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Abstract

This paper presents an applicdion of two
machine learning algorithms, i.e., Winnow and
RIPFER, and their comparison on the task of
Thai named-entity identification. While most of
previous works on this task are based on hand-
coded rules, we use leaning algorithms to help
automate the development of named-entity
system. Since Thai language has no explicit word
boundary, Thai name is much more difficult to
identify than in other languages such as English.
Given an input text, we first generate candidates
for names by segmenting the text into several
different sequences of words and non-words.
This is done by using dictionary and statisticad
information; candidates for names can be non-
words not found in the dictionary, or words that
appea in the dictionary but tend to be names
acording to datisticd information. These
candidates are then determined whether they are
names by leaning algorithms previously trained
on a arpus. The experimental results $owed the
effediveness of Winnow and RIPFER, and
demonstrated that Winnow is superior to
RIPFER in our task.

1 Introduction

Named-entity identificaion is important to Natural
Languege Processng (NLP) tasks, such as
information retrieval, part-of-speed tagging, etc.
Most of previous works on named-entity systems are
based on hand-coded rules (Appelt et a., 1995
Weischedel, 1995 Gaizauskas et a., 1995 Iwanska
et a., 1995 which require lingustic expertise and
consume alot of effort to develop. In recent yeas,
there has been increasing interest in applicaion of
machine leaning techniques to NLP. The techniques
have been shown to be succesgully applied to various
NLP tasks such as Tha word segmentation
(Meknavin, et a., 1997, part-of-speed tagging

(Brill, 1995, parser construction (Zelle and Mooney,
1996, etc. An advantage of the techniques is that
they are @le to reduce human effort by helping
automate the development of NLP systems through
training from the data.

This paper presents an application of two
learning algorithms on the task of Thai named-entity
identificaion. To identify names in languages that
have no explicit word baundary such as Thai,
Japanese, etc., it is necessary to segment the input text
into words and non-words. If a name is not corredly
segmented, its occurrence can make the surrounding
words incorredly recgnized and itself may be
wrongly identified.

We divide Thai names into three types;, (1)
explicit names, (2) partly hidden names, and (3) fully
hidden names. Based on ead type, we provide an
algorithm to generate candidates for a name. These
candidates are then clasdfied whether they are names
by leaning algorithms. The leaning agorithms
applied in our task are Winnow and RIPFER. To train
the dgorithms, we employ two types of feaures that
are contex words and collocations. The idea is to
have the dgorithms lean the feaures that
charaderize the mntexts in which ead named-entity
tends to occur.

The paper is organized as follows. Sedion 2
states the caraderistics of Thai named-entity.
Sedion 3 gives the dgorithms for generating rame
candidates. Sedion 4 briefly describes Winnow and
RIPPER. In Sedion 5, the overview of our named-
entity identification system is given. Sedion 6 shows
the preliminary experiment comparing Winnow and
RIPFER. We then conclude the paper in Sedion 7.

2 Characteristics of Thai Named-Entities

The Named-Entity task in MUCs consists of three
subtasks for rewognizing entity names, temporal
expresgons and number expressons (Grishman,
1999. In this paper we focus on the entity names
which are cdegorized into person, organization and
location names.



While the Named-Entity tasks for several
languages such as English, Japanese, etc. have been
conducted for a long period, the Named-Entity task
for Thai was garted as an experimental task in 1997
There ae many charaderistics in Thai that make the
task difficult:
¢ Unlike most of European languages, word forms

provide no dired cue in identifying Thai names.

For example, there is no cegpitalization in Thai.
¢ A large portion of Thai names are general Thai

words in the dictionary. For example, un (bird),

152@Aug (invent) and aAanF (exclusive right) are
common names in Thai. So cheding for the
nonexistence in the dictionary alone is not an
effedive method to deted Thai names.

e There is neither word baundary nor sentence
boundary delimiter. This complicates amost
every process related to text processng, and
makes finding the range of named-entities
extremely difficult.

UKU  UKK KUKK UK KU KKK

U = an unkrown string, K = a known word

Figure 1 :Variousforms of Thai names

Figure 1 ill ustrates various forms of Thai names
that are formed by the cmbination of known words
and unkrown strings (non-words). According to these
forms, Thai names are dassfied into three caegories.

I. Explicit names. An explicit name is a name of
which no any substringisin adictionary. Examples of
explicit names are listed below.

« NW. (abbreviation of an organization name)
- gii§ (awoman name)
« ngual (aman rame)
I1. Partially hidden names. A partialy hidden name

is composed of known words and unkmown strings.
For example,

< laswedd 2 lu Ta 5 @e Wé

(Microsoft) I (ox) 5 (fiddle) Wa
. gaut 2> @5 W f
(Surapant) §3 (onethousand) 5

. yanu 2> ud i

(Nuskin) U (to eat)

where“ =" means“is composed o, bold strings are
known words, and the words in the parentheses are
the rresponding English words. These ae examples
of person and company names.

[11. Fully hidden names. A fully hidden name is
composed solely of one or more known words gich as

. Yy 2> GEHY
(Boonserm) (merit) (to strengthen)

.« DUANS - aun N3
(Kanokporn) (gold) (agift)

« lnena -2 lnema
(Paisarn) (wide)

Table 1 shows the distribution of eat name
type from our 25K-words corpus. As can be seen,
nealy 50% (9081887 of names are fully hidden
names. This means that simple dictionary cheding
can deted only half of Thai names. Moreover, anong
those that can be deteded, only 13% (130/(130+849)
are eplicit names that need no further processng to
identify the @rred name boundaries. Consequently,
if the simple method is employed that deteds names
by finding unkrown strings not found in a dictionary
and just considers those strings as names, only 7%
recdl (130/1887) and 13% predsion (130/(130+849))
will be obtained. This suggests that other better
methods for name detedion and baundary
identificaion are needed.

To cope with these daraderistics of Thai
names, we propcse the methods to generate name
candidates below.

Table 1: Statistics of Thai names in 25K -words

corpus
Explicit | Partialy Fully Total

Name | Hidden | Hidden

Name Name
Person 57 491 293 841
Organizdion 1 273 452 726
Location 72 85 163 320
Tota 130 849 908 1887

3 Generating Candidates of Named-
Entity

We propose two heuristics to generate candidates for
names acording to their types. After al candidates
are generated, the best candidate will be selected by
Winnow or RIPFER. Winnow and RIPPER will be
described in the next sedion.



3.1 Handling Explicit & Partially Hidden Names

In the cae that a string does not exist in the
dictionary, candidates of the name will be aeaed by
merging the words around the unknown string and the
string itself into a new string. All combinations of +/-
k words around the unkrmown string are used to
generate candidates. In the following experiment, Kk is
set to 3. We can define the equation for creaing reme
candidates asin Figure 2.

In case that there ae many unkrown strings, the
neaby unknown strings will be grouped into a single
unkrown string for being wsed as a candidate, if they
are separated by a word having less than three
charagers.

Text=wiwsy.. WUwy,.. W,
where w; 0 Dictionary,U O Dictionary
n = numberof wordsin thetext

NM ={aUB |a DA BOB }

where NM =setof candidatefor names
A :{Wa—i,a i D[O,k] }U{E},
B ={whpwi i O[0.K] JULe}

Wi j =W...Wj A<,

€ =null string, k =constantvalue

Figure 2: Equation for generating explicit and
partially hidden name candidates

3.2 Handling Fully Hidden Names

On the other hand, if every word is in the dictionary,
it ismore difficult to deted names.

Let Text = wiw,...w, be a1 input text, w; be a
word in the text, and t; be the part of speed of the
word w;. The word that will be seleded as a name
candidateis:

e the word that has P(wi|t;)) lessthan a threshold,
or
e theword that has P(t]t;_1,t;.,) lessthan a threshold.

In case that P(wi|t;) is lessthan a threshold, w;
will be mnsidered as a name candidate. In case that
the probability P(ti|ti1ti.) of w; is less than a
threshold, not only w; but also wi.; and wi, will be
considered as name candidates because the lessthan-
threshold probability of w, may come from wi_; or
Wi, We can define the euation of creding rame
candidates asin Figure 3.

Text=wWs.. Wy .. Wh_1Wq
where w ODictionary,
n =numberof words in thetext,
w, isawordwhoseprobabiliy islessthan
the threshold.

NM ={ aWB o DA B0B }
where NM = setof namecandidates
A :{Wa—i,a—l | D[l-k] }U{g},
B :{Wa+1,a+i!i D[:Lk]}U{s},
W= Ww i s,
W=w,: P(w, |ty) <8 or
W |:J{Wa—ZaWa—lea}: P(ta Ita—lvta—z) <0,
€ =nullstring 8 is thethreshold
k = constantvalue.

Figure 3: Equation for generating fully hidden name
candidates

4 Winnow & RIPPER Algorithms

This sdion briefly describes leaning agorithms
Winnow and RIPFER used in our tasks, and defines
feaures for training the dgorithms.

4.1 Winnow

Winnow algorithm used in our experiment is the
algorithm described in (Blum, 1997. Winnow is a
neuron-like network where severa nodes are
conneded to a target node. Each node cdled
spedalist looks at a particular value of an attribute of
the target concept, and will vote for a value of the
target concept based on its pedalty; i.e. based on a
value of the dtribute it examines. The globa
agorithm will then dedde on weighted-majority votes
recaving from those spedalists. The par of
(attribute=value) that a spedaist examines is a
candidate of feaures we ae trying to extrad. The
global algorithm updates the weight of any spedalist
based on the vote of that spedalist. The weight of any
spedaist is initiaized to 1 In case that the global
algorithm predicts incorredly, the weight of the
spedalist that predicts incorredly is halved and the
weight of the spedalist that predicts corredly is
multiplied by 3/2. The weight of a spedalist is halved
when it makes a mistake even if the global agorithm
predicts corredly.

4.2 RIPPER

RIPPER is a propositional rule leaning algorithm
that constructs a ruleset which clasdfies the training



data (Cohen, 1995. A rule in the constructed ruleset
is represented in the form of a @njunction of
conditions:

if T, and T, and ... Ty, then classCy.

T,and T, and ... Ty iscdled the body of therule. Cxis
a target classto be leaned; it can be apaositive or

negative dass A condition T; tests for a particular
value of an attribute, and it takes one of four forms;

A=V, Ac=6,A: <6 and v O As where Ay is a
nominal attribute and visalegal valuefor Ap; or Acis
a ontinuous variable and 6 is me value for A¢ that
occurs in the training data; or As is a set-value

attribute and v is a value that is an element of As. In
fad, a @ndition can include negation. A set-valued
attribute is an attribute whose value is a set of strings.

The primitive tests on a set-valued attribute Ag are of

theform “v [ As”. When constructing arule, RIPPER
finds the test that maximizes information gan for a
set of examples S efficiently, making only a single
pass over S for ead attribute. All symbals v, that
appea as elements of attribute A for some training
examples, are awnsidered by RIPFER.

4.3 Features

To train both agorithms to lean the name, the
context around the name is used to form feaures. The
feaures used are the antext words and coll ocations.
Context words are used to test for the presence of a
particular word within +10 words and —10 words
from the target word. Collocdions are patterns of up
to 2 contiguous words and part-of-speed tags around
the target word. Therefore the total number of
fedures is 10; two feaures for context words, and
eight feaures for coll ocaions.

5 An overview of the system

Our agorithm for identifying remes consists of four
steps as foll ows:

5.1 Word Segmentation

For eadt input sentence probabili stic trigram model
(Meknavin, et a., 1997 is applied to separate the
sentenceinto a sequence of words and non-words and
asdgn their parts of speed, and N-best segmented
sentences are then seleded as candidates. The
probabili stic trigram nmodel, that generates the N
highest probable sentences, can be described formally
asfollowing:

Let C= ¢6,...cy beaninpu character string, W, =
WiW,..W, be a possble word segmentation, and T, =
tito.ty,  be a sequence of parts of speed. Find
W, W... Wy which are the N-highest probalility of

sequence of words. We @an compute P(W) in the
following fashion:

POM) = 3 PN T)
T

D
= z |_| P(ti 1ti-1,ti-2)* P(W [t;)

T

where P(ti|ti1 ti.2) and P(w|t;)) are computed from the
corpus.

For example, let C = “usHnyanuiadediuny
311Uw”. This sentence should be segmented as
“YTHN yanu Iad9 awmu 1m1e” which means
“NuSkin company establishes sle gencies’. The
results of our word segmentation algorithm of which

the format is [wa/t]] [Wolty] ... [Wy/t,] are shown as
follows:

I [usHn/t] [ya/t] [Au/ty] [Tadat,)]
[fanu/ts] [ e/t
. [USE/] [Wal t] [Pty [Vt [Aa/t)

[fanulty] [ e/t

The word ya is an unkrown string and t is an
appropriate part-of-speed tag of ead word.

5.2 Generating Candidatesfor Names

From the results of step 5.1, generate dl candidates
for names by the explicit and hidden name heuristics
described in Sedion 3.

For example, the sentence (1) from step 5.1, we

found that the second string, ud, is a non-word.

Therefore we use the method for handling expilicit
and partialy hidden names which is explained in
Sedion 3. Name cadidates are ya, UTHNYa, Yanu,

F
YANUIAAY, UTENYanY and UTENYANUIAAY; where

k, U, 4 and B in Figure 2 are 2, ya, {€, 1340} and {E€,

v, NUIAA}, respedively. Every sentence will be

processd in the same way, and al candidates will be
obtained.

5.3 Tagging Part of Speech

New sentences will be formed by combining
candidates that are obtained from step 52 with the
rest of the words in the original sentence. The part of
speetr of the words in ead sentence will be
resssgned by the trigram tagger. The name
candidates are assumed to be the proper noun. Part of
speedh trigram can be defined as the foll owing;



Let W be a sequence of words w;.w, and T; be a

sequence of part-of-speed tags t;..t,. Find T that
maximizes P(T; | W):

T =argmaxP(T, |W)

K @
= arngax Pt 1t-1,t-2)* P(w [t;)

For example, in sentence (1) from step 5.1, name
candidates are aeaed by the procedure in step 5.2. In
this dep, the new sentences obtained are shown as
foll ows:

. [USEi] [ya/NPRP] [ty [Sadat]
[Aunu/ty] [$1vre/ty]

IV. [WSEmya/NPRP] [fuft)] [Sada/t]
[Aunu/ty] [$1vre/ty)

V. [USEit] [yaRWNPRP] [$adaty]
[Aunu/ty] [$1vre/ty)

VI, [USEN/] [gaﬁu%’m%@/NPRP] [Aanu/ty]
[$md0/ty)

VI, [USEMyadu/NPRP] [5ﬂ§ﬂ/tﬂ [ty
[$md0/ty)

VI .[u’%ﬁ'ngaﬁu%’ﬂ%a/NPRP] [Anu/ty)
[$mie/ts]

where t; is a part-of-speedt tag and NPRPis a proper
noun tag. The sentence (1) can be processed in the
similar manner.

5.4 Predicting by Winnow or RIPPER

Sentences from step 53 are sent to Winnow or
RIPFER to be ranked, and the sentence with the
highest score will be seleded as the answer.

Given the sentences in step 53, Winnow and
RIPFER seled the best-score sentence that is the

Y
sentence (V) (UHM Yadu 9ad3 dwmu 91m1e)
which gvesthe wrred meaning.

6 Preliminary Experiment
6.1 Data

To test the performance of our approach, we seled
sentences which contain names from our 25K-words
corpus to use in benchmark test. Every sentence is
manualy separated into words and their parts of
speedr are manualy tagged by lingusts. The
resulting corpus is divided into two perts; the first
part, about 80% of corpus, is utili zed for training and

the rest is used for testing. To measure the
performance of our approach, we dassfy the test data
into two groups acwrding to the method in Sedion 3.
The first group contains explicit and pertially hidden
names, and the other contains fully hidden names.

6.2 Training M ethodology

Using our tagged corpus, we train Winnow and

Ripper by the foll owing processes.

e Seled sentences that contain mnames from the
COrpus.

e Construct positive examples. The names are
considered as target words. The ntext words
and collocaions of the names are sent to
Winnow and RIPFER.

e Construct negative  eamples. Incorred
candidates of names are nsidered as target
words. The mntext words and coll ocations of the
incorred candidate ae sent to Winnow and
RIPPER. The method for creaing incorred
candidates of names are described below:

-- Separate the sentences into words using
trigram word segmentation algorithm.

-- Generate name candidates excluding the
right candidates.

6.3 Results

Table 2 and Table 3 summarize the results of our
experiment. Table 2 shows the percentage of name
detedion by our method (Dictionary + Trigram)
compared to simple dictionary chedking (Dictionary).
Table 3 shows the predsion and the recdl obtained
by Winnow and RIPPER.

Table 2: Percentage of name detedion

Explicit & Fully Hidden
Partially Hidden Names
Names
Training| Test |Training| Test
Set Set Set Set
Dictionary | 10000 | 10000 0 0
Dictionary | 10000 | 10000| 87.82 | 8325
+ Trigram

Table 3 : Performance of Winnow & RIPPER

Training Set Test Set
Predsion| Recdl |Predsion| Recdl
(%) (%) (%) (%)
10000 | 9402 | 10000 | 9358
10000 | 8668 | 9643 | 8594

Winnow
RIPFER

The percentage of name detedion indicates the
effediveness of the eguations in Figure 2 and Figure
3 for deteding reme cadidates. As down in
Table 2, explicit and partially hidden names can be



completely deteded but fully hidden names can be
deteded about 87% for the training data and 83% for
the test data. The result implies that some fully
hidden names cannot be deteded by the eguation in
Figure 3 as their statistica information (P(w,|t;) and
P(tata1,ta2)) are not lower than the threshold. Note
that simple dictionary chedking cannot deted this
type of names. Based on name candidates generated
by the eguations, the predsion and recdl of Winnow
and RIPFER are shown in Table 3. The results ow
that Winnow and RIPFER are dfedive dgorithms for
identifying remes which achieved high predsion and
recdl. The results a'so show that Winnow is superior
to RIPPER. The predsion on our test corpus obtained
by Winnow is 100%. This perfed result could be
becaise of the small size of our corpus. One
advantage of RIPFER over Winnow is that the
RIPPER rules consume less memory than the
Winnow network does. In our experiment, the number
of RIPFER rules is 27, whereas the number of
spedalists of Winnow network is 112,966,

7 Conclusion

In this paper, we have propcsed an applicaion of
Winnow and RIPFER to named-entity identification.
Winnow and RIPPER both have been shown to be
effedive dgorithms for identifying rames, and
Winnow is superior to RIPFER in this task.
Moreover, the predsion obtained by Winnow
perfedly readies 100%. However, asin Tha words
are written conseautively  without  boundary
delimiters, the acaracy of deteding boundary of
fully hidden names is dill not very high. In future
work, we plan to find more dfedive method to deted
and identify fully hidden names.
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