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Randomized Competitive Algorithms for the 
List Update Problem’ 

Nick Reingold,’ Jeffery We~tbrook,~ and Daniel D. Sleator4 

Abstract. We prove upper and lower bounds on the competitiveness of randomized algorithms for 
the list update problem of Sleator and Tarjan. We give a simple and elegant randomized algorithm 
that is more competitive than the best previous randomized algorithm due to Irani. Our algorithm 
uses randomness only during an initialization phase, and from then on runs completely deterministic- 
ally. It is the first randomized competitive algorithm with this property to beat the deterministic lower 
bound. We generalize our approach to a model in which access costs are fixed but update costs are 
scaled by an arbitrary constant d. We prove lower bounds for deterministic list update algorithms and 
for randomized algorithms against oblivious and adaptive on-line adversaries. In particular, we show 
that for this problem adaptive on-line and adaptive off-line adversaries are equally powerful. 

Key Words. Sequential search, List-update, On-line algorithms, Competitive analysis, Randomized 
algorithms. 

1. Introduction. Recently much attention has been given to competitive analysis 
of on-line algorithms [7], [20], [22], [25]. Roughly speaking, an on-line algorithm 
is c-competitive if, for any request sequence, its cost is no more than c times the 
cost of the optimum off-line algorithm for that sequence. In their seminal work 
on competitive analysis [25], Sleator and Tarjan studied heuristics commonly used 
in system software to maintain a set of items as an unsorted linear list. This 
problem is called the list update or sequential search problem. The cost of accessing 
an item is equal to its distance from the front of the list, and the list may be 
rearranged (at a cost of one per swap of adjacent elements) during the processing 
of a sequence of requests so that later accesses will be cheaper; for example, a 
commonly requested item may be moved closer to the front. 

Maintaining a dictionary as a linear list is frequently used in practice because 
of its great simplicity. Furthermore, self-adjusting rules are effective because they 
take advantage of the locality of reference found in real systems. List update 
techniques have also been used to develop data compression algorithms [S], as 
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well as fast and simple algorithms for computing point maxima and convex hulls 
[3], [14]. For all these reasons, the list update problem has been extensively 
studied [4], [8], [l5], [21], [24]. Sleator and Tarjan [25] demonstrated that the 
move-to-front algorithm, which uses the simple rule of moving an item to the front 
of the list each time it is accessed, is 2-competitive. Subsequently Karp and 
Raghavan (private communication, 1990) noted that no deterministic algorithm 
for the list update problem can be better than 2-competitive, so in a very strong 
sense move-to-front is as good as any deterministic on-line algorithm. 

A great deal of recent work has focused on the use of randomization to 
improve-sometimes exponentially-the competitiveness of on-line algorithms 
[2], [12], [13], [18]. Karp and Raghavan (private communication, 1990) in- 
augurated the study of randomized list update algorithms by showing a lower 
bound of 1.18 on the competitiveness of any randomized algorithm. Irani dis- 
covered a 1.875-competitive randomized algorithm [16], thus exhibiting the first 
randomized algorithm to beat the deterministic lower bound. 

In this paper we examine the effect of randomization in greater depth. We 
present a very simple randomized algorithm, BIT, that is 1.75-competitive. Our 
BIT algorithm is not only simple and fast, but, rather remarkably, it makes random 
choices only during an initialization phase, using exactly one random bit for each 
item in the list. From then on BIT runs completely deterministically: to process 
an access to item x, BIT first complements the bit of x, and then moves x to the 
front if the bit is 1. We call an algorithm that uses a bounded number of random 
bits regardless of the number of requests barely random. Such barely random 
algorithms have practical value since random bits can be an expensive resource. 
To our knowledge, BIT is the first barely random algorithm for any on-line 
problem that provably has a better competitive ratio than any deterministic 
algorithm for that problem. Recently Alon et al. have given a barely random 
algorithm for k-servers on a circle that is 2k-competitive [ 13. However, it is known 
for k = 2, and conjectured for all k, that a k-competitive deterministic k-server 
algorithm exists, matching the known lower bound of k [9], [20]. 

We generalize the BIT algorithm to a family of COUNTER algorithms. Using 
a COUNTER algorithm, we are able to achieve our best result, a 3-competitive 
algorithm. We also consider a generalized list update model in which the access 
cost is the same as the standard model but in which the cost of rearrangement is 
scaled up by some arbitrarily large value d. (This is a very natural extension, 
because there is no a priori reason to assume that the execution time of the program 
that swaps a pair of adjacent elements is the same as that of the program that 
does one iteration of the search loop.) For arbitrary list length and swap cost d, 
the best-known deterministic algorithm is 5-competitive. We give a family of 
COUNTER algorithms that are always better than 2.75-competitive and that in 
fact become more competitive as d increases. This gives evidence that the scaling 
conjecture of Manasse et al. [20] may apply to randomized algorithms. This 
version of the list update problem is similar to the replication/migration problems 
studied by Black and Sleator [6]. We also show a lower bound of 3 on the 
competitiveness of any deterministic algorithm in this model, so again our 
randomized algorithms beat the deterministic lower bound. 
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An important question in the competitive analysis of randomized algorithms is 
the relationship between oblivious, on-line adaptive and off-line adaptive adversar- 
ies. Our upper bounds hold against oblivious adversaries. We show that in the 
standard model of the list update problem no randomized algorithm can be better 
than 2-competitive against either an adaptive on-line adversary or an adaptive 
off-line adversary. These results complement those found in page caching [22] 
and metrical task systems [ 121. In all these applications, randomization helps 
against oblivious adversaries, and is no use against either kind of adaptive 
adversaries. Both kinds of adaptive adversaries are equivalent in power. We also 
show that in the general model scaled by d, no randomized algorithm can be better 
than 3-competitive against either adaptive adversary. 

Lastly, we give some lower bounds for randomized algorithms against an 
oblivious adversary. We extend the approach of Karp and Raghavan and show a 
lower bound of 1.27, using numerical techniques. Experimental evidence suggests 
the lower bound is at least 1.4. This still leaves a substantial gap between the 
upper and lower bounds. 

2. List Update and Competitive Algorithms. The list update problem is that of 
storing a dictionary as a linear list. A request is either an access to an item, an 
insertion of an item, or a deletion of an item. A list update algorithm must search 
for an accessed item by starting at the front of the list and inspecting each item 
in turn until the requested item is found. An insertion is done by searching the 
entire list to ensure that the item is not already present, and then inserting the 
new item at the back of the list. A deletion is done by searching for the item 
and then removing it. At any time, the algorithm may exchange the position of 
any two adjacent items in the list. In the standard model [25] an access or deletion 
of the ith item in the list costs i and an insertion costs n + 1, where n is the length 
of the list prior to the insertion. Immediately following an access or insertion, the 
item can be moved any distance forward in the list. These exchanges cost nothing 
and are called free exchanges. Any other exchange costs 1 and is called a paid 
exchange. If there are n items in the list, we assume they are named by the numbers 
from 1 to n. For a list update algorithm A, the cost to service a sequence of requests 
6, denoted A(a), is the sum of all costs due to paid exchanges, accesses, insertions, 
and deletions in the sequence. For any request sequence, 6, there is a minimum 
cost to service 6, which we denote by OPT(o). 

In the paid exchange model there are no free exchanges. Furthermore, it is 
worthwhile to consider models in which the cost of an exchange is significantly 
greater than the cost of an access, since there is no a priori reason to assume that 
the execution time of the program that swaps a pair of adjacent elements is the 
same as that of the program that does one iteration of the search loop. Problems 
such as that of how to arrange data on a storage tape conform to this model. We 
denote by Pd the paid exchange model in which each paid exchange has cost d, 
for some real-valued constant d 2 1. Accesses have the same cost as in the standard 
model. We do not consider insertions and deletions. 
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We can think of any algorithm as servicing each request as follows: first some 
number of paid exchanges are performed, then the request is satisfied, and then 
any number of free exchanges are done. An on-line list update algorithm must 
service each request without any knowledge of future requests. An of-line algo- 
rithm is shown the entire sequence in advance; the optimum cost can always be 
achieved by an off-line algorithm. Following [7] and 1203 we say a deterministic 
list update algorithm, A, is c-competitive if there is a constant b such that for all 
size lists and all request sequences 0, 

A(o) I c . OPT(a) + b. 

For randomized list update algorithms, competitiveness is defined with respect 
to the model of an adversary. Two factors differentiate adversaries: how the request 
sequences are generated, and how the adversary is charged for servicing the 
sequence. Following [2] and [22] we consider three kinds of adversary: oblivious 
(weak), adaptive on-line (medium), and adaptive off-line (strong). 

The oblivious adversary chooses a complete request sequence before the on-line 
algorithm begins to process it. A randomized on-line algorithm, A, is c-competitive 
against an oblivious adversary if there is a constant b such that, for all lists and 
for all finite request sequences 0, 

E[A(a)] I c * OPT(0) + b. 

The expectation is over the random choices made by the on-line algorithm. 
An adaptive adversary is allowed to watch the on-line algorithm in action, and 

generate the next request based on all previous moves made by the on-line 
algorithm. That is, an adaptive adversary A^ is a function that takes as input a 
sequence of k - 1 requests and corresponding actions by the on-line algorithm, 
and outputs the kth request, up to a maximum number of requests, m. (Each 
adversary has its own value of m.) The on-line algorithm and the adversary 
together generate a probability distribution over request sequences 6, based on 
the random moves of the algorithm. The adaptive of-line adversary is charged 
the optimum cost for the sequence that is generated. The adaptive on-line 
adversary, however, must service the requests on-line. The sequence of events is 
this (for each request): 

(1) the adverary generates the request, 
(2) the adversary services the request, and 
(3) the on-line algorithm services the request. 

The adaptive adversary models a situation in which the random choices of the 
algorithm may affect the future request sequence. A randomized on-line algorithm, 
A, is c-competitive against an adaptive on-line (resp. of-line) adversary if there is a 
constant b such that for all size lists, and all adversaries, A, 

E[A(a) - c . A (̂a)] I b. 
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(Here by r~ we mean the request sequence generated by the random choices of the 
on-line algorithm, over which the expectation is taken.) 

DEFINITION. The competitive ratio against oblivious (resp. adaptive on-line, adap- 
tive of-line) adversaries for a randomized on-line algorithm, A, is the infimum of all 
c for which A is c-competitive against oblivious (resp. adaptive on-line, adaptive 
off-line) adversaries. We also make the obvious definitions for competitiveness for 
a fixed size list. 

- 
- We typically use “c-competitive” as an abbreviation for “c-competitive against 

an oblivious adversary.” When an adaptive adversary is intended we will state so 
explicitly. 

3. The BIT and COUNTER Algorithms. In this section we describe and ana- 
lyze BIT, a very simple randomized algorithm for the list update problem 
that is 1.75-competitive. We also generalize BIT to a class of algorithms called 
CO U N E R  algorithms, which (for appropriate parameters) achieve a slightly 
smaller competitive ratio. 

3.1. BIT in the Standard Model. Algorithm BIT works as follows. Associated 
with each element of the list is a bit which is complemented whenever that item 
is accessed. We let b(x) denote the bit corresponding to an item x. If an access 
causes a bit to change to 1 the accessed item is moved to the front, otherwise the 
list remains unchanged. The n bits are initialized uniformly at random. Roughly 
speaking BIT is “move-to-front every other access.” Notice that BIT uses n random 
bits regardless of the length of the request sequence. 

THEOREM 3.1. Let d be any sequence of m accesses and let OPT be the optimum 
08-line algorithm for 6. The expected cost of the BIT algorithm on r~ is at most 
1.75 * OPT(a) - 3m/4. 

PROOF. This theorem immediately implies that BIT is 1.75-competitive against 
an oblivious adversary. The proof uses components of Sleator and Tarjan’s 
analysis of the move-to-front heuristic. We imagine that BIT and OPT are running 
side by side on 6, and partition the actions of both algorithms into two kinds of 
events: the servicing of an access by both BIT and OPT, possibly involving free 
exchanges; and a paid exchange made by OPT. Together these events account for 
all costs incurred by either algorithm. A given 0 fixes OPT, and hence fixes the 
sequence of events. We denote by bit, and opt, the cost of event i to BIT and 
OPT, respectively. 

LEMMA 3.2. For any item x and any j ,  after the jth event the value of b(x) is equally 
likely to be 0 or 1, is independent of the position of x in OPT’S list, and is independent 
of the bits of the other items. 
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PROOF. The initial assignment of values to bits is chosen uniformly at random 
from among the 2" possibilities. The value of b(x) after the jth event is just 
the number of times x was accessed in events 1 through j plus the initial value 
of b(x) modulo 2. Therefore the distribution of bit assignments at any time 
remains the uniform distribution. The lemma follows immediately from these 
observations. 0 

Let 0 be a potentialfunction that maps a two-tuple consisting of BIT'S list and 
OPT'S list to the nonnegative integers, and let 0, be the value of 0 immediately 
after event i. The amortized cost, a,, of event i is defined as 

a, = biti + (Di - 0,- 1. 

Since BIT is randomized, a, is a random variable. If a,, = 0, then BIT(a) I xi a,. 
To prove that BIT is c-competitive it suffices to show that, for each event i, 
E[ai] 5 c .  opt,. Then 

r i  

E[BIT(a)] I E 1 a, = C E[ai] I c opt, = c * OPT(a). li J i i 

We now define the potential function. An inversion is an ordered pair of items 
(y,  x) such that x occurs after y in the list maintained by BIT while x occurs before 
y in the list maintained by OPT (the optimum ordering of the pair). The set of 
inversions changes with time as BIT and OPT rearrange their lists. The cost to 
BIT of an access to item x is given by the cost of the access to OPT plus the 
number of inversions of the form ( y ,  x) minus the number of inversions of the 
form (x, y), where y denotes any item other than x. 

Inversion (y ,  x) is called a type I inversion if b(x) = 0 and is called a type 2 
inversion if b(x) = 1. The type of the inversion (y ,  x) is the number of accesses to 
x before x next moves to the front, and is given by 1 + b(x). Let 'pl denote the 
number of type 1 inversions and let 'p2 denote the number of type 2 inversions. 
Then 

Note that a0 = 0, since both BIT and OPT begin with the same list. Using the 
potential function, we bound the cost of the two types of event. 

Case I :  Event i is an access to item x. Let k be the position of x in OPT'S list; 
then opt, = k. Let R be a random variable that counts the number of inversions 
of the form ( y ,  x) at the time of the access. Then bit,, the actual cost to BIT, is at 
most k + R. 

We write A 0  = Qi - @,- = A + B + C, where A is a random variable giving 
the change in potential due to new inversions created during the access, B is a 
random variable giving the change in potential due to old inversions removed 
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during the access, and C is a random variable giving the change in potential due 
to old inversions that change type during the access. 

Suppose that R = r and consider the value of B + C. If b(x) = 1, then B = 0 
and C = - I ,  since x stays in place and each inversion (y, x) goes from type 2 to 
type 1. If b(x) = 0, then B = - r and C = 0, since x moves to the front and removes 
all inversions (y, x )  and each such inversion is of type 1. In both cases B + C = 
- r  = - R. Hence 

E[ai] = ECbit, + A@] 

I E[(k + R) + ( A  - R)] 

= k + ECA]. 

The value of A depends on both BIT and OPT, since either may move x forward 
using free exchanges. Let zl, z 2 , .  . . , zk- be the items preceding x in OPT'S list 
prior to the access. A new inversion can be created only when, for some i ,  zi also 
precedes x in BIT's list, and one of BIT or OPT, but not both, move x forward 
past z i .  Suppose that OPT moves x forward to position k'. Let Zi be a random 
variable that measures the change in potential due to each pair {x, zi}. 

If b(x) = 0, then x moves to the front of BIT's list. In the worst case a new 
inversion (x,  zi)  of type 1 + b(zi) is created for 1 I i I k' - 1. This implies that 
Zi I 1 + b(zi) for 1 I i I k' - 1 and Zi 2 0  for k' I i I k - 1. 

If b(x) = 1, then x does not move and b(x) becomes 0. In the worst case a new 
inversion (z,, x) of type 1 is created for k' I i I k - 1. This implies that Zi = 0 for 
1 I is k'- 1 and Zis 1 fork' I is k - 1. 

By Lemma 3.2, E[b(y)] = f for all items y, and hence 

i =  1 

k ' -  1 k -  1 

I 8 k  - 1). 

Thus the expected amortized cost of the access is no more than 1.75k - 2, i.e., 
E[ai] < 1.75 * opt, - 3. 

Case 2:  Event i is a paid exchange by OPT of items x and y. OPT pays 1 for 
the exchange. In the worst case the exchange creates an inversion (y, x). Again 
applying Lemma 3.2, this inversion increases the value of @ by 2 with probability 
1/2 (the probability that b(x) = 1) and by 1 with probability 1/2. Hence Era,] 5 
1.5 * opt,. 

Summing over all events, noting that rn of the events are accesses, completes 
0 the proof of Theorem 3.1. 
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The analysis of case 1 can be simplified by using a theorem of Reingold and 
Westbrook [23] which states that for any request sequence 0 there is an optimum 
algorithm that does only paid exchanges. For thoroughness, however, we consider 
free exchanges performed by OPT, since some researchers have studied a variant 
of the standard model in which only free exchanges are allowed [16]. 

The extension of BIT to handle insertions and deletions is straightforward. On 
an insertion, BIT inserts the item at the back of the list, randomly initializes the 
bit of the new item, then moves the item to the front if its bit is 1. Suppose the 
list has size n. The insertion is clearly equivalent to the first access to the (n + 1)st 
item in a list of size n + 1. Thus the analysis applied above to accesses can be 
applied here to show that an insertion has the same expected cost as an access. 
(This observation is due to Sleator and Tarjan [25].) Similarly, a deletion is like 
an access, except that all inversions involving the deleted item disappear, so the 
potential function decreases even more than during an access. 

COROLLARY 3.3. Let Q be any sequence of m accesses, insertions, and deletions to 
an initially empty list, and let OPT be any deterministic ofl-line algorithm that 
services Q. The expected cost of the BIT algorithm on Q is at most 

1.75 * OPT(a) - 3m/4. 

The results for BIT can be extended to a closely related list update model of 
interest in which an access to the ith item in the list has cost i - 1 rather than i. 
Any algorithm that costs C on some sequence Q of accesses in the i cost model 
will cost C - m in the i - 1 model, where m = 1 0 1 .  

COROLLARY 3.4. For any sequence of accesses, Q, the expected cost of the BIT 
algorithm on Q in the model in which an access to the ith item costs i - 1 is at most 
1.75 . OPT(a). 

PROOF. Applying Theorem 3.1, we have that in the i - 1 model 

BIT(o) + m I 1.75(OPT(a) + m) - 3m/4, 

which implies that BIT(a) I 1.75.OPT(a). 0 

An alternate proof for the i - 1 cost model can be given as follows. The problem 

for arbitrary length lists can be factored into different problems on lists of 

length two. If an algorithm is c-competitive on each of these two-element lists, 
then it is c-competitive on the list as a whole. This pairwise independence property 
of move-to-front-type heuristics was first observed by Bentley and McGeoch [4], 
who made use of it to prove that the deterministic move-to-front algorithm is 
within a factor of 2 of any static list. 

The upper bound for BIT is tight in the i - 1 cost model. Consider a list of size 

(3 
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two, initially ordered 1, 2. A worst-case access sequence of length 3k is given by 
c = yk, where y = (2, 1, 1). Each y can be serviced at cost 1 ,  by always leaving 
the list in position 1, 2. The expected cost to BIT, however, is 1.75, which can be 
seen as follows. At the start of each y, BIT'S list is ordered 1, 2. BIT pays 1 for 
the access to item 2. With probability 1/2, BIT makes no exchange, and pays 0 
for the two accesses to item 1. With probability 1/2, however, BIT flips the list to 
2, 1. In this case, BIT pays 1 for the first access to item 1, and with probability 
1/2 pays 1 for the second access. Thus the total expected cost of the two accesses 
to item 1 is 0.75. We do not know if the upper bound is tight in the i cost model. 

Our upper bounds can also be generalized to a convex cost model, in which an 
access to the ith item has cost f(i) and a paid exchange of the ith item with its 
successor has cost f(i + 1) - f(i), for some convex function f. 

3.2. COUNTER in the Standard Model. It is possible to modify the BIT 
algorithm to improve the competitive ratio, at the expense of making the algori- 
thm more complicated. Let s be a positive integer, and let S be any nonempty 
subset of (0, 1, . . . , s - l}. The algorithm COUNTER(s, S) keeps a mod s 
counter for each item. Initially, each counter is randomly set to some number in 
{0,1, . . . , s - l } ,  each value chosen independently and with equal probability. At 
a request to item x, COUNTER decrements the x's counter mod s, and then moves 
x to the front via free exchanges if x's counter is in S. BIT is COUNTER(2, { l } ) .  
Any COUNTER algorithm has the property that, for a fixed size list, it uses a 
fixed number of random bits regardless of the size of the request sequence. 

For an item x, let c(x) be the number of accesses to x before x moves to the 
front. For j = 1 ,  2,. . . , s, let pi = (l/s)l{i: c(i) = j }  1; this is the probability that an 
item will next move to the front after j accesses. After the initialization phase and 
before any accesses, Pr[c(x) = j ]  is pi for any item x. 

THEOREM 3.5. COUN7ER(s, S) is rnax{Ej=: j p j ,  1 + p 1  ZZ: jpj}-competitioe. 

The analysis of COUNTER(s, S) is very similar to the analysis of BIT, so we 
just sketch the differences. The analogue of Lemma 3.2, namely, that at any time 
the probability that c(x) = j is p i ,  independent of the position of x in OPT's list, 
is easily verified. 

An inversion (y, x) is of type j if c(x) = j .  Let 'pi denote the number of inversions 
of type j .  Our potential function is 0 = Z.=, j -  'pi. 

Consider the expected amortized cost of an access to x. If x does not move to 
the front then, since c(x) decreases by one, the decrease in potential due to 
inversions which change type is exactly the number of inversions (w, x). If x moves 
to the front the number of inversions destroyed is exactly the number of inversions 
(w,x). In either case the expected amortized cost of the access is at most the 
position of x in OPT's list plus the expected cost of new inversions created. It is 
not hard to see that the expected cost of the inversions created is at most 
( k  - l )p ,  z . = l j p i  (where k is the position of x in OPT's list), so the cost to 
COUNTER@, S) is at most (1 + p 1  xj= jpj )  times the cost to OPT. 
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For a paid exchange by OPT, the worst case is that one new inversion is created. 
The expected increase in potential is x= j p j .  Therefore we have that in this case 
the cost to COUNTER(s, S) is no more than ('& j p j )  times the cost to OPT. It 
is also possible to show that the same competitive ratio is achieved if the cost of 
accessing the ith item is i - 1. This completes the analysis of COUNTER. 0 

For some choices of s and S, we can get a better competitive factor than 1.75. 
For example, COUNTER(7, {0,2,4}) is 85f49-competitive ( x 1.735-competitive). 
In fact, it is possible to modify the COUNTER algorithm to achieve a competitive 
ratio of fi. Let a RANDOM RESET algorithm be as follows. Keep a counter 
from 1 to s for each item. When an accessed item has a counter which is bigger 
than 1, make no move and decrement the counter. If the counter is 1, move that 
item to the front and reset the counter to j with some probability zj .  Thus each 
counter follows a simple Markov chain; in the stationary distribution of this chain 
the counter has value j with probability p j  (where these are as defined above). The 
value of the counters must be initialized according to the stationary distribution. 
For example, COUNTER(7, {0,2,4}) can be simulated by a random reset algo- 
rithm that keeps a counter from 1 to 3. When an accessed item has counter value 
1 it is moved to the front and the counter is reset to 3 with probability 113 and 
to 2 with probability 213. Each counter is initialized by choosing the value 1 with 
probability 3/7, 2 with probability 317, and 3 with probability 117. 

The same analysis as for COUNTER works for RANDOM RESET algorithms. 
We wish to choose a resetting distribution which gives the lowest possible 
competitive ratio as guaranteed by Theorem 3.5. The best ratio possible is f i  
(we do not prove this here), and it is easy to achieve. This yields the best 
randomized algorithm known for the list update problem. 

THEOREM 3.6. 
rithm: reset to 3 with probability (- 1 + $12 and to 2 with probability (3 - &2. 

The following resetting distribution yields a &competitive algo- 

The RANDOM RESET algorithm has the drawback that it uses n(m) random 
bits to process a request sequence of length m. It is possible, however, to find s 
and S such that the competitive ratio of COUNTER(s, S) guaranteed by Theorem 
3.5 is as close to f i  as desired (though s must tend to infinity). Although such a 
COUNTER algorithm potentially has a very large finite state machine, the total 
number of random bits needed is still O(n). 

3.3. COUNTER in P' Models. In this subsection we consider COUNTER algo- 
rithms for list update in P' models. Consider the algorithm COUNTER(k, {k - l}): 
For each item in the list keep a mod k counter. Initially, the counters are set by 
choosing values uniformly and independently from {0,1, . . . , k - l}. On an access 
to an item, decrement the counter mod k and then move the requested item to 
the front if its counter is k - 1. 
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THEOREM 3.1. 
is the maximum of 1 + ( k  + 1)/2d and 1 + (l/k)(2d + ( k  + 1)/2). 

In the model P", C O U N m R ( k ,  { k  - l}) is c-competitive, where c 

PROOF. The analysis is very similar to the analysis for BIT. We say an inversion 
( y ,  x) is of type i if the value of x's counter is i - 1. As our potential function, we 
take CD = c:= l(d + i)Cp,, where ~ p ,  is the number of inversions of type i .  The factor 
of i in the potential pays for the increased access cost due to the inversion, and 
the factor of d pays for the cost of removing that inversion when the item is moved 
to the front. 

Consider the amortized cost of an access to x. The cost of this access to the 
optimum algorithm is j ,  where j is the position of x in OPT'S list. The amortized 
cost for the access is at most j + R + A + B + C + D, where R is the number of 
inversions (w, x) for some w at the time of the access, A is the change in potential 
due to new inversions created, B is the change in potential due to old inversions 
destroyed, C is the change in potential due to inversions which change type, and 
D is the cost of exchanges made. 

Suppose that at the time of the access, x's counter is 0, and that R = r. Then 
B = -r(d + l), C = 0, and D I d ( j  + r - l), so that R + B + C + D I ( j  - 1)d. 
Ifx'scounterisnot 0, thenB = 0, C = -r,and D = 0,so that R + B + C + D = 0. 
Therefore E [ R  + B + C + D]  I ( j  - l)d/k. The expected value of A is no more 
than ( j  - l)(l/k) c:= l(d + i)(l/k) = ( j  - l)(l/k)(d + (k + 1)/2). Therefore, the ex- 
pected amortized cost of the access is 

E [ j  + R + A + B + C + D ]  = E [ j ]  + E [ R  + B + C + D]  + E [ A ]  

which is no more than 

j + ( j  ~ - 1)d + (k)(d j - 1 
+ T) = j + 6) (2d  + F) - (:)(2d + F). k 

This shows that the expected amortized cost for the access is no more than 

1 + ($(2d+?) 
times the cost to OPT. 

The cost of an exchange by OPT is handled similarly. In the worst case, one 
inversion is created, and the expected change in potential due to that inversion is 
d + (k + 1)/2. Since OPT pays d for the exchange, COUNTER(k, {k - l}) pays 

0 no more than 1 + (k + 1)/2d times the optimum cost. 

COUNTER(k, {k - l}) achieves the competitive ratio given above in the 



26 N. Reingold, J. Westbrook, and D. D. Sleator 

Table 1. Best competitive ratios in P" for COUNTER and RANDOM RESET. 

COUNTER RANDOM RESET 

d Best k Competitive ratio Best k Competitive ratio PrCreset to k] 

7 = 2.64 0.2 15 
6 z 2.45 0.760 

0.314 

1 2 2.75 3 
2 5 2.50 5 
3 7 2.43 8 x 2.39 
4 10 2.38 10 z 2.36 0.878 
5 12 2.38 13 z 2.34 0.433 
6 15 713 15 713 z 2.33 1 (exactly) 

f 

model where the cost of accessing the ith item in the list costs i - 1, just as in 
Corollary 3.4. 

Table 1 shows, for various d, the best competitive ratio for 

COUNTER(k,{k - 1)) 

guaranteed by Theorem 3.7. There values were derived as follows. Set the access 
and exchange ratios derived above equal to each other, and solve for k in terms 
of d. It is interesting that as d tends to infinity, the best competitive ratio decreases 
and tends to (5  + f i ) / 4  x 2.28. This gives strong evidence that the scaling 
conjecture of Manasse et al. [20] is true for the list update problem. 

It is possible to find RANDOM RESET algorithms which do slightly better 
than the COUNTER competitive ratios given in Table 1. These results are also 
shown in Table 1. The best resetting distributions we have found all have the 
property that the counter is reset to either the largest or the second largest possible 
value. Table 1 also lists, for various d, the best k, the best competitive ratio, and 
the probability of resetting to k. Notice, however, that while all COUNTER 
algorithms use O(n) random bits regardless of the length of the request sequence, 
these random resetting algorithms use Q m )  random bits for a request sequence of 
length m. Any random resetting algorithm can be approximated to any desired 
degree of accuracy by a COUNTER algorithm with a large enough s. 

In the following section we prove that no deterministic P" algorithm can be 
better than 3-competitive. Thus our randomized algorithms beat the deterministic 
bound. We have recently found a 5-competitive deterministic algorithm for all d; 
an open problem is to tighten the deterministic upper bound. 

4. Lower Bounds Against Adaptive Adversaries. In this section we prove that for 
randomized list update algorithms the adaptive on-line and adaptive off-line 
adversaries are equally powerful. An unpublished result of Karp and Raghavan 
shows that if A is a deterministic, c-competitive list update algorithm in the 
standard model, then c 2 2. By a theorem of Ben-David et al. [2], a lower bound 
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for deterministic algorithms implies the same lower bound for randomized algo- 
rithms against adaptive off-line (strong) adversaries. Note that the move-to-front 
algorithm is 2-competitive. Now we show that even against an adaptive on-line 
(medium) adversary, no randomized algorithm is better than 2-competitive. 

THEOREM 4.1. 
then c 2 2. 

If A is c-competitive against an adaptive on-line (medium) adversary, 

PROOF. The adversary’s strategy is to generate an access sequence of length m 
by always accessing the last item in A’s list. The cost to A is mn. Consider all n! 
static algorithms, i.e., algorithms which initially arrange a list of length n in some 
order, and make no other exchanges. Suppose that on a given request sequence, 
we run all static algorithms simultaneously. For any one access, the sum of the 
costs to each of these algorithms is 

n 

C i(n - I)! = (n  - I)! n(n + 1)/2 = n! (n  + 1)/2. 
i =  1 

Therefore, for any sequence of m accesses the sum of the costs to these algorithms 
is mn! ( n  + 1)/2 + B, where B is the sum of the initial costs of rearranging the list. 
The medium adversary which selects one of these static algorithms uniformly at 
random achieves an expected cost of m(n + 1)/2 + B/n! on any access sequence of 
length m. Therefore, for any E the adversary can choose m so large that the ratio 
of A’s cost to the adversary’s cost is at least 2n/(n + 1) - E. Since A must be 

0 c-competitive for all list sizes, c cannot be less than 2. 

Notice that if we fix the size of the list to be n we get a lower bound of 2n/(n + 1) 
for the competitive ratio. 

The above proof shows that for any request sequence there is a static algorithm 
that achieves an average cost of ( n  + 1)/2 per access. (It is not hard to show that 
the algorithm which arranges the list in order of decreasing access frequency 
achieves this.) The above proof thus works for deterministic on-line algorithms 
and for randomized on-line algorithms against strong adversaries. 

We now show that 3 is a lower bound on the competitive factor for problems 
in the pd models. This result generalizes that of Karlin et al. [19], whose Theorem 
3.3 can be interpreted as showing a lower bound of 3 on the competitive factor 
for lists of length 2 in the i - 1 cost model. 

THEOREM 4.2. Let A be an on-line algorithm for list update in a Pd model. If A is 
deterministic and c-competitive, then c 2 3. If A is randomized and c-competitive 
against adaptive off-line adversaries, then c 2 3. 

PROOF. In either case, the adversary’s strategy is to generate an access sequence 
of length rn by always accessing the last item in A’s list. The cost to A is mn + D, 
where D is the total cost of all exchanges made by A. Let b = D/mn. Suppose 
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b 2 1/2. As in the theorem above, the adversary can arrange to pay arbitrarily 
close to m(n + 1)/2. Since D is by assumption at least mn/2, A cannot be more 
than 3n/(n + 1)-competitive. On the other hand, suppose b < i. Now the adversary 
adopts the following strategy: at all times it maintains its list in the exact reverse 
order of A’s list. That is, the adversary initially reverses its list and then does the 
reverse of every exchange A makes. The total cost to the adversary is at most 
m + D + dn(n - 1)/2, since each access costs it 1. Ignoring the initial cost of 
reversal, the ratio of A’s cost to the adversary’s cost is n(l + b)/(l  + bn), which is 
at least 3n/(n + 2) for b 5 $. Since one of the two strategies is applicable for all n, 

0 A cannot be better than 3-competitive. 

Notice that if we fix the size of the list to be n we get a lower bound of 3n/(n + 2). 
Theorem 4.2 can be extended to the model in which an access to item i has cost 
i - 1. In this situation the lower bound is exactly 3 regardless of n. The technique 
used in the proof of Theorem 4.2 can be extended to handle randomized 
algorithms against adaptive on-line adversaries. 

THEOREM 4.3. 
randomized and c-competitive against adaptive on-line aduersaries, then c 2 3. 

Let A be an on-line algorithm for list update in a Pd model. I f  A is 

PROOF. Suppose that A is an on-line algorithm. Consider A^, an adaptive on-line 
adversary, which behaves as follows. A^ first simulates A on all possible choices of 
A’s random bits, and for each such choice of random bits, creates a request 
sequence of length m such that each request is to the last item in A’s list, Consider 
the collection of all request sequences constructed in this way. The choice of A’s 
random bits induces a probability distribution on these (indeed, all) sequences of 
length m. That is, the probability of a sequence is the probability that A^ will 
generate that sequence when it runs A and uses the strategy of always accessing 
the last item in A’s list. A^ can compute the expected value of b = D/mn. Based on 
the expected value of b, A^ chooses one or the other strategy as in the deterministic 
case, and achieves the same lower bounds. 0 

The results of this section show that no randomized on-line algorithm can beat 
the deterministic lower bound against an adaptive on-line algorithm. It is known 
that the analogous theorem to Theorem 4.1 holds for other types of on-line 
situations such as the caching, but it is not known to hold in more general settings. 
The relationship between on-line adaptive and off-line adaptive adversaries in 
more general settings is an interesting open problem. 

5. Lower Bounds Against Oblivous Adversaries. In this section we discuss a 
technique for deriving lower bounds for randomized on-line algorithms against 
oblivious adversaries. In this section when we refer to competitive ratios we mean 
competitive ratio against an oblivious adversary. 

Karp and Raghavan (private communication, 1990) use the following strategy: 
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find an off-line algorithm with a small average cost per request assuming that the 
requests are drawn uniformly at random from { 1,2, . . . , n } .  If the average cost per 
request is no more than d, then no on-line algorithm can be better than (n + 1)/2d- 
competitive. Karp used this technique to obtain a lower bound of 9/8 for the 
competitive ratio of any on-line algorithm for lists of two items, and Raghavan 
(private communication, 1990) showed a lower bound of 1.18 for three-item lists. 
We extend these results by considering larger lists, and more complicated off-line 
algorithms. Fix the size of the list, n, and a lookahead number, k. Suppose we have 
an off-line algorithm that bases its decision on only the next k + 1 requests. 
Following Raghavan’s approach, we can model the behavior of such an algorithm 
for randomly generated request sequences as follows. Consider a Markov chain 
whose states are k-tuples of request positions. State (r l ,  r 2 ,  . . . , r k )  corresponds to 
the situation where the current positions of the next k requests are, respectively, 
rl ,  r 2 ,  . . . , rk .  The transitions are conditioned on the current position of the 
(k + 1)st request. If we know the algorithm, we can construct the transition matrix 
for the chain. 

Each state transition has a cost (the cost of any paid exchanges made just prior 
to the access plus the cost of the access), so for each state we can compute an 
expected cost. Let the vector of these expected costs be c. Suppose the chain has 
stationary distribution R. Then the expected cost per access is c . x ,  if the chain is 
in steady state. 

For n 2 3 there is no obvious strategy for a k-lookahead algorithm, since no 
bounded lookahead algorithm can be optimum [23]. Furthermore, the size of the 
transition matrix is nk, so for values of n and k even a little bigger than 3 it is 
infeasible to try different strategies by hand and compute the steady-state vector 
symbolically. Thus there are two problems: determining a good way to find off-line 
algorithms and generate transition rules for large lists, and finding the steady-state 
distribution of the resultant transition matrix. 

Our approach is to write a program that generates the entries of the matrix 
corresponding to a particular class of good off-line algorithms, MARKOV(n, k), 
and then compute the steady-state vector numerically. Suppose we have a program 
OFF(n, k) that, given a sequence of exactly k + 1 accesses to an n-item list, 
generates a sequence of moves to service that request sequence. MARKOV(n, k) 
works as follows: start with the next k requests; look at the (k + 1)st request; 
service the next request in the same way that OFF(n, k) would service that request 
given the same sequence of k + 1 requests on the same list. Given an implementa- 
tion of OFF@, k), the entries of the transition matrix and cost vector for 
MARKOV(n, k) are filled in as follows. If the current state is ( T I ,  r2 ,  .. ., r k )  
(that is, if the next k requests are to the items in positions r l ,  r 2 ,  ..., rk), and 
the next request is to the item in position rk+l ,  transit to whatever state 
corresponds to the list that results from OFF(n, k) servicing request rl in the 
sequence (rl, r 2 ,  ..., rk+l) ,  assuming its list is 1, 2, ..., n. The probability of that 
transition is l/n, since the request sequence is uniformly random. The cost of that 
state is l /n  times the sum over all choices of rk+ of the cost of servicing the first 
request in (rl, r 2 , .  . . , rk+ Thus to generate the matrix we must generate all 
possible sequences of k + 1 requests on n items and run OFF(n, k) on each of them. 
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Any choice of an off-line algorithm gives a valid MARKOV(n,  k) algorithm and 
transition matrix, but some choices are better than others. Our best results were 
achieved using a program to compute an optimum off-line algorithm for the k + 1 
requests that has the following properties: 

1. It only does paid exchanges. 
2. It services a request to item x by choosing some subset of the items preceding 

x in the list and moving them in an order-preserving way to immediately after 
x. Then it pays for the access to x and goes on to the next request. 

3. Whenever an item is requested twice in a row that item is moved to the front 
on its first access. This means that MARKOV(n,  k) has the same property and 
ensures that the Markov chain has at most one stationary distribution (see 
Lemma 5.1). 

4. Among optimum algorithms that have the above three properties, our algo- 
rithm services the first request with the lowest cost. This tends to make 
MARKOV(n,  k)’s cost per access smaller, so we get a better lower bound. 

It is shown in [23] that there is an optimum algorithm with the first three 
properties. There is no known way to compute the optimum algorithm for a given 
request sequence that is polynomial in both n and k, however, so the time and 
space to generate MARKOV(n ,  k) grow exponentially. 

LEMMA 5.1. For any n and k, the Markov chain corresponding to MARKOV(n,  k) 
is irreducible. That is, for any two states, the probability of transiting from one to  
the other in somejinite time is positive. 

PROOF. Suppose we want to get to state (rl, r2 ,  ..., r k ) .  Consider 
MARKOV(n,  k)’s action on request sequence (n ,  n, n - 1, n - 1 , .  . ., 2,2, 1, 1). 
MARKOV(n,  k) will move each item to the front, since each item is requested 
twice in a row. After that, MARKOV(n,  k)’s list must be 1, 2, . . . , n, so if the next 
k requests are (II, r 2 ,  ..., rk) ,  MARKOV(n ,  k) will be in state (rl, r2 ,  ..., rk) .  0 

By standard probability theory, Lemma 5.1 implies that the steady-state 
distribution is unique, and it is given by the (unique) eigenvector of the transition 
matrix corresponding to the eigenvalue 1. We compute this eigenvector from the 
matrix using the power method 1111. Table 2 shows the best results we have 
obtained for n = 3, 4, 5, and 6. In all cases, the number of iterations in the power 
method necessary to get the distance between successive iterates less than lo-’ 

Table 2 Lower bound results. 

n k Lower bound 

3 10 1.1998 
4 8 1.2467 
5 7 1.2728 
6 5 1.268 
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was no more than 30. As shown in the table, the largest lower bound we have 
been able to compute is approximately 1.27. We were unable to achieve higher 
results due to limitations on computational resources. From various simulations 
using nonoptimum off-line algorithms we believe the true lower bound to be at 
least 1.4. 

6. Remarks and Open Problems. For the standard model, we have given an 
extremely simple algorithm that is 1.75-competitive against an oblivious adversary, 
and constructed a slightly more complicated one which is &competitive. We 
have shown that no algorithm can be better than 1.27-competitive against such 
an adversary. (Recently, we have improved the lower bounds for three- and 
four-item lists to 1.2 and 1.25, respectively.) This leaves a substantial gap. It is 
possible that our COUNTER algorithms are better than we can currently prove, 
since we do not know of an instance in which the upper bound is tight. 

OPEN QUESTION 1. What is the best competitive ratio a randomized list update 
algorithm can achieve against oblivious adversaries in the standard model? 

In the pd models we have given a lower bound of 3 for the competitiveness of 
deterministic algorithms, and for randomized algorithms against adaptive adver- 
saries. We have constructed randomized algorithms with smaller competitive 
ratios against oblivious adversaries for these models. 

OPEN QUESTION 2. What is the best competitive ratio a randomized list update 
algorithm can achieve against oblivious adversaries in these models? 

Our BIT and COUNTER algorithms use only a bounded number of random 
bits regardless of the number of requests serviced, yet still beat the deterministic 
lower bound. Recently barely random algorithms have also been found for the 
migration problem [lo], [26]. 

OPEN QUESTION 3. For which other on-line problems do such algorithms exist? 

Our results in Section 4 give evidence for the conjecture that, for a large class 
of applications, adaptive on-line and adaptive off-line adversaries are equally 
powerful. Similar results have been obtained for page caching [22] and metrical 
task systems [12]. On the other hand, the results of [lo] and [26] show that this 
does not hold in general. 

OPEN QUESTION 4. For what other classes of on-line problems are these two 
adversaries equivalent ? 

. 
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