} \equiv \phi|_{\rm const} \rightarrow \langle \alpha_{\rm ctrl} \rangle \Upsilon^+_{V_c}$$

then we have that $(\nu, \tilde{\nu}) \in \rho(\alpha_{\mathsf{ctrl}})$ and $\tilde{\nu} \models \varphi$.

Prediction Monitor Correctness

- $\models \phi \to [\alpha^*] \psi \quad \alpha^* \text{ is provably safe with invariant } \varphi$ Definitions Let $V_p = BV(\alpha) \cup FV([\alpha]\varphi)$. Let $\nu \models \phi|_{\mathsf{const}} \land \varphi$, as checked by χ_{m} . Further assume $\tilde{\nu}$ such that $(\nu, \tilde{\nu}) \in \rho(\alpha_{\mathsf{ctrl}})$, as checked by χ_{c} .
- Prediction Monitor $(\nu, \tilde{\nu}) \models \chi_p$ as χ_p evaluated in the state resulting from ν by interpreting x^+ as $\tilde{\nu}(x)$ for all $x \in V_p$, i. e., $\nu_{x^+}^{\tilde{\nu}(x)} \models \chi_p$

Correctness If $(\nu, \tilde{\nu}) \models \chi_{p}$ where

$$\chi_{\mathsf{p}} \equiv (\phi|_{\mathsf{const}} \wedge \varphi) \rightarrow \langle \alpha_{\mathsf{ctrl}} \rangle (\Upsilon_{V_{\mathsf{p}}}^{+} \wedge [\alpha_{\delta \mathsf{plant}}] \varphi)$$

then we have for all $(\tilde{\nu}, \omega) \in \rho(\alpha_{\delta plant})$ that $\omega \models \varphi$

Decidability and Computability

Assumptions

- canonical models $\alpha \equiv \alpha_{\sf ctrl}$; $\alpha_{\sf plant}$ without nested loops
- ullet with solvable differential equations in $lpha_{
 m plant}$
- disturbed plants $\alpha_{\delta {
 m plant}}$ with constant additive disturbance δ

Decidability Monitor correctness is decidable, i. e., the formulas

- $\chi_{\rm m} \to \langle \alpha \rangle \Upsilon_{\rm V}^+$
- $\chi_{\rm c} \to \langle \alpha_{\rm ctrl} \rangle \Upsilon_V^+$
- $\chi_{\mathsf{p}} \to \langle \alpha \rangle (\Upsilon_{\mathsf{V}}^+ \wedge [\alpha_{\delta \mathsf{plant}}] \phi)$

are decidable

Computability Monitor synthesis is computable, i. e., the functions

- $\operatorname{synth}_m:\langle\alpha\rangle\Upsilon_V^+\mapsto\chi_{\mathsf{m}}$
- $\operatorname{synth}_c: \langle \alpha_{\operatorname{ctrl}} \rangle \Upsilon_V^+ \mapsto \chi_{\operatorname{c}}$
- synth_p : $\langle \alpha \rangle (\Upsilon_V^+ \wedge [\alpha_{\delta plant}] \phi) \mapsto \chi_p$

are computable

Water Tank Example: Monitor Conjecture

Variables

x current level

 ε control cycle

m maximum level

f flow

Model and Safety Property

$$\underbrace{0 \leq x \leq m \wedge \varepsilon > 0}_{\phi} \rightarrow \left[\begin{array}{c} (f := *; ? (-1 \leq f \leq \frac{m - x}{\varepsilon}); \\ t := 0; (x' = f, t' = 1 \& x \geq 0 \wedge t \leq \varepsilon))^* \end{array} \right] \underbrace{\left(0 \leq x \leq m\right)}_{gb}$$

Model Monitor Specification Conjecture

$$\underbrace{\varepsilon > 0}_{\phi \mid \mathsf{const}} \rightarrow \left\langle \begin{array}{l} f := *;? \left(-1 \leq f \leq \frac{m-x}{\varepsilon} \right); \\ t := 0; \ \left(x' = f, \ t' = 1 \ \& \ x \geq 0 \land t \leq \varepsilon \right) \right\rangle \underbrace{\left(x = x^+ \land f = f^+ \land t \right)}_{V_m}$$

Water Tank Example: Nondeterministic Assignment

Proof Rules

$$(\langle * \rangle) \frac{\exists X \langle x := X \rangle \phi}{\langle x := * \rangle \phi} \ ^{1} \qquad (\exists r) \frac{\Gamma \vdash \phi(\theta), \exists x \ \phi(x), \Delta}{\Gamma \vdash \exists x \ \phi(x), \Delta} \ ^{2} \qquad (\mathsf{Wr}) \frac{\Gamma \vdash \Delta}{\Gamma \vdash \phi, \Delta}$$

Sequent Deduction

$$\frac{\phi \vdash \langle f := F \rangle \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \textit{plant} \rangle \Upsilon^{+} \text{w/o Opt. 1}}{\phi \vdash \exists F \langle f := F \rangle \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \textit{plant} \rangle \Upsilon^{+}}) \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \textit{plant} \rangle \Upsilon^{+}}_{\langle * \rangle} \underbrace{ \langle ? - 1 \leq f \leq \frac{m - x}{\varepsilon} \rangle \langle \textit{plant} \rangle \Upsilon^{+}}_{\text{with Opt. 1 (anticipate } f = f^{+} \text{ from } \Upsilon^{+})}$$

 $^{^{1}}$ X is a new logical variable

 $^{^{2}}$ θ is an arbitrary term, often a new (existential) logical variable X.

Water Tank Example: Differential Equations

Proof Rules

$$(\langle'\rangle) \frac{\exists T \ge 0 \ ((\forall 0 \le \tilde{t} \le T \ \langle x := y(\tilde{t}) \rangle H) \land \langle x := y(T) \rangle \phi)}{\langle x' = \theta \& H \rangle \phi} \ ^{1} \quad \text{(QE)} \frac{\mathsf{QE}(\phi)}{\phi} \ ^{2}$$

Sequent Deduction

¹ T and \tilde{t} are fresh logical variables and $\langle x := y(T) \rangle$ is the discrete assignment belonging to the solution y of the differential equation with constant symbol x as symbolic initial value

² iff $\phi \equiv QE(\phi)$, ϕ is a first-order real arithmetic formula, $QE(\phi)$ is an equivalent quantifier-free formula

Evaluation

	Case Study	Model		Monitor				
		dim.	proof size	dim.	dim. steps (open seq.)		proof steps	size
			(branches)		w/ Opt. 1	auto	(branches)	
χ_m	Water tank	5	38 (4)	3	16 (2)	20 (2)	64 (5)	32
	Cruise control	11	969 (124)	7	127 (13)	597 (21)	19514 (1058)	1111
	Speed limit	9	410 (30)	6	487 (32)	5016 (126)	64311 (2294)	19850
χ_c	Water tank	5	38 (4)	1	12 (2)	14 (2)	40 (3)	20
	Cruise control	11	969 (124)	7	83 (13)	518 (106)	5840 (676)	84
	Ground robot	14	3350 (225)	11	94 (10)	1210 (196)	26166 (2854)	121
	ETCS safety	16	193 (10)	13	162 (13)	359 (37)	16770 (869)	153
χ_p	Water tank	8	80 (6)	1	135 (4)	N/A	307 (12)	43

 Theorem: ModelPlex is decidable and monitor synthesis can be automated in important classes

Monitor Synthesis Algorithm

Algorithm 1: ModelPlex monitor synthesis

```
input : A hybrid program \alpha, a set of variables \mathcal{V} \subseteq BV(\alpha), an initial condition \phi such
             that \models \phi \rightarrow [\alpha^*]\psi.
output: A monitor \chi_m such that \models \chi_m \equiv \phi|_{const} \rightarrow \langle \alpha \rangle \Upsilon^+.
begin
       S \leftarrow \emptyset
       \Upsilon^+ \longleftarrow \bigwedge_{x \in \mathcal{X}} x = x^+ with fresh variables x_i^+
                                                                                                                 // Monitor conjecture
       G \longleftarrow \{\vdash \phi|_{\text{const}} \rightarrow \langle \alpha \rangle \Upsilon^+ \}
       while G \neq \emptyset do
                                                                                                // Analyze monitor conjecture
               foreach g \in G do
                     G \longleftarrow G - \{g\}
                      if g is first-order then
                        if \not\models g then S \longleftarrow S \cup \{g\}
                	ilde{g} \longleftarrow 	ext{ apply } 	ext{d} \mathcal{L} 	ext{ proof rule to } g G \longleftarrow G \cup \{	ilde{g}\}
       \chi_{\mathsf{m}} \longleftarrow \bigwedge_{\mathsf{a} \in \mathsf{S}} \mathsf{s}
                                                                                                           // Collect open sequents
```