Gulliver—A Framework for Building Smart Speech-Based Applications

Werner Kurschl
Upper Austria University of Applied Sciences
College of Information Technology
Hauptstr. 117, A—4232 Hagenberg, AUSTRIA
werner.kurschl @fh-hagenberg.at

Abstract

Speech recognition has matured over the past years to
the point that companies can seriously consider its use.
However, from a developer’s perspective we observe that
speech input is rarely used in mobile application develop-
ment, not even if it allowed users to work with their devices
more flexibly. This stems partly from the fact that program-
ming speech-enabled applications is tedious, because there
is insufficient framework and tool support.

This paper describes a component-based framework that
uniformly supports development of multimodal applications
on heterogeneous devices, ranging from laptop PCs to mo-
bile phones. It especially focuses on distributed components
(each performing a single step in speech recognition) to en-
able speech recognition on any type of device. Moreover, it
describes how to develop and integrate different user inter-
faces for one application (voice-only, graphical-only, and
multimodal) in a model-driven development approach, to
minimize development and maintenance costs.

1. Introduction

An increasing number of businesses with mobile work-
ers desire more flexibility and closer contact among their
employees. For example, field workers that spend most
of their time out of office and traveling between several
sites need to communicate with in-house personnel; both
groups utilize different devices: while stationary workers
can rely on desktop PCs and fixed networks, field work-
ers are constrained to mobile phones, personal digital as-
sistants (PDAs), and limitations on laptop use. In order to
better connect these two groups, the exchange of data be-
tween devices can still be improved and user input must
be simplified. In this work we concentrate on applications
for PDAs (PocketPC running Microsoft Windows Mobile

Stefan Mitsch, Rene Prokop,
and Johannes Schonbock
Upper Austria University of Applied Sciences
Research Center Hagenberg
Hauptstr. 117, A—4232 Hagenberg, AUSTRIA
{smitsch, rprokop, jschoenb} @fh-hagenberg.at

5.0), because we think they are the best compromise be-
tween features and size. In fact, recent technological devel-
opments in mobile devices (e.g. ubiquitous network access)
have greatly advanced this so that both stationary and mo-
bile workers use software as a substitute for direct contact
with their coworkers; however, what they truly desire is to
deal with the device in the same manner as they deal with
coworkers, namely oral interaction.

The means to this end is speech recognition, which has
advanced dramatically over the past years due to increased
processing power and improved algorithms. Yet, it has not
been adopted by a wide range of application domains, be-
cause keyboard and mouse are well-established input de-
vices that are even emulated by computing devices lacking
those input capabilities (e.g., PDAs). Based on the princi-
ples of Ubiquitous Computing, the device should move into
the background to become an invisible helper that is oper-
ated along the way instead of being the central unit of work
which demands the user’s full attention. From that perspec-
tive the conventional input devices—like emulated or small-
sized keyboards—are tedious to use, whereas speech input
is the preferred means of input.

Of course there are also overwhelming reasons to use
speech input. For example, it currently enables visu-
ally/physically handicapped people to gain access to soft-
ware systems. It is also advantageous in situations where
hand and eye distraction could be dangerous, e.g., driving.
Moreover, Srinivasan and Brown have already documented
in [20] that vertical markets such as customer service, travel,
insurance, and banking have successfully integrated speech
recognition systems into their enterprise applications.

Be that as it may, from a software development per-
spective programming speech-enabled applications is time-
consuming due to the fact that there is insufficient frame-
work and tool support (speech recognition engines and APIs
only provide low-level events without semantics).

Speech recognition systems can be roughly categorized
by the following criteria:

e Speaker-dependent or speaker-independent

e Constrained (grammar-based) or unconstrained

(dictation-based) vocabulary

Today’s speech recognition systems with an uncon-
strained vocabulary are speaker-dependent and demand
high processing power and memory. Although the process-
ing power of PDAs and mobile phones increases rapidly,
it is far from being acceptable for unconstrained speech
recognition. To date, no unconstrained speech recognition
engine for such devices is available. Due to the complexity
of recognizing unconstrained speech, most of these systems
need to be trained to gain acceptable recognition rates of
95 percent and more. By contrast, constrained vocabulary
speech recognition systems demand less powerful devices;
they are often speaker-independent and available on PDAs
as well.

The diversity of devices to be utilized in better connect-
ing the groups mentioned above is a challenging factor in
implementing software systems. Users expect the look-and-
feel of a software system to be uniform across all platforms.
Unfortunately, mobile devices are constrained in their pro-
cessing power, memory, and input capabilities. Often appli-
cations created for a desktop PC are transformed to appli-
cations that are suitable for mobile devices. This transfor-
mation when done manually is laborious, error-prone, and
costly. Thus there is a strong demand to create an applica-
tion only once on an abstract level, and automatically trans-
form this abstract model to various end devices.

This paper describes a component architecture that sup-
ports the development of multimodal applications on het-
erogeneous devices, ranging from laptop PCs to mobile
phones. It’s primary focus is on distributable components
that enable fully featured speech recognition—constrained
and unconstrained—on any kind of device. To accom-
plish the above-mentioned, we split the process of recogniz-
ing speech into small steps that can be distributed flexibly
based on a device’s capabilities. For example, laptops and
tablet PCs are capable of performing all the steps in speech
recognition, whereas a PDA can only perform constrained
vocabulary speech recognition and needs to forward un-
constrained speech recognition to a server. Our frame-
work, called Gulliver, includes components for recording
voice input from different sources (microphone or Blue-
tooth headset), for transporting voice data with VoIP over
wireless networks, for server- and client-side speech recog-
nition, and for a user interface with a unified event model
for verbal and graphical user interaction.

Based on the model-driven software development prin-
ciples a graphical editor provides the possibility to create
an abstract user interface model that can be transformed to
various end devices and different programming languages.

2. Related Work

Aurora Distributed Speech Recognition (DSR, see [17])
is a standard of the ETSI. DSR takes special care to mini-
mize network traffic and thus enable speech recognition in
low-bandwidth networks, like general packet radio service
(GPRS). So-called features are extracted out of the speech
data at the client side and are transported via the network.
On the server side a speech recognition engine, which must
be able to recognize speech based on those extracted fea-
tures, converts the features into text. Although DSR is stan-
dardized, hardly any speech recognition engine is able to
recognize speech from features.

VoiceXML (see [13]) is a markup language designed to
describe dialog flows in voice applications. Comparable to
HTML that is interpreted by a Web browser, VoiceXML is
interpreted by a voice browser. Multimodal applications
can be described using X+V (see [5]), which integrates
XHTML for visual content and VoiceXML for spoken in-
teraction. Neither standard supports dictation, because each
constrains user input with grammars (at least SRGS, see
[12], must be supported by VoiceXML platforms).

Speech Application Language Tags (SALT, see [19]) is
an alternative to VoiceXML. It is an extension of HTML
and other markup languages that adds a speech interface to
Web applications and services. SALT, like VoiceXML, also
requires a special browser (either voice only or multimodal)
that is capable of interpreting the SALT-specific tags; it does
not support dictation, either.

XUL (see [10]) and UIML (see [4] and [18]) are both
user interface markup languages based on XML. User in-
terfaces are described in XML format and transformed into
various user interface implementations by renderers, e.g.,
into a multimodal, VoiceXML-based user interface.

Microsoft Speech API (SAPI) provides a common API
to deal with different recognition engines. SAPI is also
available for embedded devices running Windows CE .NET
4.2 or newer (i.e., Windows Mobile 2003 or 5.0). How-
ever, as stated above, there are no speech recognition en-
gines that support dictation for these devices. And even if
there were such engines, SAPI is not a user interface devel-
opment environment (see [2]). It is located one layer below
and solves the problem of unifying API access to different
speech recognition engines.

Microsoft Windows Vista (see also [7]) includes speech
recognition in the operating system. This means that one
can control Microsoft Windows and its programs via voice
commands and enter text by dictating. Application devel-
opers can easily create speech-enabled applications based
on the new APIs exposed by Vista. Unfortunately, these
APIs are only available for desktop PCs and not for mobile
devices.

Multimodal Teresa (see [16] and [14]) is a model-based

approach used to design applications for different plat-
forms. It generates platform-specific models (PSM) based
on an abstract task model. From the PSM it is also possible
to generate the user interface of the application. Although
Teresa includes an editor, it is impossible to know what the
user interface will look like at the end of the transforma-
tions. Furthermore the software relies on VoiceXML for
describing multimodal interfaces, which does not support
dictation.

The MONA (see [15]) research group has developed a
multimodal presentation server which basically generates
a device-specific implementation of a user interface based
on an abstract description. The format is a MONA-specific
UIML format that is transported to the mobile device via
Web services. Unfortunately the mobile device must be ca-
pable of interpreting this user interface description in a spe-
cific browser. If a multimodal user interface is needed, then
VoiceXML is used as a target language.

We observe a lack of functionality in different areas.
Creating distributed speech applications with the Aurora
standard is limited to special recognition engines, which
hinders the wider adoption of speech technology in busi-
ness applications. Although there is a lot of research done
in the automatic transformation of models to user interfaces
all related work suggests using VoiceXML as language for
multimodal applications. Most speech recognition engines
available for building rich-client applications do not sup-
port VoiceXML directly (VoiceXML support is only avail-
able in some Web browsers). Therefore components would
be needed that transform VoiceXML to a format the speech
recognition engine can handle.

Furthermore, our analysis showed that none of the exam-
ined voice user interface description languages (VoiceXML,
SALT, etc.) support dictation; they are all restricted to con-
strained speech recognition, which limits their application
domain. The current limitations of existing approaches pre-
vent a seamless model and framework, which fits to dif-
ferent devices with different capabilities, so that speech-
enabled application can be easily developed and be used
better in the mobile application domain.

3. Speech Recognition on Mobile Devices

Developing speech-based applications on mobile devices
requires a separation of different aspects, which we discuss
in the following section.

3.1. Components of Speech Recognition

Speech recognition consists of three basic components,
shown in Fig. 1, regardless of which device is used.

Digitizing: The spoken language is recorded by a micro-
phone and transformed into a digital signal.

i))) F—b[D\gilizing)—b[Filter J—b[ASR Engine Business
Logic

Figure 1. Speech recognition components.

Filtering: The digital signal is processed by audio fil-
ters, which, for example, minimize background noise, cor-
rect microphone typical distortion, or compress audio data.

Automatic Speech Recognition (ASR) Engine: The
speech recognition engine turns the digital speech data into
text.

These components are linked by transmission channels
that send the audio data from one component to the next.
Although this transmission might be a simple stream when
the microphone and the speech engine are part of the same
device, it could also be a VoIP or GSM channel when the
speech recognition is placed on a remote machine.

3.2. Speech Recognition Schemes
To overcome the limitations listed in section 1, speech

recognition components can be distributed across several
machines.

i))) F—»[D\gilizing)—b[Filter J—»[ASR Engine
ogic
—O0—_ 0 o I, o

Phone Client: Speech Server ASR Data
no ASR (GSM) (grammar + dictation)
— e o T — |
Client ASR Speech Server ASR Data
PDA (grammar only) (VOIP) (dictation)
Client ASR Data
(grammar only / dictation not required)
Laptop . O > u
Tablet PC Client ASR Data
(grammar + dictation)

Legend: (@ Client B server [Transmission

Figure 2. Speech recognition schemes.

Based on the components of speech recognition (de-
scribed in section 3.1), three deployment schemes (depend-
ing on the type of mobile device) can be identified, as shown
in Fig. 2:

Scheme 1—Standard or mobile phone: Full-featured
voice recognition including dictation is available for nei-
ther mobile phones nor standard ones. Moreover, it is not
possible to install additional software on standard phones.
The only usable feature supported by all phone types is the
transmission of spoken language using conventional line
telephone networks or GSM. Thus, the phone’s mic is the
only speech recognition component used for digitizing the
input. The filtering processes and the speech recognition
engine must be placed on a remote machine. Additionally,

this scheme restricts the user to voice-only interfaces—the
only communication channel available is the telephone net-
work.

Scheme 2—PDA or Smartphone: These devices make
possible the implementation of a simple graphical or even
multimodal user interface and a grammar-based speech
recognition engine. However, if dictation is a required fea-
ture of a speech-enabled application, an additional speech
recognition engine must be placed on a remote server. As
opposed to scheme 1, here the digitizer and filters can be
placed on the mobile device, and the transmission proto-
col is not dependent on the telephone network any more—
instead speech might be transmitted using alternative proto-
cols like VoIP. As long as there is no need for dictation, all
three components of speech recognition can be placed on
the mobile device since the computation power is sufficient
to do this locally.

Scheme 3—Laptop or Tablet PC: Portable personal com-
puters, laptops or tablet PCs, provide enough computa-
tional power for local speech recognition, including dicta-
tion. Therefore, all three components of speech recognition
can be deployed locally without any feature limitations.

3.3. A Speech Recognition Framework for
Mobile Devices

A framework aimed at serving different types of client
devices in an adequate way must be able to deal with each
of these schemes at several layers.

At the input processing layer the translation of spoken
language into text must be supported. This is represented
by the basic speech recognition process described above.
At the user interface layer the framework needs to sup-
port user interfaces of variable complexity. Powerful mo-
bile devices may use speech just as an add-on to their con-
ventional graphical user interfaces. When using standard
phones, however, speech is the only way to interact.

The architecture described below defines how to imple-
ment these layers for each of the three schemes.

4. Architecture

As a result of the different requirements and schemes
(see Fig. 2) of speech recognition on different types of de-
vices, to obtain device-independent business logic and user
interfaces, the input processing layer must be transparent.
Fig. 3 reveals our architectural framework to accomplish
this transparency.

Our architectural framework takes into account the fact
that mobile applications are typically client/server systems:
the business logic server usually is a separate server which
is not part of the speech recognition architecture and is con-
nected to the client’s business logic only; by contrast, the

speech recognition server does not implement any business
logic. Of course these two servers might be deployed on the
same remote machine.

In our architecture, the speech recognition process is hid-
den by the Speech Input component, which makes speech an
input medium like the mouse or keyboard. The user inter-
face and the business logic can use the Speech Input regard-
less of which features (e.g., dictation) are available locally
and which must be deferred. The Speech Input component
receives the audio data directly from a microphone or any
other type of audio source and returns the recognized text
or command.

£ (o | Busies
Client Server s g
l Business Logic Business Logic erver
_ vl COMMANDS |
w + TEXT
‘ —
Speec Speech Input “
COMMANDS

Speech + TEXT Spggch

Recognition

Server

Speech Commands

Wrapper
Local
Speech Engine

Wrapper
| ‘ Remote

Speech Engine

Mobile Client
(PDA / Laptop)

Engine Business Logic Engine Business Logic

Figure 3. Speech recognition architecture.

The structure of the speech recognition process, which
is hidden by the Speech Input component, depends on the
processing power of the mobile device. Figure 3 shows the
components that are needed for implementing speech recog-
nition on PDAs, scheme 2. PDAs are able to perform sim-
ple command- or grammar-based speech recognition, but no
dictation. To provide dictation as well, the dictation-based
part of speech recognition is deferred to a remote speech
server. As a result, the application gains access to fully
featured speech recognition—regardless of the processing
power of the mobile device—without any major disadvan-
tages.

Of course the speech recognition process could be placed
entirely on a remote server, as the DSR standard suggests
(see [17]), but this would lead to an unacceptable effect:
users expecting an immediate response in command-and-
control would be confronted instead with an unacceptably
long delay because of the time needed to transmit audio data
over wireless networks.

By handling the time-critical part of speech recognition
(i.e., the command and control features) locally on the mo-
bile device, the response time is reduced to an acceptable
range and the communication overhead with the speech
recognition server is limited. Thus, the problem with la-

tency caused by a remote speech recognition engine occurs
only when dictation is used. Nevertheless, users may accept
this delay because of the time saved by not having to input
data with a mouse, pen or keyboard, especially on a PDA.

The concurrent use of two speech engines requires a
component that distributes audio data and merges the re-
sults. This is done by the Speech Director. It uses the lo-
cal speech engine to recognize the user’s commands. The
switch to the remote speech recognition engine can be
caused by verbal user commands, which are defined in a
grammar and recognized by the local speech engine, by the
client’s business logic (e.g., when creating an e-mail), or by
interaction with the graphical user interface in a multimodal
application (e.g., setting the focus by mouse).

For the transmission of the audio data to the remote
speech engine, VoIP is currently used. The audio data
is passed from component to component (e.g., audio in-
put to Speech Input, Speech Director to speech engine
or VoIP transmitter) by Speech Channels, which are de-
scribed in detail in section 5.1. These Speech Chan-
nels allow one a customizable linkage of components.
Thus, single components—Ilike the VoIP transmission—can
be exchanged easily, or additional components—Ilike re-
sampling or noise reduction—can be inserted at any posi-
tion.

The speech engines used on the mobile device and the
remote speech recognition server are accessed through a
Speech Engine Wrapper. This layer of abstraction is re-
quired when two or more speech engines (perhaps shipped
by two different vendors) are used. A positive side effect
of this is that the speech engines are exchangeable. Many
speech recognition engines already support such a wrapper,
e.g., Microsoft’s Speech APL.

The Speech Engine Wrapper receives audio data from a
Speech Channel and provides it to the speech recognition
engine. Moreover, it transforms grammars and commands
that are delivered by the business logic in a generic format
(e.g., SRGY) into the format supported by the speech recog-
nition engine.

Apart from the Speech Input, most components are op-
tional and depend on the type of mobile device used as
well as on the required features. If there is only one local
speech engine required (e.g., when using a laptop or when
grammar-based speech recognition is sufficient), the Speech
Director can be omitted and the Speech Input can be con-
nected directly to the Speech Engine Wrapper.

5. Speech Processing Components

In the following sections we describe the key compo-
nents of the Gulliver architecture in more detail.

5.1. Channels and Filters

The unpredictable target platform requires a highly flex-
ible infrastructure for recording, transforming, and trans-
mitting audio data. The recording feature has to support
different audio sources, like a microphone built into a PDA
or Bluetooth headsets. These different audio sources de-
liver audio data in different formats and quality. To suit the
speech engine, some preprocessing steps (like re-sampling)
must be performed. Depending on the type of mobile de-
vice, the preprocessing step is performed locally, otherwise
it must be deferred to the remote speech recognition server.

To meet these requirements the transmission of audio
data uses a pipes-and-filters (see [8]) architectural style. Fil-
ters are components that implement the speech processing
functionality. The speech processing functionality ranges
from simple tasks—Ilike collecting audio data from an in-
put device, normalizing the volume, or applying a codec to
compress the audio data—to complex tasks like the trans-
mission of audio data over wireless networks (e.g., using
VoIP) and the speech recognition process itself.

A customizable linkage of these Filters must be possi-
ble to suit all schemes. Therefore, Filters are connected by
point-to-point-pipes, called Speech Channels. The combi-
nation of Filters can be defined in a configuration and can
easily be adapted to different types of devices.

Due to the good availability of speech processing im-
plementations (like Bluetooth stacks as audio source, VoIP
libraries for transmission, noise reduction algorithms, and
speech engines), the implementation of a Filter is often re-
duced to developing a wrapper that can be connected to
Speech Channels. We distinguish between two types of Fil-
ters regarding the way the data flow is handled: (i) those
that provide data passively by waiting for the data to be col-
lected by the successor—pull approach—(ii) and those that
send data actively to the successor—push approach.

SPEECH CHANNEL
.
PUSH OUT X

/

FILTER FILTER

BUFFER

Figure 4. Self-adapting speech channel.

To enable a chain of different Filter types, a Speech
Channel has to connect any type of Filters and adapt the data
flow if necessary. For that requirement the Speech Channel
is able to determine the operation type of the Filters and
connect and adjust itself (see Fig. 4).

5.2. Speech, Grammar and Result/Event
Routing

Almost all of today’s GUI frameworks use an event
model to communicate user input to an application’s busi-
ness logic. This paradigm is known by programmers and
well established. To provide speech as a standard input de-
vice it has to be integrated in the same manner as the ex-
isting input devices so that the same concepts are followed
and no differences are made. Thus, Gulliver provides multi-
modal (graphical and voice) user interface components that
support speech while offering the same events as graphical
user interface components.

Frame D
Grammar

(generated or
Multimodal user defined

Component
Event Handler
Grammar

(generated or register
user defined)

Event Handler % Multimodal
Component
Delegate A T

register | register

Multimodal Grammar
Component (generated or

user defined)

¥ Event Handler

1 5
Delegate Delegate Event Handler
¥ EventHandler

Speech Input

T, |getGrammar

getComponent
delegateEvent

speechRecognized
Event

Speech Director

Speech Recognition Result

Speech

Recognition Result

Speech [VoIP]

Wrapper Wrapper

Local Remote
Speech Engine Speech Engine

Engine Business Logic Engine Business Logic

Figure 5. Speech input and event handling.

Currently, most speech recognition engines only provide
a generic “speech recognized” event. Programmers have to
deal with the details of the event; they often have to exam-
ine the recognized text to decide which action to take. This
is very cumbersome and should be handled automatically
by the framework. Within Gulliver the Speech Input com-
ponent handles this specific problem as shown in Fig. 5. As
soon as a multimodal component is added to the application
it is registered at the Speech Input component. Handling a
user interface with voice commands requires a grammar. In
most cases this grammar can be generated automatically. A
useful grammar for a button could, for example, be “Press
the ok button” or simply “Press ok™ if “ok” is the label of
the button. This makes it possible to easily build and han-
dle the user interface with voice commands from scratch.
Additionally, programmers can provide custom grammars
to define individual behavior. Typically, a user interface
consists of a container called Frame, which groups several
components. Every single component within such a Frame

needs its own grammar. To ensure that every grammar can
be identified and associated with its component, it automat-
ically gets a unique identifier. When the Speech Input com-
ponent receives a recognition result, it is thus possible to
identify the component and the event the recognition result
belongs to. The component then analyzes the result and
invokes the corresponding standard event (e.g., the selec-
tion changed event if the component is a combo box). The
business logic, which has to handle this event for mouse
and keyboard input anyway, need not handle speech input
separately—the speech input follows the same concept as
used in GUI development.

A user interface typically consists of two types of com-
ponents: those with a predefined set of valid input values
(like combo boxes or date selectors), and those with un-
constrained input (like text fields). Thus it must be pos-
sible to combine constrained (e.g., for combo boxes) and
unconstrained speech recognition (for text fields) within a
single application. The Speech Director mentioned above
is responsible for routing speech data to the appropriate
speech recognition engine. This component acts as a Mes-
sage Router (see [11]).

The Speech Director can route speech data depending on
one of the following paradigms:

e Focus (set by verbal commands, business logic, or in-
teraction with a graphical user interface)

o Content-based message routing

Graphical user interfaces make use of the focus: for exam-
ple, if you want to start typing text into a text field, you first
have to set the focus to it (e.g., using the mouse). Instead
of the mouse, voice commands could be used to set the fo-
cus. It is possible to define several keywords that refer to
a graphical component. With the help of these keywords
it is possible to create a grammar dynamically that allows
the user to navigate through the user interface using voice
commands. If a component supports dictation, the Speech
Director has to switch to the remote speech recognition en-
gine, which is able to do unconstrained speech recognition.

A more sophisticated approach would be a Content-
Based Message Router (see [11]). It examines the mes-
sage content and routes the message onto a different channel
based on data contained in the message. But in this special
case this would mean that the router itself has to be able
to understand speech (which conflicts with the task of our
router). A possibility is to define grammars that also con-
tain free text. If the recognition result fits a grammar, the
Message Router has to find out if the grammar does con-
tain free text or not. If it does not contain free text, the
recognition result can be passed to the Speech Input compo-
nent immediately. Otherwise the spoken phrase and recog-
nized text would have to be examined. For example, saying

the sentence “Write an e-mail to Person A with the sub-
ject Hello and the text Hello! I am sorry, I cannot attend
the meeting today.” would contain free text and grammar.
The local speech recognition engine would inform the Mes-
sage Router that this grammar contains free text. Therefore,
the whole audio data would have to be sent to the remote
engine, which is able to do unconstrained speech recogni-
tion, as well. Afterwards the recognized text of both en-
gines would have to be divided into free text and commands
needed to set the focus. This solution breaks some rules of
the Content-Based Router pattern, because the router is not
able to decide individually how to route the messages. It
needs the help of some filters.

Therefore, we decided to route speech data depending
on the focused user interface component. This not only is
a well-known paradigm but it also guarantees shorter re-
sponse times.

6. User Interface

In sections 4 and 5 we described the architecture of our
framework. It’s made up of flexible components that com-
plete all the steps in speech recognition, and thus allows
developers to concentrate on the core task at hand when
creating a speech-enabled application. Furthermore, we in-
troduced fully integrated multimodal user interface compo-
nents that make it possible to build multimodal user inter-
faces in the same way as graphical user interfaces. Addi-
tionally, all these components can be implemented for vari-
ous devices.

Supporting various devices, of course, in most cases
leads to multiple user interfaces. For example, when us-
ing a standard telephone there is no graphical user inter-
face, whereas on mobile phones there is at least a limited
one, and on PDAs the graphical user interface is more so-
phisticated. Obviously, software developers must deal with
the problem of constructing multiple versions of a single
application, which are expensive in development and main-
tenance. Thus, a tool is needed that allows software devel-
opers to create different versions for different devices based
on one common model. This is the essence of model-driven
software development (see also [6]).

Our approach supports the generation of a concrete user
interface, which is based on previously defined abstract
models (see Fig. 6). It works in the following way.

The abstract UI model defines the application’s control
flow which is the same for all user interfaces. UML Activity
diagrams (see [9]) provide appropriate modeling constructs,
and XMI is the formal basis for transformations. Platform-
specific models (PSM) are automatically generated through
transformations; they can then be enriched with properties
inherent to the platform. For voice-only user interfaces
(without dictation), VoiceXML is an appropriate descrip-

Abstract Ul

_—] T

Graphical
User

Voice Multimodal
User User
Interface Interface Interface

N T

Mobile MSs Mobile
PC/Laptop Device PC/Laptop Device Web

Figure 6. Transformation from abstract to
concrete user interface models.

tion for the PSM, whereas graphical-only user interfaces
can be described through UIML, and multimodal user in-
terfaces can be described using a combination of both. The
PSMs may then be refined with additional models (e.g., lap-
top vs. PDA), and finally, source code is generated.

Multimodal user interfaces that do not support dictation
(e.g., Web applications with voice support) can be imple-
mented in X+V. But if rich-client applications with dicta-
tion support are needed, there is no implementation lan-
guage available. Now, however, the proposed user interface
components of Gulliver form the basis of such an imple-
mentation language.

To facilitate application development, we suggest a vi-
sual editor, comparable to a graphical user interface editor,
to help the user visualize the final outcome. In the abstract
model these elements can be rather simple (they just repre-
sent activities), but in the more detailed models the graph-
ical representation should look similar to the real applica-
tion on the device. An open source framework for creating
a graphical editor is Graphical Model Framework (GMF,
see [3]). With the help of this Eclipse framework it is pos-
sible to not only build feature-rich editors but also program
the graphical representation of the model elements individ-
ually. Hence, it is quite simple to show different graphi-
cal elements in different models and to define a data model
based on XML schema files.

UIML and VoiceXML are a perfect metamodel for our
editor, because they already define how elements can be
combined. The editor comprises several views—each rep-
resenting one PSM—and automatically transforms these
PSMs to more specific models, and finally to source code.
To do this, we suggest using JET (Java Emitter Templates,
see [1]) because it provides mature features.

7. Conclusion and Further Work

We have presented a component-based framework that
supports the development of multimodal applications on

heterogeneous devices, ranging from laptop PCs to mobile
phones. The framework’s components split up the process
of recognizing speech so that it can be flexibly distributed.
Thus, fully featured speech recognition can be implemented
on any device. The presented approach facilitates the devel-
opment of speech-based applications for mobile application
schemes.

In a further step we will enhance the user interface mod-
eling tool to generate a more specific model or even source
code for a specific platform.

8. Acknowledgment

We thank Gregory Curtis, Peter Schranz, Georg Scha-
betsberger, and Heiko Rahmel for their support and valu-
able input. This research was supported by the Austrian
Research Promotion Agency under the FHplus program, the
Austrian Broadcasting Corporation (ORF), and Microsoft.
Any opinions, findings, and conclusions or recommenda-
tions in this paper are those of the authors and do not nec-
essarily represent the views of the research sponsors.

References

[1] JET Tutorial (Introduction to JET). http://www.eclipse.org/
articles/Article-JET/jet tutorial 1.html.

[2] Microsoft Speech SDK (SAPI 5.1). http://www.microsoft.
com/speech/techinfo/apioverview/.

[3] The Eclipse Graphical Modeling Framework (GMF). http:
/Iwww.eclipse.org/gmf/.

[4] M. Abrams. User Interface Markup Language (UIML)
Draft Specification. http://www.uiml.org/specs/docs/
uiml20-17jan00.pdf, 2000.

[5] J. Axelsson, C. Cross, J. Ferrans, G. McCobb, T. V. Raman,
and L. Wilson. Mobile X+V 1.2. http://www.voicexml.org/
specs/multimodal/x+v/mobile/12/, 2005.

[6] S. Bleul, W. Miiller, and R. Schaefer. Multimodal Dia-
log Description for Mobile Devices. In Proceedings of In-
ternational Conference on Advanced Visual Interfaces (AVI
2004), Gallipoly, Italy, 2004.

[71 R. Brown. Talking Windows—Exploring New Speech
Recognition And Synthesis APIs in Windows Vista. MSDN
Magazine, 21(1), 2006.

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture—A System
of Patterns. John Wiley & Sons, 1996.

M. Fowler. UML Distilled—A Brief Guide to the Standard
Object Modeling Language. Addison-Wesley, Boston, 2003.
B. Goodger, 1. Hickson, D. Hyatt, and C. Waterson. XML
User Interface Language (XUL) 1.0. http://www.mozilla.
org/projects/xul/, 2001.

G. Hohpe and B. Woolf. Enterprise Integration Patterns—
Designing, Building, and Deploying Messaging Solutions.
Addison-Wesley, Boston, 2004.
A. Hunt and S. McGlashan.
mar Specification Version 1.0.
speech-grammar/, 2004.

S. McGlashan, D. C. Burnett, J. Carter, P. Danielson,
J. Ferrans, A. Hunt, B. Lucas, B. Porter, K. Rehor,
and S. Tryphonas. Voice Extensible Markup Language
(VoiceXML) Version 2.0, W3C Proposed Recommendation.
http://www.w3.org/TR/voicexml20, 2004.

G. Mori, F. Paterno, and C. Santoro. Tool Support for De-
signing Nomadic Applications. In Proceedings of the In-
ternational Conference on Intelligent User Interfaces (IUI),
Miami, FL, USA, 2003. ACM Press.

G. Niklfeld, H. Anegg, M. Pucher, R. Schatz, R. Simon,
F. Wegscheider, A. Gassner, M. Jank, and G. Pospischil. De-
vice Independent Mobile Multimodal User Interfaces with
the MONA Multimodal Presentation Server. In Proceedings
of Eurescom Summit 2005, Heidelberg, Germany, 2005.

F. Paterno and C. Santoro. One Model, Many Interfaces. In
Proceedings of 4th International Conference on Computer-
Aided Design of User Interfaces (CADUI), pages 143—-154,
Valenciennes, France, 2002. Kluwer Academics.

D. Pearce. Enabling New Speech Driven Services for Mo-
bile Devices: An Overview of the ETSI Standards Activities
for Distributed Speech Recognition Front-ends. In Proceed-
ings of AVIOS 2000: The Speech Applications Conference,
San Jose, CA, USA, 2000.

C. Phanouriou. UIML: An Appliance-Independent XML
User Interface Language. PhD thesis, Virginia Polytechnic
Institute and State University, Blacksburg, VA, USA, 2000.
Saltforum. Speech Application Language Tags
(SALT). http://www.saltforum.org/Saltforum/downloads/
SALTTechnicalWhitePaper.pdf.

S. Srinivasan and E. Brown. Is Speech Recognition Becom-
ing Mainstream? /EEE Computer, 35(4):38-41, 2002.

Speech Recognition Gram-
http://www.w3.org/TR/

