
Evaluation of a Mobile Multimodal Application Design −
Major Usability Criteria and Usability Test Results

Werner Kurschl, Wolfgang Gottesheim, Stefan Mitsch, Rene Prokop, Johannes Schönböck

Upper Austria University of Applied Sciences, Research Center Hagenberg
Softwarepark 11, A-4232 Hagenberg, AUSTRIA

{kurschl, wgottesh, smitsch, rprokop, jschoenb}@fh-hagenberg.at

Abstract

Mobile broadband internet access and powerful

mobile devices make interesting and novel
communication applications possible (e.g., recently
emerging VoIP applications). Additionally, speech
recognition has matured to the point that companies
can seriously consider its use. We developed a
distributed framework that enables multimodal user
interfaces with speech recognition (dictation and
command/control) on any type of mobile device. But
do users already accept speech as additional input
modality, and if so, which usability challenges arise
when developing multimodal applications?

This paper presents the results from usability tests
that we conducted with a mobile multimodal e-mail
and contact application. Based on the results we point
out major usability criteria that need to be met in
developing mobile multimodal applications.

1. Introduction

Speech is a natural communication means for
human users. However, natural communication does
not only include speech, but also comprises gestures,
facial expressions, and other non-verbal signs. In many
situations these modalities complement each other;
many tasks can be performed better with one modality
than with another (e.g., speech is appropriate for
entering text, whereas a PDA’s stylus is the better
choice for pointing at something). Thus, a combination
of different modalities promises to provide a superior
user experience over each of the single modalities.
Multimodal applications allow the user to combine two
or more input modalities to operate the application.

According to [1] multimodal applications are still
rare in everyday use, though they would offer
promising opportunities. This is primarily due to the
wide adoption of well-known input devices like

keyboard and mouse, which are even emulated by
computing devices lacking those input capabilities
(e.g., PDAs provide an on-screen keyboard).

With mobile broadband internet access and
powerful mobile devices available, mobile business
applications offer an added value. Especially field
workers, who spend most of their time out of office
and traveling between several sites, need access to up-
to-date data. Although the devices are powerful
enough to present high quality user interfaces, the
handling of applications is still not satisfying. This is
partly due to the emulated keyboard on PDAs which is
hard to use and thus annoying. Therefore a lot of
device manufacturers provide small keyboards.
However, they are either too small for convenient
typing or the device gets too large. Thus, the benefit of
mobile applications is often lessened because of
missing adequate input modalities. The means to this
end is speech recognition, which has advanced to the
point that companies can seriously consider its use.

To assess the feasibility of multimodal user
interaction, we implemented an e-mail and contact
application and conducted usability tests with persons
that were familiar with e-mail and contact applications
in general, but used our application for the first time.
In the test we concentrated on spoken interaction to
find main barriers that distract people from using
applications by speech.

2. Related Work

In [2] and [3] Jokinen and Hurtig discuss evaluation
results of a multimodal route navigation system. They
compare user expectations from before the evaluation
with the actual user experience during the tests. Their
results show that users prefer multimodal systems over
unimodal ones. However, the users’ expectations vary
with their perception of the system: they tend to expect
fluent spoken communication from a primarily speech-

controlled system; but if speech is only expected to be
a secondary modality, it provides additional value.

Nielsen in [4] presents ten usability heuristics that
are broad enough to apply to many user interfaces.
Some of these heuristics are also found in more
specific works. Häkkilä (see [5]) derives design
guidelines for context-aware mobile systems from
extensive user studies. Some of the guidelines are
general enough to also apply to multimodal
applications, as we observed in our tests.

In [6] Turunen et al. describe evaluation results of
multimodal applications built with their Jaspis
architecture. They discovered that in human-to-
computer communication shorter sentences, different
words and sentence structures, and a terser style than
in human-to-human communication were used. In our
usability tests users showed similar behaviour: they did
not have problems with short commands, but were
unlikely to use complete sentences.

During the evaluation of the MATIS system (a
form-filling application for querying train timetables,
see [7]) the efficiency and effectiveness of interacting
with the same system via different modalities
(graphical only, speech only, and combined), as well
as the user satisfaction were measured. Their results
indicate that multimodal applications can improve
interaction with speech-based applications. However,
their users clearly preferred the graphical user interface
over the other two because it was fastest and least
error-prone. Thus, Sturm et al. suggest providing a
backup input device (e.g., a keyboard) to let users
handle speech recognition errors. Our test results
showed that for some form-filling tasks, e.g., entering
text when only a small-sized or emulated keyboard is
present, multimodal interaction is more efficient and
satisfying for users.

3. The E-Mail and Contact Application

PDAs are often used for managing contacts and
reading e-mails, and hence such applications (like
Pocket Outlook) are familiar to many users. Thus, we
implemented an e-mail and contact application that
provides a multimodal user interface (speech,
keyboard, and stylus). Its graphical user interface is
similar to Pocket Outlook to minimize the effort of
learning the application’s features our usability
subjects need. However, it can be completely
controlled by voice.

Figure 1 shows the inbox of the e-mail application.
This screen can be completely controlled by voice,
with a stylus, or with a combination of both. An e-mail
can be selected by either saying the subject or the

number of the e-mail, a new e-mail can be created by
saying “new”, and it is possible to sort the e-mails by
saying for example “sort by date”.

Figure 1: E-mail inbox

As described in [8] speech recognition can roughly

be divided into constrained vocabulary (command-
and-control) or unconstrained vocabulary (dictation)
speech recognition. The e-mail and contact application
builds upon the Gulliver framework (briefly introduced
in the next section) and thus supports both dictation
and command-and-control.

3.1. The Gulliver Framework

The Gulliver framework supports various types of

mobile devices, from conventional cell phones to
PDAs or even Laptops or Tablet PCs. Although these
devices offer different capabilities, all of them demand
for a flexible framework that hides speech recognition
from the user interface code; with current speech
engines’ APIs they are tight-knit. As shown in Figure
2 the framework distributes speech recognition to
several components to support both constrained and
unconstrained speech recognition. While constrained
speech recognition can be performed by a speech
recognition engine hosted on the device itself PDAs
are not powerful enough to recognize unconstrained
speech locally. Therefore we have to transmit
compressed voice data via VoIP to a remote server
which does unconstrained speech recognition. For
detailed information see [9].

Figure 2: Framework architecture

3.2. User Interface Controls

Application developers should not need to deal with

the internals of speech recognition; they want to
efficiently develop speech-enabled applications. Thus,
user interface components, which are capable of
handling voice input, are needed. These multimodal
components translate speech recognition results into
events known from ordinary UI controls. The Gulliver
framework contains speech-enabled controls like
Button, ListBox or ComboBox. Each component
defines its syntax (i.e. valid input values) in a so called
grammar and provides a default grammar, which
handles the basic functionality. A Button’s default
grammar for example is derived from the label of the
button. Speaking the label then issues a button-clicked
event, which can be handled by the application
developer. For more complex tasks customized
grammars can be assigned to a control.

The multimodal components can be integrated into
the development environment and, thus, be used very
conveniently. Currently, the controls are implemented
for the .NET Compact Framework but the concepts are
not restricted to a specific programming language.

4. Usability Study

The main goal of the test was to assess the

application’s usability when it was used for the first
time (see 4.2, all test persons were novice users). We
wanted to find out the main barriers that distract

people from using an application by speech, and if
these barriers differ from barriers in applications
without speech recognition.

A minor goal of the test was to find alternative or
more natural ways of solving tasks by speech.
Therefore, the test persons were not given a detailed
introduction how to use the application; they only
received a basic introduction into the application’s
features. Visual clues are the basis for the voice input
users try. We presume that the interpretation of these
clues differ and therefore aim to provide flexible
grammars.

4.1. Test Procedure

We chose to conduct our study according to

Nielsen’s approach of “discount usability engineering”
described in [4]. A working prototype of the final
application was used for the tests.

The tests were conducted in isolation; each test run
was performed with a single test person and observed
by a member of the development team. The test person
was encouraged to express thoughts (both positive and
negative impressions) in any situation aloud; these
suggestions were logged. Test persons were advised to
use speech, but they were allowed to use a stylus when
they either became tired of using speech or when they
did not find the solution to a task by speech.

A test run comprised the following steps:

1. Test goals were explained to the test person.

2. The application was introduced to the test
person (features, online help, push-to-talk-
button, etc.).

3. The speech recognition environment was set
up, i.e., a user profile was created and the
speech recognition system was trained.

4. The tasks were explained to the test person and
executed one by one.

5. A guided follow-up interview was conducted.

The test itself consisted of the following tasks that a

test person had to perform:

1. Create a new contact in the address book:

provide at least the contact’s first and last
name.

2. Edit an existing contact: change at least the first
name and add a note to the contact.

3. Delete an existing contact from the address
book.

4. Send an e-mail message to a contact from the
address book.

5. List all messages in the inbox and read one
message in detail.

6. Reply to a message in the inbox.

4.2. Test Persons and Environment

All tests were conducted indoors in an office

working environment (i.e., besides the test person and
the observer, other people worked in the room, and
persons entered and left the room). We did omit
outdoor field tests, as [10] indicates that field testing
does not necessarily lead to better test results.

We worked with a total of 12 test persons, all male
except for one female, and all aged between 20 and 40.
All of them use computers regularly (e.g. at work), and
have or are in progress of obtaining an academic
degree in the field of computer science. Some had
prior experience with using a PDA for mobile
communications, but all were novice users to the
specific application tested. No one has used a desktop
speech recognition system before, experience in this
field was largely based on experiments with speech
recognition integrated in mobile devices (e.g., voice
dialing on a mobile phone).

4.3. Guided Follow-Up Interview

The follow-up interview consisted of 85 questions

organized in six groups: Demographic questions,
question concerning the overall application
performance, speech recognition related questions,

questions related to the contact management part of the
application, questions related to the messaging part,
and general closing questions. The answers are either
free text or spread on a four-point scale.

4.4. Research Hypothesis

Based on previous research (see, e.g., [4]) and our

own experience with the tested application we
expected the following statements from the usability
study.

1. Users are expected to have little or no problems

interacting with interface elements that are
“labeled” and can thus be addressed by saying
this label.

2. Although users tend to limit their speech
interaction to commands that can be derived
from visible interface elements, alternatives
that are more flexible and comfortable but not
immediately visible on the screen are expected
to be difficult to discover, but expected to be
used after an initial “learning phase” as they are
easier to use.

3. When using a multimodal application, we
presume that users need additional information
in order to successfully use the application
(e.g., about the state of the recognition engine
or about recognition results).

4. Despite the added benefit of multimodal
operations users don’t want to experience
additional delays when using the application by
voice.

5. Study Results

Since we decided to go with the “discount usability
engineering” approach, statistical data analysis is not
appropriate and the findings we report here are
qualitative in nature.

Interaction with labeled interface components

We observed during the tests that the users’ first try
was to say the labels of the graphical controls interact
with them. Our tests have therefore proven that
“labeled” interface components are an intuitive way to
select items or change the focus on a screen by voice.
None of our test users had problems selecting buttons
and text boxes as they usually only have a single label
and therefore no ambiguous input is possible. On the
other hand, selecting a certain item in a list like a
contact or an e-mail imposes more difficulties as

ambiguities may arise. We chose to enumerate the
items in a list and to provide appropriate grammars to
select and handle list items by this index. This solution
was easily adopted by the test users.

Consistency is crucial here: All elements with a
label have to be accessible by voice commands;
otherwise the users become frustrated quickly. Once
users had adopted this behavior they were unwilling to
use more natural alternatives to the often curt labels.

Usage of more complex grammars

Besides commands derived from visible interface
elements, some screens in the application prototype
have grammars that provide additional functionality
(e.g. adding a new recipient to an e-mail) but do not
indicate them by visible clues. Although no one
discovered them on their own, some of the users
continued to use them after discovering them in the
help. Several stated that they have thought of trying
something similar, but had refused to do so because
they didn’t think it would work.

Nevertheless, grammars can’t be indefinitely
complex to be accepted: grammars which would
encapsulate a whole process in a single command (i.e.
“send e-mail to … with subject … and content …”),
haven’t been expected at all. Users deemed them to be
hard to memorize and difficult to use. This might result
from the long lasting training with graphical user
interfaces, which demand a stepwise process (set focus
before entering data).

Feedback

The application prototype uses different techniques
to inform the user about the state of the voice
recognition component: an icon shows whether the
recognition engine is currently listening to voice input,
whereas a notification window pops up when the input
could not be interpreted. This solution was considered
suboptimal by most users. They judged the pop-up
windows as too annoying, since they tend to appear
quite often and hide a significant portion of the screen.
Furthermore, the pop-up doesn’t provide additional
information about possible and legitimate input.
Overall, the implemented approach proved to be
frustrating as the information given was not helpful
and actually hindered the user. Most of the test users
considered an icon as a sufficient, unobtrusive and
therefore better way of informing about the
application’s state.

Speed considerations

Since voice processing implies a significant
overhead, users may experience additional delays
when using the application by voice. Although these

delays depend largely on network bandwidth and the
processing power of the devices used and thus can be
minimized, they cannot be completely eliminated. In
our tests, we encouraged the testers to state how they
experienced the application’s speed.

Our tests have shown that speed perception differs
from case to case: Most users accepted some seconds
of processing time before dictation was recognized,
while on the other hand delays in grammar recognition
or in navigating between screens by voice were noticed
as intolerable. Immediate feedback (e.g., showing a
wait cursor) remedies the problem somewhat.

Users demand immediate results from their actions
as they know it from graphical-only applications: If
they press a button they not only expect some action to
happen, but they insist on immediate and visible results
from their actions. The technical necessities of voice
processing sometimes conflict with these requirements
as the recognition process involves additional time.
Therefore, user acceptance for command-and-control
proved to be low if it imposes waiting times on the
user, even if its usage might be more intuitive than
other modalities.

6. Usability Patterns

Building a high-quality user interface requires
expert knowledge on human-computer-interaction.
There are several sources of know-how for graphical
user interfaces: a significant part results from the fact
that every developer has long lasting experience with
graphical user interfaces at least from the user’s point
of view. Moreover, various resources offer tutorials
and guidelines. An approved way to pass on expert
knowledge on specific problems to inexperienced
developers is the usage of usability patterns.

For the development of speech-based and
multimodal user interfaces most of those resources are
not available. Moreover, hardly any developer is
experienced in multimodal or verbal user interfaces
especially in combination with mobile devices. The
low number of existing speech-based applications
leads to little opportunity to get in touch with this kind
of user interface even from the user’s point of view.

Therefore we defined some basic usability patterns
for human-computer-interaction (HCI) using
multimodal interfaces on mobile devices. The most
important ones are described in an informal way as
follows:

Feedback on the speech recognition progress

The user needs to know the speech recognition
engine’s progress. When a user operates a graphical

user interface component an immediate action occurs.
The same is expected for voice input but this is by far
more complex. Thus the user has to be informed if the
recognition engine is listening to user input and if it
did recognize the input.

We identified three states, which are interesting for
the user: (i) speech recognition engine is listening, (ii)
microphone is turned off, and (iii) speech engine was
unable to recognize the last utterance. These states are
visualized by a simple task bar icon which changes its
color and shape depending on the status (e.g., green
spot, red spot, or white cross on red background). The
icon seems to suit the requirements best because it
does not demand too much of the limited space on
mobile devices and does not annoy the user as pop-up
dialogs would do.

Pop-up messages should only be used if additional
information is shown and the user gets the opportunity
to react on the messages (like choosing an alternative
recognition result).

Say-what-you-see

Due to the fact that the user can’t know all
supported commands, especially when using the
speech-enabled application for the first time, the most
intuitive approach is to provide grammars that reflect
the graphical user interface. Additionally, this
approach works well on mobile devices that do not
offer enough space to show the commands on the
screen.

This approach has side effects on the graphical user
interface. To ensure acceptable recognition results, the
displayed texts must be optimized for verbal input (i.e.,
abbreviations and similar labels should be avoided).
Interface elements that are not clearly and
unambiguously identifiable by their appearance, like
items in a list, should offer a surrogate label (e.g., a
number).

The say-what-you-see grammars provide a very
simple and step-by-step way to operate the user
interface. Similar to graphical user interfaces they
demand to set the focus before data can be entered. By
that the way of interacting with the user interface is
familiar immediately.

Although users might switch to use more complex
but more convenient grammars as they become more
experienced, the say-what-you-see approach is the
only way to enable a fluent workflow for novice users.

Unambiguous Format

For entering structured data or data with special
syntax the input controls should narrow down the task
by limiting the input capabilities. The limited speech
recognition space increases the recognition accuracy

and automates data formatting, which would be very
cumbersome to do using speech. This pattern is well-
known from graphical user interfaces and described in
various pattern collections like [11]. Typically it is used
to enter date and time values or currency values. In
connection with speech input the pattern becomes even
more important. For example when entering a phone
number by speech the number must be represented in
digits separated by special characters although the
spoken command doesn’t differ from entering digits
that should be written as words.

Confirmation Dialog

Accidentally selected functions, which might lead
to irreversible (side) effects, should be secured by
confirmation dialogs (cf. pattern “Shield” [11]). Based
on the fact that speech recognition is less exact than
other input modalities wrong actions might be
executed if a command is misrecognized. Therefore,
functions like for example sending or deleting an e-
mail should be secured. This pattern should be used in
connection with the Undo/Redo pattern, which suites
better for small processing steps. But functions that
can not be undone or which would require a lot of
system resources to undo should be secured by
confirmation dialogs.

Undo/Redo Mechanism

Due to the fact that confirmation dialogs pop up in
each case – no matter if an action was invoked
deliberately or by error – they are annoying and lower
the user’s productivity if they occur too often.

For protecting small steps of user interaction, like
entering single words in a textbox, an Undo/Redo
mechanism would be more suitable. All actions and
changes are performed immediately – even those
which result from misrecognition of speech. The
obvious advantage of this mechanism is that the
mechanism does not conflict with the human computer
interaction. The user can use the computer fluently
while not being afraid of misrecognitions, because
every unwanted action can be undone with minimal
effort.

7. Conclusion and Further Work

Most of the usability criteria for graphical
applications unsurprisingly also apply to speech-
enabled or multimodal applications, but they need to
be intensified. This is mainly due to the transience and
ambiguity of speech, and to current speech recognition
systems’ recognition performance (recall that we have
to compress speech for transmission to the speech

recognition server). Thus, speech-enabled applications
need to be implemented in a conversational style. The
most important patterns are: (i) provide feedback about
the application’s state, let users (ii) say what they see
and (iii) easily correct mistakes (undo), and (iv) ask for
confirmation.

The usability tests have shown that users are willing
to speak to the application and that they can solve all
tasks by speech. This is important for applications that
need to be exclusively manageable by speech because
the hand and eye distraction is dangerous or
disadvantageous (e.g., applications in cars).

Typical mobile applications (like our e-mail and
contact application) are used best with the stylus for
pointing and speech for entering text. But any
multimodal application should strive to be usable with
either of its modalities exclusively, as there can be
situations where using a particular modality is less
comfortable or not possible (e.g., the stylus while
driving, speech in public).

In our further work we want to investigate
additional applications (database search, media
booking) and alternative interaction components.

Acknowledgment

This research was supported by the Austrian

Research Promotion Agency under the FHplus
program, the Austrian Broadcasting Corporation
(ORF), and Microsoft. Any opinions, findings, and
conclusions or recommendations in this paper are
those of the authors and do not necessarily represent
the views of the research sponsors.

References

[1] Turunen, M., “Jaspis – A Spoken Dialogue Architecture
and its Applications”, Academic Dissertation (Tampere,
Finland, 2004).

[2] Jokinen, K. & Hurtig, T., “User Expectations and Real
Experience on a Multimodal Interactive System”, in
Proceedings of Interspeech 2006 (Pittsburgh, USA,
September 2006).

[3] Hurtig, T., “A Mobile Multimodal Dialogue System for
Public Transportation Navigation Evaluated”, in Proceedings
of 8th ACM Conf. on Human-Computer Interaction with
Mobile Devices and Services, ACM Press, New York, USA,
2006, pp. 251-254.

[4] Nielsen, J., “Usability Engineering”, Morgan Kaufmann,
San Francisco, USA, 1993.

[5] Häkkilä, J., “Usability with Context-Aware Mobile
Applications – Case Studies and Design Guidelines”,
Academic Dissertation (Oulu, Finland, 2006).

[6] Turunen, M., Hakulinen, J., Rähä, K.-J., Salonen, E.-P.,
Kainulainen, A., Prusi, P., “An Architecture and
Applications for Speech-Based Accessibility Systems”, in
IBM Systems Journal, Vol. 44, No. 3, 2005.

[7] Sturm, J., Bakx, I., Cranen, B., Terken, J., Wang, F.,
“Usability Evaluation of a Dutch Multimodal System for
Train Timetable Information”, in Proceedings of 3rd
Internation Conference on Language Resources and
Evaluation (Las Palmas, Spain, May 2002).

[8] Kurschl, W., Mitsch, S., Prokop, R., Schönböck, J.,
“Development Issues for Speech-Enabled Mobile
Applications”, to be published in Proceedings of SE 07 – the
Conference on Software Engineering (Hamburg, Germany,
March 2007).

[9] Kurschl, W., Mitsch, S., Prokop, R., Schönböck, J.,
“Gulliver – A Framework for Building Smart Speech-Based
Applications”, in Proceedings of 40th Hawaii International
Conference on System Sciences HICSS-40 (Big Island of
Hawaii, USA, January 2007), IEEE Computer Society Press,
2007.

[10] Kaikkonen, A., Kallio, T., Kekäläinen, A., Kankainen,
A. & Cankar, M., “Usability Testing of Mobile Applications:
A Comparison between Laboraty and Field Testing”, Journal
of Usability Studies, Issue 1, Vol. 1, Usability Professionals'
Association, Bloomingdale, USA, November 2005, pp. 4-16.

[11] van Welie, M., Trætteberg, H., “Interaction Patterns in
User Interfaces”, in Proceedings of 7th Pattern Languages of
Programs Conference, 13-16 August 2000, Allerton Park
Monticello, Illinois, USA.

	1. Introduction
	2. Related Work
	3. The E-Mail and Contact Application
	3.1. The Gulliver Framework
	3.2. User Interface Controls

	4. Usability Study
	4.1. Test Procedure
	4.2. Test Persons and Environment
	4.3. Guided Follow-Up Interview
	4.4. Research Hypothesis

	5. Study Results
	6. Usability Patterns
	7. Conclusion and Further Work
	Acknowledgment
	References

