Algorithmica (1994) 11: 15-32

Algorithmica

© 1994 Springer-Verlag New York Inc.

Randomized Competitive Algorithms for the
List Update Problem’

Nick Reingold,? Jeffery Westbrook,®> and Daniel D. Sleator*

Abstract. We prove upper and lower bounds on the competitiveness of randomized algorithms for
the list update problem of Sleator and Tarjan. We give a simple and elegant randomized algorithm
that is more competitive than the best previous randomized algorithm due to Irani. Our algorithm
uses randomness only during an initialization phase, and from then on runs completely deterministic-
ally. It is the first randomized competitive algorithm with this property to beat the deterministic lower
bound. We generalize our approach to a model in which access costs are fixed but update costs are
scaled by an arbitrary constant d. We prove lower bounds for deterministic list update algorithms and
for randomized algorithms against oblivious and adaptive on-line adversaries. In particular, we show
that for this problem adaptive on-line and adaptive off-line adversaries are equally powerful.

Key Words. Sequential search, List-update, On-line algorithms, Competitive analysis, Randomized
algorithms.

1. Introduction. Recently much attention has been given to competitive analysis
of on-line algorithms [7], [20], [22], [25]. Roughly speaking, an on-line algorithm
is c-competitive if, for any request sequence, its cost is no more than ¢ times the
cost of the optimum off-line algorithm for that sequence. In their seminal work
on competitive analysis [25], Sleator and Tarjan studied heuristics commonly used
in system software to maintain a set of items as an unsorted linear list. This
problem is called the list update or sequential search problem. The cost of accessing
an item is equal to its distance from the front of the list, and the list may be
rearranged (at a cost of one per swap of adjacent elements) during the processing
of a sequence of requests so that later accesses will be cheaper; for example, a
commonly requested item may be moved closer to the front.

Maintaining a dictionary as a linear list is frequently used in practice because
of its great simplicity. Furthermore, self-adjusting rules are effective because they
take advantage of the locality of reference found in real systems. List update
techniques have also been used to develop data compression algorithms [5], as

! A preliminary version of these results appeared in a joint paper with S. Irani in the Proceedings of
the 2nd Symposium on Discrete Algorithms, 1991 [17].

2 AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974-0636, USA.This research
was partially supported by NSF Grants CCR-8808949 and CCR-8958528.

3 Department of Computer Science, Yale University, New Haven, CT 06520-2158, USA. This research
was partially supported by NSF Grant CCR-9009753.

4 Carnegie-Mellon University, Pittsburgh, PA, USA. This research was supported in part by the
National Science Foundation under Grant CCR-8658139, by DIMACS, a National Science Founda-
tion Science and Technology center, Grant No. NSF-STC88-09648.

Received September 18, 1990; revised November 22, 1991. Communicated by Prabhakar Raghavan.



16 N. Reingold, J. Westbrook, and D. D. Sleator

well as fast and simple algorithms for computing point maxima and convex hulls
[3], [14]. For all these reasons, the list update problem has been extensively
studied [4], [8], [15], [21], [24]. Sleator and Tarjan [25] demonstrated that the
move-to-front algorithm, which uses the simple rule of moving an item to the front
of the list each time it is accessed, is 2-competitive. Subsequently Karp and
Raghavan (private communication, 1990) noted that no deterministic algorithm
for the list update problem can be better than 2-competitive, so in a very strong
sense move-to-front is as good as any deterministic on-line algorithm.

A great deal of recent work has focused on the use of randomization to
improve—sometimes exponentially—the competitiveness of on-line algorithms
[2], [12], [13], [18]. Karp and Raghavan (private communication, 1990) in-
augurated the study of randomized list update algorithms by showing a lower
bound of 1.18 on the competitiveness of any randomized algorithm. Irani dis-
covered a 1.875-competitive randomized algorithm [16], thus exhibiting the first
randomized algorithm to beat the deterministic lower bound.

In this paper we examine the effect of randomization in greater depth. We
present a very simple randomized algorithm, BIT, that is 1.75-competitive. Our
BIT algorithm is not only simple and fast, but, rather remarkably, it makes random
choices only during an initialization phase, using exactly one random bit for each
item in the list. From then on BIT runs completely deterministically: to process
an access to item x, BIT first complements the bit of x, and then moves x to the
front if the bit is 1. We call an algorithm that uses a bounded number of random
bits regardless of the number of requests barely random. Such barely random
algorithms have practical value since random bits can be an expensive resource.
To our knowledge, BIT is the first barely random algorithm for any on-line
problem that provably has a better competitive ratio than any deterministic
algorithm for that problem. Recently Alon et al. have given a barely random
algorithm for k-servers on a circle that is 2k-competitive [1]. However, it is known
for k = 2, and conjectured for all k, that a k-competitive deterministic k-server
algorithm exists, matching the known lower bound of k [9], [20].

We generalize the BIT algorithm to a family of COUNTER algorithms. Using
a COUNTER algorithm, we are able to achieve our best result, a \/S-competitive
algorithm. We also consider a generalized list update model in which the access
cost is the same as the standard model but in which the cost of rearrangement is
scaled up by some arbitrarily large value 4. (This is a very natural extension,
because there is no a priori reason to assume that the execution time of the program
that swaps a pair of adjacent elements is the same as that of the program that
does one iteration of the search loop.) For arbitrary list length and swap cost d,
the best-known deterministic algorithm is S-competitive. We give a family of
COUNTER algorithms that are always better than 2.75-competitive and that in
fact become more competitive as d increases. This gives evidence that the scaling
conjecture of Manasse et al. [20] may apply to randomized algorithms. This
version of the list update problem is similar to the replication/migration problems
studied by Black and Sleator [6]. We also show a lower bound of 3 on the
competitiveness of any deterministic algorithm in this model, so again our
randomized algorithms beat the deterministic lower bound.



Randomized Competitive Algorithms for the List Update Problem 17

An important question in the competitive analysis of randomized algorithms is
the relationship between oblivious, on-line adaptive and off-line adaptive adversar-
ies. Our upper bounds hold against oblivious adversaries. We show that in the
standard model of the list update problem no randomized algorithm can be better
than 2-competitive against either an adaptive on-line adversary or an adaptive
off-line adversary. These results complement those found in page caching [22]
and metrical task systems [12]. In all these applications, randomization helps
against oblivious adversaries, and is no use against either kind of adaptive
adversaries. Both kinds of adaptive adversaries are equivalent in power. We also
show that in the general model scaled by d, no randomized algorithm can be better
than 3-competitive against either adaptive adversary.

Lastly, we give some lower bounds for randomized algorithms against an
oblivious adversary. We extend the approach of Karp and Raghavan and show a
lower bound of 1.27, using numerical techniques. Experimental evidence suggests
the lower bound is at least 1.4. This still leaves a substantial gap between the
upper and lower bounds.

2. List Update and Competitive Algorithms. The list update problem is that of
storing a dictionary as a linear list. A request is either an access to an item, an
insertion of an item, or a deletion of an item. A list update algorithm must search
for an accessed item by starting at the front of the list and inspecting each item
in turn until the requested item is found. An insertion is done by searching the
entire list to ensure that the item is not already present, and then inserting the
new item at the back of the list. A deletion is done by searching for the item
and then removing it. At any time, the algorithm may exchange the position of
any two adjacent items in the list. In the standard model [25] an access or deletion
of the ith item in the list costs i and an insertion costs n + 1, where n is the length
of the list prior to the insertion. Immediately following an access or insertion, the
item can be moved any distance forward in the list. These exchanges cost nothing
and are called free exchanges. Any other exchange costs 1 and is called a paid
exchange. If there are n items in the list, we assume they are named by the numbers
from 1 to n. For a list update algorithm A, the cost to service a sequence of requests
g, denoted A(g), is the sum of all costs due to paid exchanges, accesses, insertions,
and deletions in the sequence. For any request sequence, o, there is a minimum
cost to service ¢, which we denote by OPT(o).

In the paid exchange model there are no free exchanges. Furthermore, it is
worthwhile to consider models in which the cost of an exchange is significantly
greater than the cost of an access, since there is no a priori reason to assume that
the execution time of the program that swaps a pair of adjacent elements is the
same as that of the program that does one iteration of the search loop. Problems
such as that of how to arrange data on a storage tape conform to this model. We
denote by P? the paid exchange model in which each paid exchange has cost d,
for some real-valued constant d > 1. Accesses have the same cost as in the standard
model. We do not consider insertions and deletions.



18 N. Reingold, J. Westbrook, and D. D. Sleator

We can think of any algorithm as servicing each request as follows: first some
number of paid exchanges are performed, then the request is satisfied, and then
any number of free exchanges are done. An on-line list update algorithm must
service each request without any knowledge of future requests. An off-line algo-
rithm is shown the entire sequence in advance; the optimum cost can always be
achieved by an off-line algorithm. Following [7] and [20] we say a deterministic
list update algorithm, A, is c-competitive if there is a constant b such that for all
size lists and all request sequences o,

A(6) < c- OPT(o) + b.

For randomized list update algorithms, competitiveness is defined with respect
to the model of an adversary. Two factors differentiate adversaries: how the request
sequences are generated, and how the adversary is charged for servicing the
sequence. Following [2] and [22] we consider three kinds of adversary: oblivious
(weak), adaptive on-line (medium), and adaptive off-line (strong).

The oblivious adversary chooses a complete request sequence before the on-line
algorithm begins to process it. A randomized on-line algorithm, A, is c-competitive
against an oblivious adversary if there is a constant b such that, for all lists and
for all finite request sequences o,

E[A(0)] < ¢- OPT(0) + b.

The expectation is over the random choices made by the on-line algorithm.

An adaptive adversary is allowed to watch the on-line algorithm in action, and
generate the next request based on all previous moves made by the on-line
algorithm. That is, an adaptive adversary A4 is a function that takes as input a
sequence of k — 1 requests and corresponding actions by the on-line algorithm,
and outputs the kth request, up to a maximum number of requests, m. (Each
adversary has its own value of m.) The on-line algorithm and the adversary
together generate a probability distribution over request sequences o, based on
the random moves of the algorithm. The adaptive off-line adversary is charged
the optimum cost for the sequence that is generated. The adaptive on-line
adversary, however, must service the requests on-line. The sequence of events is
this (for each request):

(1) the adverary generates the request,
(2) the adversary services the request, and
(3) the on-line algorithm services the request.

The adaptive adversary models a situation in which the random choices of the
algorithm may affect the future request sequence. A randomized on-line algorithm,
A, is c-competitive against an adaptive on-line (resp. off-line) adversary if there is a
constant b such that for all size lists, and all adversaries, A4,

E[A(c) — c¢- A(0)] < b.



Randomized Competitive Algorithms for the List Update Problem 19

(Here by 6 we mean the request sequence generated by the random choices of the
on-line algorithm, over which the expectation is taken.)

DEerFINITION. The competitive ratio against oblivious (resp. adaptive on-line, adap-
tive off-line) adversaries for a randomized on-line algorithm, A, is the infimum of all
¢ for which A is c-competitive against oblivious (resp. adaptive on-line, adaptive
off-line) adversaries. We also make the obvious definitions for competitiveness for
a fixed size list.

We typically use “c-competitive” as an abbreviation for “c-competitive against
an oblivious adversary.” When an adaptive adversary is intended we will state so
explicitly.

3. The BIT and COUNTER Algorithms. In this section we describe and ana-
lyze BIT, a very simple randomized algorithm for the list update problem
that is 1.75-competitive. We also generalize BIT to a class of algorithms called
COUNTER algorithms, which (for appropriate parameters) achieve a slightly
smaller competitive ratio.

3.1. BIT in the Standard Model. Algorithm BIT works as follows. Associated
with each element of the list is a bit which is complemented whenever that item
is accessed. We let b(x) denote the bit corresponding to an item x. If an access
causes a bit to change to 1 the accessed item is moved to the front, otherwise the
list remains unchanged. The n bits are initialized uniformly at random. Roughly
speaking BIT is “move-to-front every other access.” Notice that BIT uses n random
bits regardless of the length of the request sequence.

THEOREM 3.1. Let o be any sequence of m accesses and let OPT be the optimum
off-line algorithm for a. The expected cost of the BIT algorithm on ¢ is at most
1.75- OPT(s) — 3m/4.

Proor. This theorem immediately implies that BIT is 1.75-competitive against
an oblivious adversary. The proof uses components of Sleator and Tarjan’s
analysis of the move-to-front heuristic. We imagine that BIT and OPT are running
side by side on o, and partition the actions of both algorithms into two kinds of
events: the servicing of an access by both BIT and OPT, possibly involving free
exchanges; and a paid exchange made by OPT. Together these events account for
all costs incurred by either algorithm. A given o fixes OPT, and hence fixes the
sequence of events. We denote by bit; and opt; the cost of event i to BIT and
OPT, respectively.

LEMMA 3.2. For any item x and any j, after the jth event the value of b(x) is equally
likely to be O or 1, is independent of the position of x in OPT’s list, and is independent
of the bits of the other items.



20 N. Reingold, J. Westbrook, and D. D. Sleator

Proor. The initial assignment of values to bits is chosen uniformly at random
from among the 2" possibilities. The value of b(x) after the jth event is just
the number of times x was accessed in events 1 through j plus the initial value
of b(x) modulo 2. Therefore the distribution of bit assignments at any time
remains the uniform distribution. The lemma follows immediately from these
observations. |

Let @ be a potential function that maps a two-tuple consisting of BIT’s list and
OPT’s list to the nonnegative integers, and let ®@; be the value of ® immediately
after event i. The amortized cost, a;, of event i is defined as

a,- = bltl + (Di - (pi—l'

Since BIT is randomized, g; is a random variable. If ®, = 0, then BIT(0) < ) ; a;.
To prove that BIT is c-competitive it suffices to show that, for each event i,
E[a,] < c-opt;. Then

E[BIT(¢)] < E[Z ai] =Y E[a] <c-Y opt,=c-OPT(o).

We now define the potential function. An inversion is an ordered pair of items
(y, x) such that x occurs after y in the list maintained by BIT while x occurs before
y in the list maintained by OPT (the optimum ordering of the pair). The set of
inversions changes with time as BIT and OPT rearrange their lists. The cost to
BIT of an access to item x is given by the cost of the access to OPT plus the
number of inversions of the form (y, x) minus the number of inversions of the
form (x, y), where y denotes any item other than x.

Inversion (y, x) is called a type I inversion if b(x) = 0 and is called a type 2
inversion if b(x) = 1. The type of the inversion (y, x) is the number of accesses to
x before x next moves to the front, and is given by 1 + b(x). Let ¢, denote the
number of type 1 inversions and let ¢, denote the number of type 2 inversions.
Then

® =20, + ¢,

Note that ®, = 0, since both BIT and OPT begin with the same list. Using the
potential function, we bound the cost of the two types of event.

Case 1: Event i is an access to item x. Let k be the position of x in OPT’s list;
then opt; = k. Let R be a random variable that counts the number of inversions
of the form (y, x) at the time of the access. Then bit;, the actual cost to BIT, is at
most k + R.

We write AD =9, — ®,_; = A + B + C, where A is a random variable giving
the change in potential due to new inversions created during the access, B is a
random variable giving the change in potential due to old inversions removed



Randomized Competitive Algorithms for the List Update Problem 21

during the access, and C is a random variable giving the change in potential due
to old inversions that change type during the access.

Suppose that R = r and consider the value of B+ C. If b(x) = 1, then B=0
and C = —r, since x stays in place and each inversion (y, x) goes from type 2 to
type 1. If b(x) = 0, then B = —r and C = 0, since x moves to the front and removes
all inversions (y, x) and each such inversion is of type 1. In both cases B+ C =
—r = —R. Hence

E[a,] = E[bit; + A®]
<E[(k + R) + (4 — R)]
=k + E[4].

The value of 4 depends on both BIT and OPT, since either may move x forward
using free exchanges. Let z,, z,, ..., 2z, be the items preceding x in OPT’s list
prior to the access. A new inversion can be created only when, for some i, z; also
precedes x in BIT’s list, and one of BIT or OPT, but not both, move x forward
past z;. Suppose that OPT moves x forward to position k'. Let Z; be a random
variable that measures the change in potential due to each pair {x, z;}.

If b(x) = 0, then x moves to the front of BIT’s list. In the worst case a new
inversion (x, z;) of type 1 + b(z;) is created for 1 <i < k' — 1. This implies that
Z,<1+bz)for1<i<k—1land Z,<Ofork' <i<k-1

If b(x) = 1, then x does not move and b(x) becomes 0. In the worst case a new
inversion (z;, x) of type 1 is created for k' < i < k — 1. This implies that Z, = 0 for
I<isk—-landZ;<1fork'<i<k -1

By Lemma 3.2, E[b(y)] = } for all items y, and hence

k-1
E[4] = ) E[Z]
i=1

k-1

k-1
<Y 2+ 4+ ) 31
i=1 i=k'
< 3k —1).

Thus the expected amortized cost of the access is no more than 1.75k — 3, i.e.,
E[a;] < 1.75-opt; — 1.

Case 2: Event i is a paid exchange by OPT of items x and y. OPT pays 1 for
the exchange. In the worst case the exchange creates an inversion (y, x). Again
applying Lemma 3.2, this inversion increases the value of @ by 2 with probability
1/2 (the probability that b(x) = 1) and by 1 with probability 1/2. Hence E[a;] <
1.5-opt,.

Summing over all events, noting that m of the events are accesses, completes
the proof of Theorem 3.1. O



22 N. Reingold, J. Westbrook, and D. D. Sleator

The analysis of case 1 can be simplified by using a theorem of Reingold and
Westbrook [23] which states that for any request sequence ¢ there is an optimum
algorithm that does only paid exchanges. For thoroughness, however, we consider
free exchanges performed by OPT, since some researchers have studied a variant
of the standard model in which only free exchanges are allowed [16].

The extension of BIT to handle insertions and deletions is straightforward. On
an insertion, BIT inserts the item at the back of the list, randomly initializes the
bit of the new item, then moves the item to the front if its bit is 1. Suppose the
list has size n. The insertion is clearly equivalent to the first access to the (n + 1)st
item in a list of size n + 1. Thus the analysis applied above to accesses can be
applied here to show that an insertion has the same expected cost as an access.
(This observation is due to Sleator and Tarjan [25].) Similarly, a deletion is like
an access, except that all inversions involving the deleted item disappear, so the
potential function decreases even more than during an access.

COROLLARY 3.3. Let o be any sequence of m accesses, insertions, and deletions to
an initially empty list, and let OPT be any deterministic off-line algorithm that
services 6. The expected cost of the BIT algorithm on ¢ is at most

1.75- OPT(c) — 3m/4.

The results for BIT can be extended to a closely related list update model of
interest in which an access to the ith item in the list has cost i — 1 rather than i.
Any algorithm that costs C on some sequence ¢ of accesses in the i cost model
will cost C — m in the i — 1 model, where m = |o|.

CoROLLARY 3.4. For any sequence of accesses, o, the expected cost of the BIT
algorithm on o in the model in which an access to the ith item costs i — 1 is at most
1.75 - OPT(a).

Proor. Applying Theorem 3.1, we have that in the i — 1 model
BIT(c) + m < 1.75(OPT(c) + m) — 3m/4,
which implies that BIT(s¢) < 1.75 - OPT(s). 0O

An alternate proof for the i — 1 cost model can be given as follows. The problem
for arbitrary length lists can be factored into (;) different problems on lists of

length two. If an algorithm is c-competitive on each of these two-element lists,
then it is c-competitive on the list as a whole. This pairwise independence property
of move-to-front-type heuristics was first observed by Bentley and McGeoch [4],
who made use of it to prove that the deterministic move-to-front algorithm is
within a factor of 2 of any static list.

The upper bound for BIT is tight in the i — 1 cost model. Consider a list of size



Randomized Competitive Algorithms for the List Update Problem 23

two, initially ordered 1, 2. A worst-case access sequence of length 3k is given by
¢ = y*, where y = (2,1, 1). Each y can be serviced at cost 1, by always leaving
the list in position 1, 2. The expected cost to BIT, however, is 1.75, which can be
seen as follows. At the start of each y, BIT’s list is ordered 1, 2. BIT pays 1 for
the access to item 2. With probability 1/2, BIT makes no exchange, and pays 0
for the two accesses to item 1. With probability 1/2, however, BIT flips the list to
2, 1. In this case, BIT pays 1 for the first access to item 1, and with probability
1/2 pays 1 for the second access. Thus the total expected cost of the two accesses
toitem 1is 0.75. We do not know if the upper bound is tight in the i cost model.

Our upper bounds can also be generalized to a convex cost model, in which an
access to the ith item has cost f(i) and a paid exchange of the ith item with its
successor has cost f(i + 1) — f(i), for some convex function f.

3.2. COUNTER in the Standard Model. 1t is possible to modify the BIT
algorithm to improve the competitive ratio, at the expense of making the algori-
thm more complicated. Let s be a positive integer, and let S be any nonempty
subset of {0,1,...,5s—1}. The algorithm COUNTERC(s, S) keeps a mod s
counter for each item. Initially, each counter is randomly set to some number in
{0,1,...,s — 1}, each value chosen independently and with equal probability. At
a request to item x, COUNTER decrements the x’s counter mod s, and then moves
x to the front via free exchanges if x’s counter is in S. BIT is COUNTER(2, {1}).
Any COUNTER algorithm has the property that, for a fixed size list, it uses a
fixed number of random bits regardless of the size of the request sequence.

For an item x, let ¢(x) be the number of accesses to x before x moves to the
front. For j =1, 2,...,s, let p; = (1/s)|{i: c(i) = j}|; this is the probability that an
item will next move to the front after j accesses. After the initialization phase and
before any accesses, Pr{c(x) = j] is p; for any item x.

THEOREM 3.5. COUNTER(s, S) is max{) 52} jp;» 1 + p; Y j=1jp;}-competitive.

The analysis of COUNTER(s, ) is very similar to the analysis of BIT, so we
just sketch the differences. The analogue of Lemma 3.2, namely, that at any time
the probability that ¢(x) = j is p;, independent of the position of x in OPT’s list,
is easily verified.

An inversion (y, x) is of type j if c(x) = j. Let ¢; denote the number of inversions
of type j. Our potential function is ® = Z}= 1J o

Consider the expected amortized cost of an access to x. If x does not move to
the front then, since c¢(x) decreases by one, the decrease in potential due to
inversions which change type is exactly the number of inversions (w, x). If x moves
to the front the number of inversions destroyed is exactly the number of inversions
(w, x). In either case the expected amortized cost of the access is at most the
position of x in OPT’s list plus the expected cost of new inversions created. It is
not hard to see that the expected cost of the inversions created is at most
(k—1Dpy Y5-4 jp; (where k is the position of x in OPT’s list), so the cost to
COUNTER(s, S) is at most (1 + p; Y 5=, jp;) times the cost to OPT.



24 N. Reingold, J. Westbrook, and D. D. Sleator

For a paid exchange by OPT, the worst case is that one new inversion is created.
The expected increase in potential is ) -, jp;. Therefore we have that in this case
the cost to COUNTER(s, S) is no more than (35—, jp; times the cost to OPT. It
is also possible to show that the same competitive ratio is achieved if the cost of
accessing the ith item is i — 1. This completes the analysis of COUNTER. O

For some choices of s and S, we can get a better competitive factor than 1.75.
For example, COUNTER(7, {0, 2, 4}) is 85/49-competitive (= 1.735-competitive).
In fact, it is possible to modify the COUNTER algorithm to achieve a competitive
ratio of \/3 Let a RANDOM RESET algorithm be as follows. Keep a counter
from 1 to s for each item. When an accessed item has a counter which is bigger
than 1, make no move and decrement the counter. If the counter is 1, move that
item to the front and reset the counter to j with some probability ;. Thus each
counter follows a simple Markov chain; in the stationary distribution of this chain
the counter has value j with probability p; (where these are as defined above). The
value of the counters must be initialized according to the stationary distribution.
For example, COUNTER(7, {0, 2, 4}) can be simulated by a random reset algo-
rithm that keeps a counter from 1 to 3. When an accessed item has counter value
1 it is moved to the front and the counter is reset to 3  with probability 1/3 and
to 2 with probability 2/3. Each counter is initialized by choosing the value 1 with
probability 3/7, 2 with probability 3/7, and 3 with probability 1/7.

The same analysis as for COUNTER works for RANDOM RESET algorithms.
We wish to choose a resetting distribution which gives the lowest possible
competitive ratio as guaranteed by Theorem 3.5. The best ratio possible is \/5
(we do not prove this here), and it is easy to achieve. This yields the best
randomized algorithm known for the list update problem.

THEOREM 3.6. The following resetting distribution yields a \/g-competitive algo-
rithm: reset to 3 with probability (— 1 + /3)/2 and to 2 with probability (3 — \/3)/2.

The RANDOM RESET algorithm has the drawback that it uses ©(m) random
bits to process a request sequence of length m. It is possible, however, to find s
and S such that the competitive ratio of COUNTER(s, S) guaranteed by Theorem

3.5 is as close to /3 as desired (though s must tend to infinity). Although such a
COUNTER algorithm potentially has a very large finite state machine, the total
number of random bits needed is still O(n).

3.3. COUNTER in P Models. In this subsection we consider COUNTER algo-
rithms for list update in P models. Consider the algorithm COUNTER(k, {k — 1}):
For each item in the list keep a mod k counter. Initially, the counters are set by
choosing values uniformly and independently from {0, 1,..., kK — 1}. On an access
to an item, decrement the counter mod k and then move the requested item to
the front if its counter is k — 1.



Randomized Competitive Algorithms for the List Update Problem 25

THEOREM 3.7. In the model P, COUNTER(k, {k — 1}) is c-competitive, where c
is the maximum of 1 + (k + 1)/2d and 1 + (1/k)2d + (k + 1)/2).

Proor. The analysis is very similar to the analysis for BIT. We say an inversion
(y, x) is of type i if the value of x’s counter is i — 1. As our potential function, we
take @ = Y ¥_,(d + i)¢;, where g; is the number of inversions of type i. The factor
of i in the potential pays for the increased access cost due to the inversion, and
the factor of d pays for the cost of removing that inversion when the item is moved
to the front.

Consider the amortized cost of an access to x. The cost of this access to the
optimum algorithm is j, where j is the position of x in OPT’s list. The amortized
cost for the access is at most j + R + A + B + C + D, where R is the number of
inversions (w, x) for some w at the time of the access, A4 is the change in potential
due to new inversions created, B is the change in potential due to old inversions
destroyed, C is the change in potential due to inversions which change type, and
D is the cost of exchanges made.

Suppose that at the time of the access, x’s counter is 0, and that R = r. Then

=-—rd+1),C=0,and D<d(j+r—-1),sothat R+ B+ C+ D <(j— 1)d
If x’s counterisnot 0, then B=0,C = —r,and D = 0,sothat R + B+ C+ D =0.
Therefore E[R + B + C + D] < (j — 1)d/k. The expected value of 4 is no more
than (j — 1X1/k) Y= 1(d + iX1/k) = (j — 1X1/k)(d + (k + 1)/2). Therefore, the ex-
pected amortized cost of the access is

E[j+ R+ A+ B+ C+ D}=E[jl]+E[R+ B+ C+ D] + E[A]
which is no more than

4y

L U=d G- kAN (i k+1) (1 k1
D (Y ) o (L) 2 S0 - ()2 + 55 )

This shows that the expected amortized cost for the access is no more than

1 k+1
1 - 2d + ——
* (k)( T2 )
times the cost to OPT.

The cost of an exchange by OPT is handled similarly. In the worst case, one
inversion is created, and the expected change in potential due to that inversion is
d + (k + 1)/2. Since OPT pays d for the exchange, COUNTER(k, {k — 1}) pays
no more than 1 + (k + 1)/2d times the optimum cost. O

COUNTER(, {k — 1}) achieves the competitive ratio given above in the



26 N. Reingold, J. Westbrook, and D. D. Sleator

Table 1. Best competitive ratios in P¢ for COUNTER and RANDOM RESET.

COUNTER RANDOM RESET

d Best & Competitive ratio Best Competitive ratio Pr{reset to k]
1 2 275 3 7~ 2.64 0.215

2 5 2.50 5 J6~245 0.760

3 7 243 8 ~2.39 0.314

4 10 2.38 10 ~2.36 0.878

5 12 2.38 13 ~2.34 0.433

6 15 7/3 15 7/3 = 2.33 1 (exactly)

model where the cost of accessing the ith item in the list costs i — 1, just as in
Corollary 3.4.
Table 1 shows, for various d, the best competitive ratio for

COUNTER(, {k — 1})

guaranteed by Theorem 3.7. There values were derived as follows. Set the access
and exchange ratios derived above equal to each other, and solve for k in terms
of d. It is interesting that as d tends to infinity, the best competitive ratio decreases
and tends to (5 + \/ﬁ)/4 ~~ 2.28. This gives strong evidence that the scaling
conjecture of Manasse et al. [20] is true for the list update problem.

It is possible to find RANDOM RESET algorithms which do slightly better
than the COUNTER competitive ratios given in Table 1. These results are also
shown in Table 1. The best resetting distributions we have found all have the
property that the counter is reset to either the largest or the second largest possible
value. Table 1 also lists, for various d, the best k, the best competitive ratio, and
the probability of resetting to k. Notice, however, that while all COUNTER
algorithms use O(n) random bits regardless of the length of the request sequence,
these random resetting algorithms use (m) random bits for a request sequence of
length m. Any random resetting algorithm can be approximated to any desired
degree of accuracy by a COUNTER algorithm with a large enough s.

In the following section we prove that no deterministic P algorithm can be
better than 3-competitive. Thus our randomized algorithms beat the deterministic
bound. We have recently found a 5-competitive deterministic algorithm for all d;
an open problem is to tighten the deterministic upper bound.

4. Lower Bounds Against Adaptive Adversaries. In this section we prove that for
randomized list update algorithms the adaptive on-line and adaptive off-line
adversaries are equally powerful. An unpublished result of Karp and Raghavan
shows that if 4 is a deterministic, c-competitive list update algorithm in the
standard model, then ¢ > 2. By a theorem of Ben-David et al. [2], a lower bound



Randomized Competitive Algorithms for the List Update Problem 27

for deterministic algorithms implies the same lower bound for randomized algo-
rithms against adaptive off-line (strong) adversaries. Note that the move-to-front
algorithm is 2-competitive. Now we show that even against an adaptive on-line
(medium) adversary, no randomized algorithm is better than 2-competitive.

THEOREM 4.1.  If A is c-competitive against an adaptive on-line (medium) adversary,
then ¢ > 2.

Proor. The adversary’s strategy is to generate an access sequence of length m
by always accessing the last item in A’s list. The cost to A is mn. Consider all n!
static algorithms, i.e., algorithms which initially arrange a list of length » in some
order, and make no other exchanges. Suppose that on a given request sequence,
we run all static algorithms simultaneously. For any one access, the sum of the
costs to each of these algorithms is

i in—1)'=@n—1Dnn+ 12 =n! (n + 1)/2.
i=1

Therefore, for any sequence of m accesses the sum of the costs to these algorithms
is mn! (n + 1)/2 + B, where B is the sum of the initial costs of rearranging the list.
The medium adversary which selects one of these static algorithms uniformly at
random achieves an expected cost of m(n + 1)/2 + B/n! on any access sequence of
length m. Therefore, for any ¢ the adversary can choose m so large that the ratio
of A’s cost to the adversary’s cost is at least 2n/(n + 1) — &. Since 4 must be
c-competitive for all list sizes, ¢ cannot be less than 2. O

Notice that if we fix the size of the list to be n we get a lower bound of 2n/(n + 1)
for the competitive ratio.

The above proof shows that for any request sequence there is a static algorithm
that achieves an average cost of (n + 1)/2 per access. (It is not hard to show that
the algorithm which arranges the list in order of decreasing access frequency
achieves this.) The above proof thus works for deterministic on-line algorithms
and for randomized on-line algorithms against strong adversaries.

We now show that 3 is a lower bound on the competitive factor for problems
in the P? models. This result generalizes that of Karlin et al. [19], whose Theorem
3.3 can be interpreted as showing a lower bound of 3 on the competitive factor
for lists of length 2 in the i — 1 cost model.

THEOREM 4.2. Let A be an on-line algorithm for list update in a P* model. If A is
deterministic and c-competitive, then ¢ > 3. If A is randomized and c-competitive
against adaptive off-line adversaries, then ¢ > 3.

Proor. In either case, the adversary’s strategy is to generate an access sequence
of length m by always accessing the last item in A’s list. The cost to A is mn + D,
where D is the total cost of all exchanges made by A. Let b = D/mn. Suppose



28 N. Reingold, J. Westbrook, and D. D. Sleator

b > 1/2. As in the theorem above, the adversary can arrange to pay arbitrarily
close to m(n + 1)/2. Since D is by assumption at least mn/2, A cannot be more
than 3n/(n + 1)-competitive. On the other hand, suppose b < 4. Now the adversary
adopts the following strategy: at all times it maintains its list in the exact reverse
order of A’s list. That is, the adversary initially reverses its list and then does the
reverse of every exchange A makes. The total cost to the adversary is at most
m+ D + dn(n — 1)/2, since each access costs it 1. Ignoring the initial cost of
reversal, the ratio of A’s cost to the adversary’s cost is n(1 + b)/(1 + bn), which is
at least 3n/(n + 2) for b < 3. Since one of the two strategies is applicable for all n,
A cannot be better than 3-competitive. O

Notice that if we fix the size of the list to be n we get a lower bound of 3n/(n + 2).
Theorem 4.2 can be extended to the model in which an access to item i has cost
i — 1. In this situation the lower bound is exactly 3 regardless of n. The technique
used in the proof of Theorem 4.2 can be extended to handle randomized
algorithms against adaptive on-line adversaries.

THEOREM 4.3. Let A be an on-line algorithm for list update in a P* model. If A is
randomized and c-competitive against adaptive on-line adversaries, then ¢ > 3.

PrOOF. Suppose that 4 is an on-line algorithm. Consider A, an adaptive on-line
adversary, which behaves as follows. 4 first simulates A on all possible choices of
A’s random bits, and for each such choice of random bits, creates a request
sequence of length m such that each request is to the last item in A4’s list. Consider
the collection of all request sequences constructed in this way. The choice of A4’s
random bits induces a probability distribution on these (indeed, all) sequences of
length m. That is, the probability of a sequence is the probability that 4 will
generate that sequence when it runs 4 and uses the strategy of always accessing
the last item in A’s list. A can compute the expected value of b = D/mn. Based on
the expected value of b, A chooses one or the other strategy as in the deterministic
case, and achieves the same lower bounds. O

The results of this section show that no randomized on-line algorithm can beat
the deterministic lower bound against an adaptive on-line algorithm. It is known
that the analogous theorem to Theorem 4.1 holds for other types of on-line
situations such as the caching, but it is not known to hold in more general settings.
The relationship between on-line adaptive and off-line adaptive adversaries in
more general settings is an interesting open problem.

S. Lower Bounds Against Oblivous Adversaries. In this section we discuss a
technique for deriving lower bounds for randomized on-line algorithms against
oblivious adversaries. In this section when we refer to competitive ratios we mean
competitive ratio against an oblivious adversary.

Karp and Raghavan (private communication, 1990) use the following strategy:



Randomized Competitive Algorithms for the List Update Problem 29

find an off-line algorithm with a small average cost per request assuming that the
requests are drawn uniformly at random from {1, 2, ..., n}. If the average cost per
request is no more than d, then no on-line algorithm can be better than (n 4 1)/2d-
competitive. Karp used this technique to obtain a lower bound of 9/8 for the
competitive ratio of any on-line algorithm for lists of two items, and Raghavan
(private communication, 1990) showed a lower bound of 1.18 for three-item lists.
We extend these results by considering larger lists, and more complicated off-line
algorithms. Fix the size of the list, n, and a lookahead number, k. Suppose we have
an off-line algorithm that bases its decision on only the next k + 1 requests.
Following Raghavan’s approach, we can model the behavior of such an algorithm
for randomly generated request sequences as follows. Consider a Markov chain
whose states are k-tuples of request positions. State {ry, r,, ..., r,> corresponds to
the situation where the current positions of the next k requests are, respectively,
ry, z,..., 1. The transitions are conditioned on the current position of the
(k + D)st request. If we know the algorithm, we can construct the transition matrix
for the chain.

Each state transition has a cost (the cost of any paid exchanges made just prior
to the access plus the cost of the access), so for each state we can compute an
expected cost. Let the vector of these expected costs be c. Suppose the chain has
stationary distribution n. Then the expected cost per access is ¢ - x, if the chain is
in steady state.

For n > 3 there is no obvious strategy for a k-lookahead algorithm, since no
bounded lookahead algorithm can be optimum [23]. Furthermore, the size of the
transition matrix is n*, so for values of n and k even a little bigger than 3 it is
infeasible to try different strategies by hand and compute the steady-state vector
symbolically. Thus there are two problems: determining a good way to find off-line
algorithms and generate transition rules for large lists, and finding the steady-state
distribution of the resultant transition matrix.

Our approach is to write a program that generates the entries of the matrix
corresponding to a particular class of good off-line algorithms, MARKOV(n, k),
and then compute the steady-state vector numerically. Suppose we have a program
OFF(n, k) that, given a sequence of exactly k + 1 accesses to an n-item list,
generates a sequence of moves to service that request sequence. MARKOV(n, k)
works as follows: start with the next k requests; look at the (k + 1)st request;
service the next request in the same way that OFF(n, k) would service that request
given the same sequence of k + 1 requests on the same list. Given an implementa-
tion of OFF(n, k), the entries of the transition matrix and cost vector for
MARKOV(n, k) are filled in as follows. If the current state is {ry,7,...,7)
(that is, if the next k requests are to the items in positions r, r,,..., ), and
the next request is to the item in position r,,,, transit to whatever state
corresponds to the list that results from OFF(n, k) servicing request r, in the
sequence {ry,r,,..., "+, assuming its list is 1, 2, ..., n. The probability of that
transition is 1/n, since the request sequence is uniformly random. The cost of that
state is 1/n times the sum over all choices of r, ., of the cost of servicing the first
request in {ry,r,,..., 7 +,>. Thus to generate the matrix we must generate all
possible sequences of k + 1 requests on n items and run OFF(n, k) on each of them.



30 N. Reingold, J. Westbrook, and D. D. Sleator

Any choice of an off-line algorithm gives a valid MARKOV(n, k) algorithm and
transition matrix, but some choices are better than others. Our best results were
achieved using a program to compute an optimum off-line algorithm for the k + 1
requests that has the following properties:

1. It only does paid exchanges.

2. It services a request to item x by choosing some subset of the items preceding
x in the list and moving them in an order-preserving way to immediately after
x. Then it pays for the access to x and goes on to the next request.

3. Whenever an item is requested twice in a row that item is moved to the front
on its first access. This means that MARKOV(n, k) has the same property and
ensures that the Markov chain has at most one stationary distribution (see
Lemma 5.1).

4. Among optimum algorithms that have the above three properties, our algo-
rithm services the first request with the lowest cost. This tends to make
MARKOV(n, k)’s cost per access smaller, so we get a better lower bound.

It is shown in [23] that there is an optimum algorithm with the first three
properties. There is no known way to compute the optimum algorithm for a given
request sequence that is polynomial in both n and k, however, so the time and
space to generate MARKOV(n, k) grow exponentially.

LEMMA 5.1. For any n and k, the Markov chain corresponding to MARKOV(n, k)
is irreducible. That is, for any two states, the probability of transiting from one to
the other in some finite time is positive.

ProoF. Suppose we want to get to state (ry,r,,...,r,). Consider
MARKOV(n, k)’s action on request sequence {m,n,n—1,n—1,...,2,2,1,1>.
MARKOV(n, k) will move each item to the front, since each item is requested
twice in a row. After that, MARKOV(n, k)’s list must be 1, 2, ..., n, so if the next
k requests are {r,,7,,..., 1y, MARKOV(n, k) will be in state {ry,7,,...,7>. O

By standard probability theory, Lemma 5.1 implies that the steady-state
distribution is unique, and it is given by the (unique) eigenvector of the transition
matrix corresponding to the eigenvalue 1. We compute this eigenvector from the
matrix using the power method [11]. Table 2 shows the best results we have
obtained for n = 3, 4, 5, and 6. In all cases, the number of iterations in the power
method necessary to get the distance between successive iterates less than 1077

Table 2. Lower bound results.

n k Lower bound
3 10 1.1998

4 8 1.2467

5 7 1.2728

6 5 1.268




Randomized Competitive Algorithms for the List Update Problem 31

was no more than 30. As shown in the table, the largest lower bound we have
been able to compute is approximately 1.27. We were unable to achieve higher
results due to limitations on computational resources. From various simulations
using nonoptimum off-line algorithms we believe the true lower bound to be at
least 1.4.

6. Remarks and Open Problems. For the standard model, we have given an
extremely simple algorithm that is 1.75-competitive against an oblivious adversary,
and constructed a slightly more complicated one which is \/g-competitive. We
have shown that no algorithm can be better than 1.27-competitive against such
an adversary. (Recently, we have improved the lower bounds for three- and
four-item lists to 1.2 and 1.25, respectively.) This leaves a substantial gap. It is
possible that our COUNTER algorithms are better than we can currently prove,
since we do not know of an instance in which the upper bound is tight.

OpEN QUESTION 1. What is the best competitive ratio a randomized list update
algorithm can achieve against oblivious adversaries in the standard model?

In the P? models we have given a lower bound of 3 for the competitiveness of
deterministic algorithms, and for randomized algorithms against adaptive adver-
saries. We have constructed randomized algorithms with smaller competitive
ratios against oblivious adversaries for these models.

OpPEN QUESTION 2. What is the best competitive ratio a randomized list update
algorithm can achieve against oblivious adversaries in these models?

Our BIT and COUNTER algorithms use only a bounded number of random
bits regardless of the number of requests serviced, yet still beat the deterministic
lower bound. Recently barely random algorithms have also been found for the
migration problem [10], [26].

OpeN QUESTION 3. For which other on-line problems do such algorithms exist?

Our results in Section 4 give evidence for the conjecture that, for a large class
of applications, adaptive on-line and adaptive off-line adversaries are equally
powerful. Similar results have been obtained for page caching [22] and metrical
task systems [12]. On the other hand, the results of [10] and [26] show that this
does not hold in general.

OreEN QUESTION 4. For what other classes of on-line problems are these two
adversaries equivalent ?

Acknowledgments. We thank Richard Beigel, Sandy Irani, Prabhakar Raghavan,
and Neal Young for useful discussions.



32

1]

[2]

(3]

[4]
(5]
{6l

71
81
9]
[10]

[11]
(12]

[13]
[14]
[15}
[16]
[17]
[18]
[19]
[20]

[21]
[22]

[23]

[24]
[25]

[26]

N. Reingold, J. Westbrook, and D. D. Sleator
References

N. Alon, R. M. Karp, D. Peleg, and D. West. A graph-theoretic game and its application to
the k-server problem. Proc. DIMACS Workshop on On-line Algorithms, pages 1-10. American
Mathematical Society, Providence, RI, 1991.

S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson. On the power of
randomization in on-line algorithms. Proc. 20th ACM Symp. on Theory of Computing, pages
379-386, 1990.

J. L. Bentley, K. L. Clarkson, and D. B. Levine. Fast linear expected-time algorithms for
computing maxima and convex hulls. Proc. Ist ACM-SIAM Symp. on Discrete Algorithms,
pages 179-187, 1990.

J. L. Bentley and C. C. McGeoch. Amortized analyses of self-organizing sequential search
heuristics. Comm. ACM, 28(4):404-411, 1985.

J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. Wei. A locally adaptive data compression
scheme. Comm. ACM, 29(4):320-330, 1986.

D. L. Black and D. D. Sleator. Competitive algorithms for replication and migration problems.
Technical Report CMU-CS-89-201, Department of Computer Science, Carnegie-Mellon Uni-
versity, 1989. ‘

A. Borodin, N. Linial, and M. Saks. An optimal on-line algorithm for metrical task systems.
Proc. 19th ACM Symp. on Theory of Computing, pages 373-382, 1987.

P. J. Burville and J. F. C. Kingman. On a model for storage and search. J. Appl. Probab.,
10:697-701, 1973.

M. Chrobak and L. Larmore. On fast algorithms for two servers. J. Algorithms, 12:607-614,
1991.

M. Chrobak, L. L. Larmore, N. Reingold, and J. Westbrook. Optimal multiprocessor migration
algorithms using work functions. Technical Report YALEU/DCS/TR-897, Department of
Computer Science, Yale University, 1991. )

S. D. Conte and C. de Boor. Elementary Numerical Analysis, An Algorithmic Approach, 3rd edn.
McGraw-Hill, New York, 1980.

D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir. Random walks on weighted graphs, and
applications to on-line algorithms. Proc. 20th ACM Symp. on Theory of Computing, pages
369-377, 1990.

A. Fiat, R. Karp, M. Luby, L. McGeoch, D. D. Sleator, and N. Young. On competitive
algorithms for paging problems. J. Algorithms, 12:685-699, 1991.

M. I. Golin. Ph.D. thesis, Department of Computer Science, Princeton University, 1990.
Technical Report CS-TR-266-90.

W. J. Hendricks. An account of self-organizing systems. SIAM J. Comput., 5(4):715-723, 1976.

S. Irani. Two results on the list update problem. Inform. Process. Lett., 38:301-306, 1991.

S. Irani, N. Reingold, J. Westbrook, and D. D. Sleator. Randomized algorithms for the list
update problem. Proc. 2nd ACM-SIAM Symp. on Discrete Algorithms, pages 251-260, 1991.
A.R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki. Competitive randomized algorithms
for non-uniform problems. Proc. Ist ACM-SIAM Symp. on Discrete Algorithms, 1990,

A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy caching. Algorithmica,
3(1):79-119, 1988.

M. Manasse, L. A. McGeoch, and D. Sleator. Competitive algorithms for on-line problems.
Proc. 20th ACM Symp. on Theory of Computing, pages 322-333, 1988,

J. McCabe. On serial files with relocatable records. Oper. Res., 13:609-618, 1965.

P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms. Research Report
RC 15622 (No. 69444), IBM T. J. Watson Reseach Center, 1990.

N. Reingold and J. Westbrook. Optimum off-line algorithms for the list update problem.
Technical Report YALEU/DCS/TR-805, Yale University, 1990.

R. Rivest. On self-organizing sequential search heuristics. Comm. ACM, 19(2):63-67,-1976.

D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Comm.
ACM, 28(2):202-208, 1985.

J. Westbrook. Randomized algorithms for multiprocessor page migration. Proc. DIMACS
Workshop on On-Line Algorithms, pages 135-150. American Mathematical Society, Providence,
RI, 1991.



