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 Abstract

This paper presents an application of two
machine learning algorithms, i.e., Winnow and
RIPPER, and their comparison on the task of
Thai named-entity identification. While most of
previous works on this task are based on hand-
coded rules, we use learning algorithms to help
automate the development of named-entity
system. Since Thai language has no explicit word
boundary, Thai name is much more diff icult to
identify than in other languages such as English.
Given an input text, we first generate candidates
for names by segmenting the text into several
different sequences of words and non-words.
This is done by using dictionary and statistical
information; candidates for names can be non-
words not found in the dictionary, or words that
appear in the dictionary but tend to be names
according to statistical information. These
candidates are then determined whether they are
names by learning algorithms previously trained
on a corpus. The experimental results showed the
effectiveness of Winnow and RIPPER, and
demonstrated that Winnow is superior to
RIPPER in our task.

1 Introduction

Named-entity identification is important to Natural
Language Processing (NLP) tasks, such as
information retrieval, part-of-speech tagging, etc.
Most of previous works on named-entity systems are
based on hand-coded rules (Appelt et al., 1995;
Weischedel, 1995; Gaizauskas et al., 1995; Iwanska
et al., 1995) which require linguistic expertise and
consume a lot of effort to develop. In recent years,
there has been increasing interest in application of
machine learning techniques to NLP. The techniques
have been shown to be successfully applied to various
NLP tasks such as Thai word segmentation
(Meknavin, et al., 1997), part-of-speech tagging

(Brill , 1995), parser construction (Zelle and Mooney,
1996), etc. An advantage of the techniques is that
they are able to reduce human effort by helping
automate the development of NLP systems through
training from the data.

This paper presents an application of two
learning algorithms on the task of Thai named-entity
identification. To identify names in languages that
have no explicit word boundary such as Thai,
Japanese, etc., it is necessary to segment the input text
into words and non-words. If a name is not correctly
segmented, its occurrence can make the surrounding
words incorrectly recognized and itself may be
wrongly identified.

We divide Thai names into three types; (1)
explicit names, (2) partly hidden names, and (3) fully
hidden names. Based on each type, we provide an
algorithm to generate candidates for a name.  These
candidates are then classified whether they are names
by learning algorithms. The learning algorithms
applied in our task are Winnow and RIPPER. To train
the algorithms, we employ two types of features  that
are context words and collocations. The idea is to
have the algorithms learn the features that
characterize the contexts in which each named-entity
tends to occur.

The paper is organized as follows. Section 2
states the characteristics of Thai named-entity.
Section 3 gives the algorithms for generating name
candidates. Section 4 briefly describes Winnow and
RIPPER. In Section 5, the overview of our named-
entity identification system is given. Section 6 shows
the preliminary experiment comparing Winnow and
RIPPER. We then conclude the paper in Section 7.

 2 Characteristics of Thai Named-Entities

The Named-Entity task in MUCs consists of three
subtasks for recognizing entity names, temporal
expressions and number expressions (Grishman,
1995). In this paper we focus on the entity names
which are categorized into person, organization and
location names.



While the Named-Entity tasks for several
languages such as English, Japanese, etc. have been
conducted for a long period, the Named-Entity task
for Thai was started as an experimental task in 1997.
There are many characteristics in Thai that make the
task diff icult:
• Unlike most of European languages, word forms

provide no direct cue in identifying Thai names.
For example, there is no capitalization in Thai.

• A large portion of Thai names are general Thai

words in the dictionary.  For example, ���(bird),�¦³�·¬�r�(invent) and �°£··��·Í�(exclusive right)�are

common names in Thai. So checking for the
nonexistence in the dictionary alone is not an
effective method to detect Thai names.

• There is neither word boundary nor sentence
boundary delimiter. This complicates almost
every process related to text processing, and
makes finding the range of named-entities
extremely diff icult.

UKU UKK  KUKK    UK  KU  KKK

U =  an unknown string, K =  a known word

Figure 1 :Various forms of Thai names

Figure 1 ill ustrates various forms of Thai names
that are formed by the combination of known words
and unknown strings (non-words). According to these
forms, Thai names are classified into three categories.

I. Explicit names. An explicit name is a name of
which no any substring is in a dictionary. Examples of
explicit names are listed below.

•  �¡��(abbreviation of an organization name)

•  »�¸¥r� (a woman name)

•  �§¬�r�(a man name)

II. Partially hidden names. A partially hidden name
is composed of known words and unknown strings.
For example,

•  Å¤Ã�¦�°¢�m Æ Å¤� Ã� ¦� �° ¢�m
(Microsoft) Å¤���(ox) ¦ (fiddle) ¢�m

•  »¦¡́��r Æ »¦ ¡´� �r
(Surapant) »¦ (one thousand) �r

•  �¼�·� Æ �¼ ��·�
(NuSkin) �¼ (to eat)

where “Æ” means “ is composed of” , bold strings are
known words, and the words in the parentheses are
the corresponding English words. These are examples
of person and company names.

III. Fully hidden names.  A fully hidden name is
composed solely of one or more known words such as

•  �»�Á¦·¤ Æ �»�� Á¦·¤
(Boonserm) (merit) (to strengthen )

•  ���¡¦ Æ ���� ¡¦
(Kanokporn) (gold) (a gift)

•  Å¡«µ¨ ÆÆ Å¡«µ¨
(Paisarn) (wide)

Table 1 shows the distribution of each name
type from our 25K-words corpus. As can be seen,
nearly 50% (908/1887) of names are fully hidden
names. This means that simple dictionary checking
can detect only half of Thai names. Moreover, among
those that can be detected, only 13% (130/(130+849))
are explicit names that need no further processing to
identify the correct name boundaries. Consequently,
if the simple method is employed that detects names
by finding unknown strings not found in a dictionary
and just considers those strings as names, only 7%
recall (130/1887) and 13% precision (130/(130+849))
will be obtained. This suggests that other better
methods for name detection and boundary
identification are needed.

To cope with these characteristics of Thai
names, we propose the methods to generate name
candidates below.

Table 1: Statistics of Thai names in 25K-words
corpus

Explicit
Name

Partially
Hidden
Name

Fully
Hidden
Name

Total

Person 57 491 293 841
Organization 1 273 452 726
Location 72 85 163 320
Total 130 849 908 1887

3 Generating Candidates of Named-
Entity

We propose two heuristics to generate candidates for
names according to their types. After all candidates
are generated, the best candidate will be selected by
Winnow or RIPPER. Winnow and RIPPER will be
described in the next section.



3.1 Handling Explicit & Partially Hidden Names

In the case that a string does not exist in the
dictionary, candidates of the name will be created by
merging the words around the unknown string and the
string itself into a new string. All combinations of +/-
k words around the unknown string are used to
generate candidates. In the following experiment, k is
set to 3. We can define the equation for creating name
candidates as in Figure 2.

In case that there are many unknown strings, the
nearby unknown strings will be grouped into a single
unknown string for being used as a candidate, if they
are separated by a word having less than three
characters.

Figure 2: Equation for generating explicit and
partially hidden name candidates

3.2 Handling Fully Hidden Names

On the other hand, if every word is in the dictionary,
it is more diff icult to detect names.

Let Text = w1w2…wn be an input text, wi .be a
word in the text, and ti be the part of speech of the
word wi. The word that will be selected as a name
candidate is:

• the word that has  P(wi|ti)  less than a threshold,
or

• the word that has P(ti|ti-1,ti-2) less than a threshold.

In case that P(wi|ti) is less than a threshold, wi

will be considered as a name candidate. In case that
the probabilit y P(ti|ti-1,ti-2) of  wi is less than a
threshold, not only wi but also wi-1 and wi-2 will be
considered as name candidates because the less-than-
threshold probabilit y of wi may come from wi-1 or    
wi-2. We can define the equation of creating name
candidates as in Figure 3.
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Figure 3: Equation for generating fully hidden name
candidates

4 Winnow & RIPPER Algorithms

This section briefly describes learning algorithms
Winnow and RIPPER used in our tasks, and defines
features for training the algorithms.

4.1 Winnow

Winnow algorithm used in our experiment is the
algorithm described in (Blum, 1997). Winnow is a
neuron-like network where several nodes are
connected to a target node. Each node called
specialist looks at a particular value of an attribute of
the target concept, and will vote for a value of the
target concept based on its specialty; i.e. based on a
value of the attribute it examines. The global
algorithm will t hen decide on weighted-majority votes
receiving from those specialists. The pair of
(attribute=value) that a specialist examines is a
candidate of features we are trying to extract. The
global algorithm updates the weight of any specialist
based on the vote of that specialist. The weight of any
specialist is initialized to 1. In case that the global
algorithm predicts incorrectly, the weight of the
specialist that predicts incorrectly is halved and the
weight of the specialist that predicts correctly is
multiplied by 3/2. The weight of a specialist is halved
when it makes a mistake even if the global algorithm
predicts correctly.

4.2 RIPPER

RIPPER is a propositional rule learning algorithm
that constructs a ruleset which classifies the training
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data (Cohen, 1995). A rule in the constructed ruleset
is represented in the form of a conjunction of
conditions:

if T1 and T2 and ... Tn then class Cx.

T1 and T2 and ... Tn is called the body of the rule. Cx is
a target class to be learned; it can be a positive or
negative class. A condition Ti tests for a particular
value of an attribute, and it takes one of four forms:
An = v,  Ac ≥ θ, Ac ≤ θ  and  v ∈ As, where An is a

nominal attribute and v is a legal value for An; or Ac is

a continuous variable and θ is some value for Ac that

occurs in the training data; or As is a set-value

attribute and v is a value that is an element of As. In
fact, a condition can include negation. A set-valued
attribute is an attribute whose value is a set of strings.
The primitive tests on a set-valued attribute As are of

the form “v ∈ As” . When constructing a rule, RIPPER
finds the test that maximizes information gain for a
set of examples S eff iciently, making only a single
pass over S for each attribute. All symbols v, that
appear as elements of attribute A for some training
examples, are considered by RIPPER.

4.3 Features

To train both algorithms to learn the name, the
context around the name is used to form features. The
features used are the context words and collocations.
Context words are used to test for the presence of a
particular word within +10 words and –10 words
from the target word. Collocations are patterns of up
to 2 contiguous words and part-of-speech tags around
the target word. Therefore the total number of
features is 10; two features for context words, and
eight features for collocations.

5 An overview of the system

Our algorithm for identifying names consists of four
steps as follows:

5.1 Word Segmentation

For each input sentence, probabili stic trigram model
(Meknavin, et al., 1997) is applied to separate the
sentence into a sequence of words and non-words and
assign their parts of speech, and N-best segmented
sentences are then selected as candidates. The
probabili stic trigram model, that generates the N
highest probable sentences, can be described formally
as following:

Let C = c1c2…cm   be an input character string,  Wi =
w1w2..wn   be a possible word segmentation, and  Ti =
t1t2..tn  be a sequence of parts of speech. Find
W1,W2...WN which are the N-highest probabilit y of

sequence of words. We can compute P(Wi) in  the
following  fashion:

∑∏
∑
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where P(ti|ti-1 ti-2) and P(wi|ti) are computed from the
corpus.

For example, let  C = “�¦·¬´��¼�·��´��´Ê��ª́Â���Î�µ®�nµ¥w�� This sentence should be segmented as

“�¦·¬´����¼�·����´��´Ê����´ªÂ������Î�µ®�nµ¥w  which means

“NuSkin company establishes sale agencies” .  The
results of our word segmentation algorithm of which
the format is [w1/t1] [w2/t2] … [wn/tn] are shown as
follows:

I � [�¦·¬´�/t1]  [�¼/ t2]  [�·�/t3]  [�´��´Ê��t4]
[�´ªÂ��/t5]  [�Î�µ®�nµ¥/t6]

II . [�¦·¬´�/t1]  [�¼/ t2]  [�·�/t3]��>�´��t4]  [�´Ê��t5]
[�´ªÂ��/t6]  [�Î�µ®�nµ¥/t7]7he word �¼� is an unknown string and ti is an

appropriate part-of-speech tag of each word.

5.2 Generating Candidates for Names

From the results of step 5.1, generate all candidates
for names by the explicit and hidden name heuristics
described in  Section 3.

For example, the sentence (I) from step 5.1, we

found that the second string, �¼, is a non-word.

Therefore we use the method for handling explicit
and partially hidden names which is explained in

Section 3. Name candidates are �¼���¦·¬´��¼���¼�·���¼�·��´��´Ê����¦·¬´��¼�·��and��¦·¬´��¼�·��´��´Ê���where

N��8��$�and�%�in Figure 2�are�����¼��^ε���¦·¬´�`�and�^ε��·��� �·��´��´Ê�`�� respectively. Every sentence will be

processed in the same way, and all candidates will be
obtained.

5.3 Tagging Part of Speech

New sentences will be formed by combining
candidates that are obtained from step 5.2 with the
rest of the words in the original sentence. The part of
speech of the words in each sentence will be
reassigned by the trigram tagger. The name
candidates are assumed to be the proper noun. Part of
speech trigram can be defined as the following:



Let W be a sequence of words w1..wn and Ti be a

sequence of part-of-speech tags t1..tn. Find τ  that
maximizes P(Ti | W):
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For example, in sentence (I) from step 5.1, name
candidates are created by the procedure in step 5.2. In
this step, the new sentences obtained are shown as
follows:

III . [�¦·¬´�/t1]  [�¼/NPRP] [�·�/t3]  [�´��´Ê�/t4]  �������
[�´ªÂ��/t5]  [�Î�µ®�nµ¥/t6]

IV. [�¦·¬´��¼/NPRP]  [�·�/t2]  [�´��´Ê�/t3]
[�´ªÂ��/t4]  [�Î�µ®�nµ¥/t5]

V. [�¦·¬´�/t1�]  [�¼�·�/NPRP]  [�´��´Ê�/t3]          

[�´ªÂ��/t4]  [�Î�µ®�nµ¥/t5]
VI.� [�¦·¬´�/t1]  [�¼�·��́��´Ê�/NPRP]  [�´ªÂ��/t3]

[�Î�µ®�nµ¥/t4]
VII .� [�¦·¬´��¼�·�/NPRP]  [�´��´Ê�/t2]  [�´ªÂ��/t3]

[�Î�µ®�nµ¥/t4]
VIII . [�¦·¬´��¼�·��́��´Ê�/NPRP]   [�´ªÂ��/t2]

[�Î�µ®�nµ¥/t3]
where ti is a part-of-speech tag and NPRP is a proper
noun tag. The sentence (II) can be processed in the
similar manner.

5.4 Predicting by Winnow or RIPPER

Sentences from step 5.3 are sent to Winnow or
RIPPER to be ranked, and the sentence with the
highest score will be selected as the answer.

Given the sentences in step 5.3, Winnow and
RIPPER select the best-score sentence that is the

sentence� �9�� (�¦·¬´�� �¼�·�� �´��´Ê�� �´ªÂ��� �Î�µ®�nµ¥)
which gives the correct meaning.

6 Preliminary Experiment

6.1 Data

To test the performance of our approach, we select
sentences which contain names from our 25K-words
corpus to use in benchmark test. Every sentence is
manually separated into words and their parts of
speech are manually tagged by linguists. The
resulting corpus is divided into two parts; the first
part, about 80% of corpus, is utili zed for training and

the rest is used for testing. To measure the
performance of our approach, we classify the test data
into two groups according to the method in Section 3.
The first group contains explicit and partially hidden
names, and the other contains fully hidden names.

6.2 Training Methodology

Using our tagged corpus, we train Winnow and
Ripper by the following processes.
• Select sentences that contain names from the

corpus.
• Construct positive examples. The names are

considered as target words. The context words
and collocations of the names are sent to
Winnow and RIPPER.

• Construct negative examples. Incorrect
candidates of names are considered as target
words. The context words and collocations of the
incorrect candidate are sent to Winnow and
RIPPER. The method for creating incorrect
candidates of names are described below:

-- Separate the sentences into words using
trigram word segmentation algorithm.

-- Generate name candidates excluding the
right candidates.

6.3 Results

Table 2 and Table 3 summarize the results of our
experiment. Table 2 shows the percentage of name
detection by our method (Dictionary + Trigram)
compared to simple dictionary checking (Dictionary).
Table 3 shows the precision and the recall obtained
by Winnow and RIPPER.

Table 2: Percentage of name detection

Explicit &
Partially Hidden

Names

Fully Hidden
Names

Training
Set

Test
Set

Training
Set

Test
Set

Dictionary 100.00 100.00 0 0
Dictionary
+ Trigram

100.00 100.00 87.82 83.25

Table 3 : Performance of Winnow & RIPPER

Training Set Test Set
Precision

(%)
Recall
(%)

Precision
(%)

Recall
(%)

Winnow 100.00 94.02 100.00 93.58
RIPPER 100.00 86.68 96.43 85.94

The percentage of name detection indicates the
effectiveness of the equations in Figure 2 and Figure
3 for detecting name candidates. As shown in     
Table 2, explicit and partially hidden names can be



completely detected but fully hidden names can be
detected about 87% for the training data and 83% for
the test data.  The result implies that some fully
hidden names cannot be detected by the equation in
Figure 3 as their statistical information (P(wa|ta)  and
P(ta|ta-1,ta-2)) are not lower than the threshold. Note
that simple dictionary checking cannot detect this
type of names. Based on name candidates generated
by the equations, the precision and recall of Winnow
and RIPPER are shown in Table 3. The results show
that Winnow and RIPPER are effective algorithms for
identifying names which achieved high precision and
recall . The results also show that Winnow is superior
to RIPPER. The precision on our test corpus obtained
by Winnow is 100%. This perfect result could be
because of the small size of our corpus. One
advantage of RIPPER over Winnow is that the
RIPPER rules consume less memory than the
Winnow network does. In our experiment, the number
of RIPPER rules is 27, whereas the number of
specialists of Winnow network is 112,966.

7 Conclusion

In this paper, we have proposed an application of
Winnow and RIPPER to named-entity identification.
Winnow and RIPPER both have been shown to be
effective algorithms for identifying names, and
Winnow is superior to RIPPER in this task.
Moreover, the precision obtained by Winnow
perfectly reaches 100%.  However, as in Thai words
are written consecutively without boundary
delimiters, the accuracy of detecting boundary of
fully hidden names is still not very high. In future
work, we plan to find more effective method to detect
and identify fully hidden names.
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