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Abstract

Due to increasing anticipated average life and health ex-

penditure ambient assisted living (AAL) systems attract the

attention of researchers. To successfully build and deploy

AAL systems knowledge from different fields of computer

science is needed: pervasive computing to gain the raw

data, machine learning and pattern recognition to interpret

these data and HCI knowledge to allow implicit interaction

with the system.

In this paper we propose a reference architecture for

building AAL systems. Based on this reference architec-

ture we introduce a toolbox that simplifies the development

of AAL systems. The toolbox consists of a meta-model for

pipeline systems, a low-level context model, high-level con-

text ontologies, customizable components and tool support.

1. Introduction

Routine medical check-ups often needed by elderly,

handicapped, or otherwise needy people in hospitals or at

the local doctor pose significant effort on both, the patient

and the medical staff. Moreover, these check-ups are just a

snapshot of the patient’s physical constitution, because col-

lecting continuous data would be too costly in terms of time

and money. Additionally, patients often have to stay at hos-

pitals just for the purpose of monitoring their well-being and

to do some routine check-ups (e.g., after a medical treat-

ment or a surgery). If such patients could leave hospitals

earlier and do these routine check-ups themselves at home,

the medical staff would be effectively unburdened from rou-

tine work, while at the same time the medical care quality

could be enhanced by continuous monitoring ([22] also em-

phasizes the importance of continuous monitoring).

To reach these goals we envision ambient assisted liv-

ing (AAL) systems that consist of various hardware and

software components integrated into everyday items or

worn/used by patients. The collected information could be

evaluated—either by medical staff or by an AAL system—

for irregularities, alarming changes, or symptoms. The sys-

tem could even automatically alert relatives, care givers, or

medical staff (taking into account a regulatory framework

for processing medical data as well as privacy protection).

Another aspect of an AAL system is to improve elderly

and needy persons’ habitability: it should assist them in liv-

ing autonomously, and let them participate in social com-

munities and family life. Envisioned living assistants in-

clude item tracking and searching, warning of household

dangers (e.g., slippery floor, unattended stove, or running

water taps), and recognition of alarming situations (e.g.,

collapse, sleep disorders). Social applications include com-

munication, entertainment, and awareness displays (e.g.,

neighbor at home, or family emotions).

To recognize these situations sensors integrated within

the living environment are needed. To date hardware sen-

sors and software components that can provide or interpret

some of the data needed already exist. But a common in-

frastructure to integrate these components has yet to be de-

veloped. AAL systems require a stable and profound ar-

chitecture, which enables the seamless integration of differ-

ent sensor types to acquire quantitative raw data. A situa-

tion inference engine transforms quantitative low-level con-

text into qualitative high-level context data (i.e., situations).

These situations are the basis to reason about possible ac-

tions (e.g., update a display, switch an actuator, or call the

ambulance).

In this paper we present a reference architecture for AAL

systems and propose a development toolbox to simplify the

implementation of such systems using a Model Driven Soft-

ware Development (MDSD) approach.



2. AAL System Reference Architecture

Baldauf et al. compare in [4] various architectures in

their survey on context-aware systems: (i) direct sensor

access applications tightly integrate sensor access and ap-

plication, which is useful for small, stand-alone applica-

tions, (ii) middleware-based applications use layers to sep-

arate low-level sensor details from application details, and

(iii) context-server applications additionally permit multiple

clients to access shared context data on a server.

Context-server applications, mainly used for distributed

systems, are most flexible because heterogeneous clients

and sensors can be integrated. Additionally, resource-

intensive operations can be transferred from power-

restricted sensors to a server. SOCAM (see [14]) and JCAF

(see [6]) are examples of context-server applications. [2]

and [31] describe how a layered architecture can separate

detecting and using context to improve extensibility and

reusability.

Figure 1 shows the reference architecture we use

throughout this paper (based on the described work). We

structure the architecture into three main tiers according to

a typical deployment’s hardware boundaries. Within each

tier an n-layer (e.g., data layer, business layer, and presen-

tation layer) design might prove useful.
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Figure 1. AAL System Reference Architecture
with Layers according to [31] and [2]

2.1. The Context Sensing Tier

Ambient assisted living applications often need different

types of measurements or sensor values (e.g., sound, ac-

celeration, water flow, light) from the surrounding environ-

ment, which are usually provided by sensors and processing

boards from different manufacturers. To ease the integra-

tion of these sensors a sensor abstraction layer is necessary,

which uses common plug-in software patterns for sensor-

specific implementation parts. The data provided by the

sensor abstraction layer is furthermore described in terms

of a common data model, thereby hiding sensor-specific is-

sues within the sensor abstraction layer.

2.2. The Context Processing Tier

The context processing tier provides persistent storage

for context data. Moreover it derives high-level context

(situations) from low-level context (raw context data from

the sensors) using feature extraction, machine learning, and

pattern recognition algorithms. These high-level context

data, if described in terms of an ontology, are the founda-

tion for situation awareness as defined by [12]. Reasoning

on situations permits to assess situations and predict future

developments (situation evolution).

2.3. The Context Application Tier

The context application tier contains applications that

utilize context information to adjust their behavior. Differ-

ent applications might listen to events of the reasoning en-

gine including explicit and implicit systems as mentioned

in [21]. Explicit interaction systems always require a kind

of dialog between the user and a particular system or com-

puter. Especially for AAL systems implicit human inter-

action should be taken into consideration. Schmidt defines

implicit human-computer interactions as interaction of a hu-

man with the environment and with artifacts aiming to ac-

complish a goal. The output of implicit systems should be

seamlessly integrated with the environment of the user. [13]

proposes to use ambient displays that operate at the periph-

ery of a user’s attention (e.g., some artwork).

Furthermore different types of actuators could be con-

sumers of events of the reasoning engine. Knowledge shar-

ing with other systems (e.g., medical information systems)

may also be implemented here.

3. Development Toolbox Architecture

To support the development of AAL applications that ad-

here to the reference architecture described above, we pro-

pose a development toolbox, which consists of



• a meta-model for pipeline systems,

• a low-level context model,

• high-level context ontologies,

• customizable components (sensor abstraction, feature

extraction, classifier learning algorithms, etc.)

• and modeling and development tools

for each of the three application tiers. The toolbox should

assist developers in the following activities: software de-

velopment for (i) sensing devices, (ii) the data processing

parts, and (iii) data analysis and classification to identify

situations.

3.1. Meta-Model for Pipeline Systems

For implementing the context processing tier the tool-

box provides components for feature extraction, supervised

classifier learning, and unsupervised clustering (all from the

field of machine learning and pattern classification). The

processing of raw data, which is typically provided by sen-

sors as data stream, is done in a processing chain (see design

pattern Tee-and-Join-Pipeline-System in [11]).
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Port
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Figure 2. Meta-Model for Tee-and-Join-

Pipeline-System Context Processing

The meta-model shown in Figure 2 defines the basic el-

ements for modeling situation inference components. The

class ContextComponent acts as an abstract base class for

all components; concrete classes (not shown within the fig-

ure) provide specific behavior, e.g., a MinFilter component

calculates the minimum value of incoming DataPackets.

DataPackets cover the actual data delivered by a physical

sensor. ContextComponents can be connected via InPorts

and OutPorts using Connections that transfer data from one

component to another. If components run on different hard-

ware devices or processes specialized connections hide the

specifics of remote calls. The ContextRecognizer class ag-

gregates all ContextComponents and Connections within a

certain model and thus forms the whole pipeline system.

The meta-model provides four different abstract base

types of components, namely Reader, Writer, Filter and

Classifier. A reader provides data from a specific source

(e.g., a file or a sensor), whereas a writer forwards data to a

specific sink (e.g., console, file, database or actuator). Fil-

ters extract features from raw sensor data. These features

can be used in classifiers to recognize situations. Compos-

iteComponents can be used to hierarchically group compo-

nents. Thereby a Pipes-and-Filters chain modeled as Com-

positeComponent that recognizes a certain situation (i.e., a

ContextRecognizer) could be the basis for more complex

applications.

3.2. Low-Level Context Model

Current context-aware applications strive to interpret or

aggregate data and thereby minimize raw data storage de-

mands. But in medical applications detailed raw data infor-

mation needs to be preserved for later inspection by medical

staff. We therefore define a model for representing low-

level context data.

[4] and [24] present surveys on context models reaching

from simple key-value models to ontologies. We find the

Aspect-Scale-Context Information (ASC) model described

in [25] as part of the CoOL ontology and the context atom

attributes listed in [4] to be a flexible and general basis for

building a context model describing low-level context (i.e.,

raw sensor data). To enable supervised classification learn-

ing algorithms to work on raw data we extend the models

to contain class labels and classification domains. Figure 3

shows the extended model including an instantiation exam-

ple.

Figure 3. Low-Level Context Model

Each sample of Strang’s (see [24]) context information

(or context atom according to [4]) belongs to one aspect

of the modeled knowledge in the system and can be inter-

preted according to a particular scale. Additionally, class

labels may describe a context information sample in terms

of semantics from a particular domain (thereby enabling su-

pervised learning algorithms).



3.3. Situation Awareness and Ontologies

The envisioned AAL system produces a huge amount of

raw sensor data and also interpreted high-level context. As

Endsley puts it in [12]: “The problem with today’s systems

is not a lack of information, but finding what is needed when

it is needed”. He describes situation awareness as “the per-

ception of the elements in the environment within a vol-

ume of time and space, the comprehension of their meaning

and the projection of their status in the near future”, which

we agree to be a possible solution to this problem. In the

sections above we described how to perceive the environ-

ment by using sensors, and how to represent raw sensor

data in a common model. Feature extraction and classifi-

cation algorithms then transforms raw data into high-level

context (situations), thereby deriving semantic meanings.

To be beneficial and applicable to situation awareness the

derived situations must adhere to yet another model in or-

der to relate and assess current situations, but also to predict

future developments. [7] proposes the use of upper ontolo-

gies as modeling constructs for situation awareness in road

traffic management, as they could permit the integration of

information about perceived objects, identify situations, and

share knowledge. [27] additionally names the possibility of

logic inference and knowledge reuse as major reasons for

using ontologies.

Numerous ontologies already exist in the pervasive com-

puting domain: [7], [18], and [24] present surveys on on-

tologies for situation awareness and context modeling. [8],

[19], and [9] elaborate the basic ideas (deriving additional

meaning by reasoning about situations) towards prediction

of future developments in the road traffic management do-

main. We consider these concepts also to be relevant and

beneficial in AAL systems and other pervasive environ-

ments and will therefore include an appropriate ontology

and tools into our toolbox. A common shortcoming we

found among all described models is missing tracing in-

formation. As already stated above medical data typically

needs to be available in raw format for detailed inspection

by medical staff; thus, trace links from derived high-level

context to raw data must be preserved to allow medical staff

to quickly navigate to relevant data. We will therefore ex-

tend the existing work to also contain such tracing informa-

tion.

3.4. Customizable Components

Many implementation tasks during development of the

sensing or processing tier are recurring in different AAL

systems. One approach for a reduced development effort is

the use of a generic software framework or platform with

customizable components. A customizable component is

one that can be tailored for reuse in a new context prior to

its installation or use (see [28]).

The meta-model described in section 3.1 is based on the

Eclipse Modeling Framework (EMF) which represents the

model in Ecore. Programmers are able to extend the pro-

vided model by creating a new ecore model that references

the base model. Within the new model the user can easily

integrate new ContextComponents or customized Connec-

tions.

The abstraction of different sensors and hardware plat-

forms (e.g., Crossbow MICAz with TinyOS and ZigBee) is

a critical issue for AAL applications. Various different man-

ufacturers provide specialized sensors that allow program-

mers to gain specific context data. Thus the toolbox must

ensure the seamless integration of different sensors and pro-

cessing boards. TinyDB (see [17]) provides a query lan-

guage for sensor networks similar to SQL with additional

attributes like sample period and duration. On the one hand

it simplifies querying sensor values and on the other hand it

abstracts from different hardware platforms. That is why we

integrated a TinyDBReader into our meta-model providing

sensor data for further processsing in filters or classifiers.

A simple filter might be a minimum filter or a mean fil-

ter, a more complex one could be for example a Fourier-

Transformation filter. As stated above filters provide fea-

tures for classifiers. Currently we integrated machine learn-

ing and pattern recognition algorithms from WEKA (see

[30]) into our meta-model. In the future we plan to inte-

grate heuristic and genetic algorithms (see [29]).

3.5. Modeling and Development Tools

To further increase productivity appropriate tool support

is needed. Based on the meta-model we provide a graphi-

cal editor for defining model instances. The graphical edi-

tor uses the Eclipse Foundations’s Graphical Model Frame-

work (GMF). The context components are presented within

a palette of the editor. By using drag and drop instances

of components can be included into the model. Compos-

iteComponents can be used to split the model into several

sub models. Attributes of context components can be edited

within the properties view. For complex attributes custom

editors are provided. Figure 4 shows the current prototypcal

implementation of the graphical editor. The figure shows a

simple model that identifies if a person is standing or walk-

ing. The model makes use of a reader for fetching the val-

ues from the orthogonal accelerometers of an appropriate

sensor board (we call them x- and y-acceleration). As the

sensor delivers constant values when the person is standing

and unsteady values when the person is walking, a variance

filter could be used to calculate a threshold which can be

used in a simple classifier to predict the actual outcoming

(standing or walking).

The model shown in figure 4 produces code for the



Figure 4. Graphical Editor Prototype

Eclipse platform. Currently we provide models for the

Eclipse/Java and the TinyOS platform. To be conform to

the MDA-approach we are going to split-up the model into

a platform independent model (PIM) and a platform specific

model (PSM). Thereby it should be possible to transform

a PIM into one or more PSMs. After modeling an AAL

system source code for different platforms can be gener-

ated. The EMF Validation framework is used to check addi-

tional constraints (e.g., all components must have a unique

name). Figure 5 shows the template-based code generation

process using the Xpand1 template language. The code gen-

erator uses an instance of the meta-model and the template

to generate source code for a specific platform. The com-

ponents itself are provided as archive file implemented in a

platform-specific language and are referenced by the gener-

ated project.

Figure 5. Code Generation

This approach of code generation supports also in-

network processing and therefore reduces overhead, be-

cause processing and communication is shifted from the

server-side to the wireless sensor network. In-network data

processing can improve the scalability and can reduce the

energy/resource consumption, since it may significantly re-

duce the data volume that has to be routed through the net-

work (see [20]).

1www.eclipse.org/gmt/oaw/doc/4.1/r20 xPandReference.pdf

As stated above it should be possible to integrate various

platforms into the toolbox. Thus it must be possible to eas-

ily extend the code generation process as well. As we use

a template based approach a new template has to be created

if source code for a new platform should be generated. We

provide an extension point where a Java class has to be pro-

vided that implements the generation process and templates

for a particular platform.

4. Related Work

SOPRANO is an EU-funded project aiming to assist

older people resulting in a more independent life in their fa-

miliar environment. The main part is the SOPRANO Ambi-

ent Middleware (see [15]) which receives sensor inputs and

user commands, enriches them semantically using ontolo-

gies and triggers appropriate reactions using different types

of actuators.

BelAmi2 is a project at the Fraunhofer IESE in the field

of ambient intelligence systems. They argue that AAL sys-

tems raise a series of new challenges to software develop-

ment due to the combination of mobility, adaptivity and re-

source scarceness, which could be solved by software prod-

uct lines as proposed in [3].

Lymberopoulos demonstrates in [16] the application of

a probabilistic grammar-based formulation to detect com-

plex activities from simple sensor measurements. In partic-

ular, the authors present a grammar hierarchy for identify-

ing cooking activity from low-level location measurements

in an assisted living application.

The Context Recognition Network (CRN) Toolbox (see

[5]) describes a C++ framework integrating hardware ab-

straction, filter algorithms, feature extraction components

and classifiers in a configurable runtime to support rapid

development of context recognition applications. It is de-

signed for deployment to embedded devices that support the

POSIX runtime environment. Although a graphical editor is

provided it is not based on a formal meta-model and thus the

CRN Toolbox cannot fully benefit from a MDSD approach.

As we base our toolbox on a formal meta-model we are able

to generate code for various platforms, including the CRN

Toolbox, by exchanging the generator templates.

Model Driven Software Development (MDSD) is a soft-

ware paradigm where software is (partly) generated from

models (see [23]). The Eclipse Foundation, in particular

the Eclipse Modeling Framework (EMF) (see [10]) and the

Graphical Modeling Framework (GMF) (see [26]), provides

rich support to easily implement models and (graphical) ed-

itors needed for an MDSD approach.

WEKA (see [30]) provides a collection of machine learn-

ing algorithms for data mining tasks fully implemented in

2www.belami-project.org/index.html



Java. WEKA contains tools for data pre-processing, classi-

fication, regression, clustering, association rules, and visu-

alization.

MATLAB [1] is a numerical computing environment and

programming language. MATLAB provides among other

things a so called Neural Network toolbox (accumulation

of several small scripts implemented in a proprietary pro-

gramming language) for designing and simulating neural

networks used for pattern recognition. Although MATLAB

would provide powerful mathematical operations for data

analysis it can hardly be integrated into a complete soft-

ware system. Nevertheless MATLAB could serve as a pos-

sible platform for code generation (e.g., for simulation us-

ing SIMULINK).

5. Conclusion and Further Work

In this paper a reference architecture for AAL systems

was introduced. We described the major parts of the ar-

chitecture and related our reference architecture to existing

proposals. Based on the reference architecture we intro-

duced a toolbox that simplifies building AAL systems. The

toolbox provides basic components that read data from dif-

ferent sources, extract features, enable pattern recognition

and write results to different sinks. By allowing program-

mers to extend our meta-model custom components can be

integrated. To further increase productivity appropriate tool

support is needed, which has been shown in a first prototype

of the toolbox.

The toolbox must now be further evaluated in different

AAL applications and different use cases to measure its ad-

vantages and shortcomings. Currently we focus on integrat-

ing different classifiers and define a suitable ontology for se-

mantic reasoning. To be conform to the MDA specification

we are going to split-up our model into a platform indepen-

dent model (PIM) and a paltform specific model (PSM) and

introduce model transformations.
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