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Abstract

The development of ambient assisted living (AAL) sys-

tems, which are tailored to health or elder care, requires

specific methods and tools. AAL systems make often use of

wireless sensor networks, machine learning algorithms and

sensory devices. Since wireless sensor networks and their

sensors are inhomogeneous, it became apparent that such

systems need to cope with different hardware platforms,

different programming languages, unreliable wireless com-

munication, energy constraints, data analysis algorithms,

recognition of situations, and deployment options. Devel-

opers to date tend to use a bottom-up approach: hardware

components dictate the development of AAL systems and

thereby restrict the range of use cases that can be realized;

domain experts by contrast would prefer a top-down ap-

proach and model the system’s functionality independently

from the hardware platform. Currently available software

development environments and tools do not adequately sup-

port domain experts and developers to accomplish these

tasks efficiently.

This paper presents methods that support domain experts

in their top-down approach, as well as technically experi-

enced developers in their bottom-up approach. The imple-

mented tools enable a model-driven software development

process (from platform-independent modeling to generat-

ing AAL application code) and thus facilitate programming

AAL systems.
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1. Introduction

Ambient assisted living (AAL) systems aim at improv-

ing the quality of life of elder or otherwise needy persons.

In particular AAL systems should extend the time people

can live in their homes, increase their autonomy and mo-

bility, help them maintain better health, enhance their secu-

rity, and support care organizations and families (see [18]).

AAL systems are seamlessly embedded into the environ-

ment; they acquire knowledge of their surroundings with

sensors, automatically and autonomously act on behalf of

users, or they interact with users in a non-obtrusive and in-

tuitive way. Current research projects focus on implement-

ing prototypes for single aspects or use cases of an AAL

system (e.g., a fall detection application). By comparing

different prototypes we discovered that many of them use

similar processing steps and implementation details:

1. Sensors acquire environmental and vital parameters

(raw sensor data, preprocessed features or low-level

context data) from their surroundings.

2. Inference engines interpret these data and derive high-

level semantics, also called situations, which recur-

sively can be input again to inference engines.

3. Semantic reasoning algorithms—e.g., rules engines—

select an action from several possible ones if a partic-

ular situation is detected (they make decisions).

4. Actuators initiate the selected action (e.g., raise an

alarm).

We therefore defined in [9] a reference architecture for AAL

systems, which is closely related to the works of [21] and

[1]. Our reference architecture was originally structured

into three deployment tiers. These deployment boundaries

proved to be too restrictive, because today’s sensor plat-

forms (e.g., Crossbow MICAz) are not only able to acquire

data, but also feature enough processing power and mem-

ory to execute situation inference algorithms (so-called in

network processing, see [16]); hence, we cannot assume

fixed deployment boundaries between the logical layers in

the reference architecture. The refined architecture is de-

picted in figure 1.



Figure 1. AAL system reference architecture.

The following problems are inherent in the design and

implementation of AAL systems. Use cases are typically

implemented bottom-up, starting with the selection of sen-

sor hardware (because sensors are specialized to measure

only certain phenomena). The sensor hardware then dic-

tates the remaining development process (e.g., the pro-

gramming language and the communication protocols be-

ing used). This results in use cases being tightly coupled to

the selected hardware platform; thus, poor reusability, poor

maintainability, poor scalability, and platform dependency

are possible side effects. Additionally, the nature of AAL

systems demands that experts from different fields work to-

gether closely. Domain experts (like health care or nurture

personnel) define appropriate use cases, and experts from

different fields in computer science (e.g., pervasive comput-

ing to gain raw data, machine learning and pattern recogni-

tion to analyze these data, and human-computer interaction

to allow implicit interaction with the system) implement the

AAL system. These experts often make use of different pro-

gramming languages and tools. As interoperability between

different programming languages and tools is still a major

problem in software development it might occur that pro-

grammers loose the general idea because their specific tools

only provide a very limited view on the whole system. We

believe that Model Driven Software Development (MDSD)

is a suitable development paradigm that could solve these

problems.

A main goal of MDSD in general and Model Driven Ar-

chitecture (MDA) in particular is to separate the specifica-

tion of the system functionality from the specification of the

implementation of that functionality on a specific technol-

ogy platform (see [13]). This seperation enables modeling

an AAL system’s complete functionality without the need to

consider the restrictions of certain platforms. The platform-

independent description (built, e.g., by domain experts) can

then be transformed to the most suitable platform. MDSD

tools generate code for specific platforms using code tem-

plates. Templates ensure a common reference architecture

and quality standards for security and performance.

Furthermore, MDSD enables a prototyping-oriented de-

velopment process. Many projects, as stated in [10], de-

velop their applications in a bottom-up prototyping-oriented

approach, in which few basic functions are quickly imple-

mented and tested, and then incrementally refined. This is

especially useful for machine learning applications because

finding relevant features for optimal classification results re-

quires tests with many different algorithm settings. But ac-

cording to [15] a prototyping-oriented approach can only be

successful if developers can build (potentially many) proto-

types quickly and cheaply. This is not the case if prototypes

are implemented without appropriate tool support.

In this paper we present how an MDSD prototyping tool

can support domain experts and computer scientists in de-

veloping AAL systems. The MDSD prototyping tool can

be used in a bottom-up modeling approach where domain

experts use pre-defined components to build a system (as

we described in our previous work, see [10]); additionally,

we extended the tool with a top-down modeling approach,

in which domain experts first model use cases, which might

define placeholders for components that are still to be de-

veloped. These two approaches are comparable to the “in-

cludes” and “extends” concepts in UML use case diagrams.

The remainder of the paper is structured as follows: sec-

tion 2 discusses related work, section 3 presents the MDSD

concepts we used to implement the modeling tool, section

4 describes the development of a simple AAL system, and

section 5 discusses the results and motivates further work.

2. Related Work

Model Driven Software Development (MDSD) is a soft-

ware paradigm where software is (partly) generated from

models (see [17]). Compared to MDSD in general Model

Driven Architecture (MDA) is based on the Meta Object

Facility (MOF) to ensure interoperability between mod-

els. Furthermore MDA emphasizes the separation between

Platform Independent Model (PIM) and Platform Specific

Model (PSM) as stated in [14]. The Eclipse Foundation, in

particular the Eclipse Modeling Framework (EMF, see [3])

and the Graphical Modeling Framework (GMF, see [20]),

provides rich support to simplify implementation of models

and (graphical) editors enabling an MDSD approach.

The Context Recognition Network (CRN) Toolbox (see



[2]) describes a C++ framework integrating hardware ab-

straction, filter algorithms, feature extraction components

and classifiers in a configurable runtime to support rapid

development of context recognition applications. It is de-

signed for deployment to embedded devices that support the

POSIX runtime environment. Although a graphical editor

is provided it is not based on a formal meta-model and thus

the CRN Toolbox cannot fully benefit from an MDSD ap-

proach. As we base our toolbox on a formal meta-model

we are able to generate code for various platforms, includ-

ing the CRN Toolbox.

Dey et al. propose in [5] so called context widgets which

acquire context information. Their main goal is to sepa-

rate context information and the interpretation of these data

from application logic by providing generic widgets (very

much the same way as user interface widgets separate user

input acquisition from data processing). Different sensors

deliver data to widgets leading to a lot of communication

effort beeing a critical issue in Wireless Sensor Networks

(WSNs). Currently the widgets are only implemented in

Java, thus they can not run on resource-constrained devices.

Our approach provides platform independent and platform

dependent components that are able to aggregate and in-

terpret context information on different platforms (omitting

communication overhead).

Lymberopoulos et al. (see [11], [12]) are using sen-

sory grammars to model activities in assisted living. Their

goal is to design and build a distributed asynchronous

application—called BehaviorScope—using a large number

of intelligent wireless sensors. High level semantics are de-

rived from low-level sensor measurements using a hierar-

chy of sensory grammars. Their approach provides a struc-

tured way of interpreting macroscopic spatial and temporal

activities similar to current automated speech recognition

systems. A sensory grammars framework shifts the appli-

cation development effort in programming the sensor net-

work from low-level embedded programming to high level

grammar scripting. The hierarchical modeling of activities

can be compared to our approach which provides an ab-

stract view on the system for domain experts. Different to

our approach is that it depends on a framework, which is

specifically tailored to the Crossbow sensor network plat-

form. Moreover general data analysis components (like fil-

ters for feature extraction) and common machine learning

algorithms are missing.

Tapia et al. showed in [19] a system for recognizing ac-

tivities at home using a set of small and simple sensors. Pre-

liminary results with state-change sensor installed in one-

bedroom apartments showed that it is possible to recognize

activities of interest to medical professionals such as toi-

leting, bathing, and grooming. The major components of

the systems are the environmental state-change sensors, a

context-aware experience sampling tool, and pattern recog-

nition and classification algorithm. The focus of this work

was on recognizing activities with a wireless sensor net-

work, but the authors did not address the software devel-

opment issues.

TinyOS, see [7], is a component-based operating system

for wireless sensor networks. It is widely used in develop-

ing applications for the popular Crossbow hardware. Ap-

plications for TinyOS are written in NesC (see [6]). Just re-

cently Sentilla Java1 emerged as operating system and pro-

gramming framework for motes. These programming envi-

ronments can all be seen as platforms in the sense of MDA.

3. Concepts and Tools for Model-Driven Devel-

opment of AAL Systems

This section gives a short overview how the concepts of

MDSD are applied for modeling AAL systems and which

tools are used to implement these concepts (see figure 2).

For further details please refer to [9] and [10].
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Figure 2. Concepts and tools applied for
modeling AAL systems.

According to the MDA approach we capture the system

functionality in platform independent models (PIM). The

functionality specification is then refined with respect to a

specific technology platform in so-called platform specific

models (PSM). Thereby developers can reuse the PIM to

implement a system on several platforms; additionally, they

can specify complex applications in the PIM that can only

be realized using several cooperating platforms. Domain

specific languages (DSLs), which conform to correspond-

ing meta-models, are used to describe AAL systems either

in a platform independent or a platform-specific way. The

platform independent meta-model defines, as introduced in

[10]:

• Readers to interact with the system’s environment and

to deliver certain data, which we call Aspects (e.g., the

vertical acceleration of an object)

1http://www.sentilla.com



• Filters to extract features from Aspects

• Classifiers to interpret Aspects and reason for new As-

pects

• Writers to persist, communicate, or present Aspects to

the user.

Furthermore we provide utility components like Splitter

or Merger that can be used to split up aspects or to com-

bine them. By applying a Pipes-and-Filters architectural

style, see [4], these components can be combined to a sys-

tem. CompositeComponents can be used to hierarchically

group components, which enables stepwise refinement to

manage complexity. They need not to be fully specified dur-

ing modeling a PIM; optionally they can act as placeholders

which are later specified in a separate platform independent

model. A CompositeComponent’s interface is defined with

required and provided aspects.

A PSM combines the specification in the PIM with the

details of a particular type of platform (see [14]). As we

support different platforms it is possible to split up one PIM

into several PSMs (see [10]). Every PSM again corresponds

to a meta-model and thus defines its own DSL. To increase

productivity we provide graphical editors (e.g., the PSM ed-

itor depicted in figure 4 on the next page) for our DSLs. The

editors are based on the Eclipse Graphical Modeling Frame-

work (GMF). Due to the fact that programmers should be

able to easily integrate new platforms (and thus new PSMs)

an abstract base editor for platform specific models provides

feature rich base classes. By implementing extension points

new components (e.g., a new filter) or new platforms can

easily be integrated.

To simplify the transformation from a PIM to a PSM we

provide a wizard that allows programmers to specify which

component of the PIM should be transformed to which com-

ponent of the PSM. Only transformations between compo-

nents of the same type are allowed, e.g. a reader within

the PIM cannot be transformed to a writer within the PSM.

The transformations themselves are specified using the At-

las Transformation Language (ATL, see [8]).

After refining the details in the PSM executable code can

be generated. A template-based code generation process

using the XPand2 template language is applied. The imple-

mentations of the components are provided by an archive

file implemented in the platform-specific programming lan-

guage, which is referenced by the generated code. Thus

mainly glue code needs to be generated.

2http://www.eclipse.org/gmt/oaw/doc/4.1/r20xPandReference.
pdf

4. A Top-Down and Bottom-Up Modeling Ex-

ample

This section compares the top-down and bottom-up

modeling approaches by means of an exemplary use case.

4.1. Use Case and Hardware Setup

A major goal of AAL systems is to increase or maintain

a person’s security or state of health by detecting deviations

from normal behavior. Therefore we first need to learn a

person’s normal behavior (his or her daily routines) with

machine learning algorithms (situation inference according

to the reference architecture). The amount of raw data pro-

duced by sensors, however, is too large for this purpose; we

need to recognize situations (i.e., interpret raw data), which

can be further processed as features in higher-order situa-

tion inference engines.

The exemplary use case shows how to distinguish be-

tween two common household activities, which are still

simple enough to be presented within the limited space of

the paper: watching TV and vacuum-cleaning. These two

activities are quite different but make use of common low-

level components, which points out the advantages of the

model driven software development process.

To distinguish between these situations we decided to

use a Crossbow MICAz mote equipped with an MTS310

sensor board and TinyOS-2.x. The test person wears the

mote at the ankle. We were interested in the accelera-

tion values obtained from the sensor board’s orthogonal

accelerometers (we call these values x-acceleration and y-

acceleration). The microphone of the MTS310 could be

used to detect the specific sound of a vacuum cleaner. The

next subsections discuss how this use case could be realized

with the top-down approach and how this procedure differs

from the bottom-up approach.

4.2. Top-Down Approach

In the top-down approach a domain expert models the

system’s functionality in terms of coarse-grained composite

components (e.g. fall detection) which provide the needed

results, and which might later be stepwise refined if nec-

essary. Thus the model is an abstract view of the use case

and is therefore modeled platform independently. The do-

main expert captures the user’s requirements, preferences

and constraints (e.g., a user may dislike image sensors but

can imagine wearing a specific sensor, which might be in-

tegrated into the clothing). Additionally, the domain expert

can observe characteristic behavioral patterns and environ-

mental settings that indicate if a certain implementation is

feasible or not.



Figure 3. PIM modeled in top-down approach with placeholder and reusable composite component.

In our example the user is willing to wear an accelerom-

eter and a microphone, which is captured by the reader’s

aspects in the model (see figure 3).

The application needs to distinguish between the house-

hold activities “watching TV”, “vacuum-cleaning”, and

“other” (as defined by the classifier’s output aspects). The

domain expert’s task is now to roughly describe the neces-

sary steps to analyze the input aspects (using filters, classi-

fiers, etc.) to produce the desired output aspects. In our case

we get three different aspects which are split up in the first

step. Next the question arises how to interpret the data to

get the desired output. We assume that it is most likely that

a person is sitting when watching TV and walking around

when vacuum cleaning a room. When vacuum cleaning

the volume level is significantly higher than when watching

TV as the microphone is normally quite near to the vacuum

cleaner. Thus a component is needed that is capable to de-

cide if a person is walking or standing and another one that

interprets the volume.

In the top-down approach these components are best de-

fined using stepwise-refinement to manage modeling com-

plexity. The domain expert has the choice to either select

already pre-defined components, if they are available, or to

define placeholders for such components which have to be

refined by developers. The second choice adds the flexi-

bility to configure the application with different implemen-

tations of one component specification; this is especially

useful if the modeled application is designed for reuse in

forthcoming use cases. The example contains both possi-

bilities: the “Motion” composite component is pre-defined

(as it might already have been used in a different use case),

whereas the “Volume” composite component is a place-

holder and can be configured later.

In the next step the abstract platform independent model

is handed to the developer, who transforms it to the appro-

priate platforms. If the PIM contains placeholders, they first

must be resolved either with an existing or newly created

PIM. As described in section 3 the PIM can be transformed

to several PSMs and finally source code is generated.

4.3. Bottom-Up Approach

In the bottom-up approach developers analyze the avail-

able hardware and its features. They typically start with

simple platform-dependent prototypes which cover specific

use cases. Figure 4 shows such a platform dependent proto-

type for the TinyOS platform (modeled in a TinyOS PSM).

The prototype—a motion recognizer—decides whether a

person is walking or sitting based on the accelerometer val-

ues’ variance (which is discriminated with a threshold clas-

sifier to produce class labels). As the used MTS310 sensor

board is able to deliver several aspects we decided to model

only one reader. The aspects are split up using a splitter

component. It would also be possible to model one reader

per aspect and thereby omit the splitter component.

Figure 4. TinyOS PSM example motion recog-
nizer.

To make such a prototype also available on other plat-

forms developers can introduce a PIM, which describes the

prototype independently from the platform. After the PIM

has matured it could eventually be packaged into a reusable

composite component that may be composed with other

components to more complex applications. Concerning the

specific example this could be done by removing the sensor

reader and the splitter and define these aspects as required

ones on the composite component. Similar the Walk and Sit



writer (which switch on different LEDs in TinyOS) must be

modeled as provided aspects. This is where the top-down

and bottom-up modeling approaches meet.

5. Conclusion and Further Work

In this paper we presented a new approach to build ambi-

ent assisted living systems. The intrinsic complexity of such

systems, through different hardware platforms and pro-

gramming languages, unreliable wireless communication,

battery constraints, data analysis algorithms, recognition of

situations and deployment options requires a specific devel-

opment environment. This paper presents a development

environment which supports domain experts in their top-

down approach, as well as technically experienced develop-

ers in their bottom-up approach. The implemented tools fa-

cilitate model-driven software development from platform-

independent modeling to generating AAL application code.

The implementation of several use cases showed promising

results, but the development environment must now be fur-

ther evaluated to measure its advantages and shortcomings.

We currently do this especially for health care and eldercare.
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