Feature-based Thai Word Segmentation

Surapant Meknavinf, Paisarn Charoenpornsawat? and Boonserm Kijsirikul
f National Electronics and Computer Technology Center
73/1 Rama VI Road, Bangkok, Thailand
! Department of Computer Engineering, Chulalongkorn University, Thailand

Abstract

Word segmentation is a problem in several
Asian languages that have no explicit word
boundary delimiter, e.g. Chinese, Japanese,
Korean and Thai. We propose to use feature-
based approaches for Thai word segmenta-
tion. A feature can be anything that tests
for specific information in the context around
the word in question, such as context words
and collocations. To automatically extract
such features from a training corpus, we em-
ploy two learning algorithms, namely RIP-
PER and Winnow. Experimental results
show that both algorithms appear to outper-
form the existing Thai word segmentation
methods, especially for context-dependent
strings.

1 Introduction

Word segmentation is a crucial problem in natural
language processing for several Asian languages that
have no explicit word boundary delimiter, e.g. Chi-
nese, Japanese, Korean and Thai. The problem can
be formally defined as finding

argmax P(W;|C) = arg max P(W;)P(C|W;)/P(C)
(1)

where C' = c¢jcs...¢,, is an input character string,
and W; = wyws...w, is a possible word segmenta-
tion. Since P(C|W;) is equal to 1 and P(C) is a fixed
constant for every candidate, Equation (1) can be sim-
plified to

Considering Thai language, the state-of-the-art
method to resolve word boundary ambiguity is based
on using statistics of part-of-speech N-gram and word
occurrences to find the most probable word/tag se-
quence of a given sentence. The method enjoys better

performance than the more naive methods, e.g. maxi-
mal matching. However, since it considers only coarse
information of parts of speech in a fix restricted range
of context, some important information may be lost.
Using word N-gram could recover more fine-grained
information of specific word associations but requires
an enormous training corpus to estimate all param-
eters accurately and consumes vast space resources
to store the huge word N-gram table. In addition,
another weakness of these N-gram approaches is that
they do not take unordered long distance specific word
collocations into account.

To overcome the disadvantages of the above men-
tioned methods, we propose a feature-based approach
to the problem of Thai word segmentation. Although
feature-based approaches have already been applied in
several fields of natural language processing, they have
not been considered on word segmentation. A feature
can be anything that tests for specific information in
the context around the target word sequence, such as
context words and collocations. The idea is to learn
several sources of features that characterize the con-
texts in which each word tends to occur. Then we can
combine those features to disambiguate segmentation
ambiguity by selecting the segmentation that yields
the most probable sequence of words for a given con-
text. The new problem is then how to select and com-
bine various kinds of features. Yarowsky (Yarowsky,
1994) proposed decision lists as a way to pool several
types of features, and to solve a target problem by
applying the single strongest feature, whatever type
it is. Golding (Golding, 1995) proposed a Bayesian
hybrid method to take into account all available evi-
dence, instead of only the strongest one. The method
was applied to the task of context-sensitive spelling
correction and was reported to be superior to decision
lists. Later, Golding and Roth (Golding and Roth,
1996) applied Winnow algorithm in the same task and
found that the algorithm performs comparably to the
Bayesian hybrid method when using pruned feature
sets, and is better when using unpruned sets or unfa-
miliar test sets.

In this paper, we investigate two machine learn-
ing algorithms: RIPPER and Winnow. We then
construct our systems based on both algorithms and
evaluate them by comparing with other existing ap-
proaches to Thai word segmentation.

2 Previous Approaches

2.1 Longest Matching (greedy matching)

Most of the early works in Thai word segmentation
are based on longest matching method (Poowarawan,
1986; Rarunrom, 1991). The method scans an in-
put sentence from left to right, and select the longest
match with a dictionary entry at each point. In case
that the selected match cannot lead the algorithm to
find the rest of words in the sentence, the algorithm
will backtrack to find the next longest one and con-
tinue finding the rest and so on. It is obvious that this
algorithm will fail to find the correct segmentation in
many cases because of its greedy characteristic. For
example,

lumand (go to see the queen)

will be incorrectly segmented as: lu(go) ww (carry)
w(deviate) &(color), while the correct one that can-
not be found by the algorithm is: 'liu(go) w(see)
awnd (queen).

2.2 Mazximal Matching

The maximal matching algorithm was proposed to
solve the problem of the longest matching algorithm
described above (Sornlertlamvanich, 1993). This al-
gorithm first generates all possible segmentations for
a sentence and then selects the one that contains the
fewest words, which can be done efficiently by using
dynamic programming technique. Because the algo-
rithm actually finds real maximal matching instead of
using local greedy heuristics to guess, it always out-
performs the longest matching method. Nevertheless,
when the alternatives have the same number of words,
the algorithm cannot determine the best candidate
and some other heuristics have to be applied. The
heuristic often used is again the greedy one: to prefer
the longest matching at each point.

lumsund = ld(go) ww (carry) w(deviate) &(color) |
lu(go) m(see) mwd(queen)
— lu(go) m(see) mwd(queen)
anax = en(expose) an(wind) |
a1(eye) nan(round)
— on (expose) ax(wind)
gwwan = au(vehicle) an(breast) |
#n(medicine) uan(oversea)
— gu(vehicle) an(breast)

2.3 Probabilistic word segmentation

Recently, there has been increasing interest in apply-
ing statistical techniques to natural language process-
ing. The application of the techniques to Thai word
segmentation was first conducted by (Pornprasertkul,
1994), using a Viterbi-based approach to employ sta-
tistical information derived from grammatical tags.
Later, (Kawtrakul et al., 1995) and (Meknavin, 1995)
use variants of word trigram model with part-of-
speech trigram model to compute the most likely seg-
mentation and tag sequence at the same time. To
compare probabilistic word segmentation with other
approaches in our experiments, we use the following
model. Let C' = cica...cp be the input character
string, W; = wyws ... w, be a possible word segmen-
tation, and T; = t1t2...t, be a sequence of n tags.
From equation (2), the problem of word segmentation
is to find W that maximizes P(W;). Taking part-of-
speech tags into account, we can compute P(W;) in
the following fashion:

P(W;)

> P(W;i,T;)
> H P(ti|ti-1ti—2) * P(wilt;) (3)

where P(t;|t;—1t;—2) and P(w;|t;) can be estimated by
computing their relative frequencies in a corpus and
smoothed by interpolated estimation. However, one
may argue that when human thinks of a sentence, only
one sense is communicated. In that case, the most
likely segmentation should be the one with maximum
joint probability of word sequence and tag sequence
P(W,;,T;) instead of just P(W;). We have tried both
measures and found that there is no significant differ-
ence between them.

3 Segmentation Ambiguity

Having analyzed the performance of previous ap-
proaches, we found that one of the most influential fac-
tors to their performance is context dependency of am-
biguous strings. We can roughly categorize segmen-
tation ambiguity into two groups according to their
levels of context dependency as follows:

3.1 Context independent segmentation
ambiguity
This kind of ambiguity can be resolved almost de-
terministically by the text itself; there is no need to
consult the context in a wider range. This is because,
though there are many possible segmentations, there
is only one plausible segmentation while other alter-
natives are very unlikely to occur. Therefore, one can
say that it is not really ambiguous. However, sim-
ple algorithms such as the maximal matching may

discriminate this kind of ambiguous text incorrectly.
Probabilistic word segmentation can handle this kind
of ambiguity successfully.

*

AWUUUAN DUU Uan / W UK an

*(tradition) (out) / (hair) (on) (breast)
wanaefn *wan a1 Au / we nanefiu
*(to coat)(omen)(night)/(enough)(night)

uana

van 21 / *ua am

(to tell)(that) / *(mad)(than)
vanoy *aaw oy / 28 weu

*(Khmer)(to scent) / (to ask for)(to give)
gungn *aun i / o nqw

*(father)(low) / (people)(group)

3.2 Context dependent segmentation
ambiguity
This kind of ambiguity needs surrounding context to
decide which segmentation is the most probable one
because alternatives are all possible. Although it oc-
curs less than the context independent one, it is more
difficult to disambiguate and causes more errors.

o / 6 aeng
(example) / (body)(like)
#isn A/ @ 5
(sweetheart) / (that)(to love)

@089

MIMI NIMI3 / M9 M3

(formal) / (way)(work)
N']ﬂ’xl.'] HIN ’JI’] / {1 ﬂ'(!l']

(many)(that) / (come)((more) than)
@INAN AN AN / a1 naw

(to expose)(wind) / (eye)(round)

4 Feature-based Approaches

A number of feature-based methods have been tried
for several disambiguation tasks in natural language
processing, including decision lists (Yarowsky, 1994),
Bayesian hybrids (Golding, 1995) and Winnow (Gold-
ing and Roth, 1996). These methods are superior to
the past methods in that they can combine evidence
from various sources in disambiguation. To apply the
methods in our task, we treat word segmentation as
a task of word sequence disambiguation. Given a
sentence S, we find all of its possible segmentations
S51,82,...,8,, where S; = w;;w;s ... w;m. The task
is to decide from the context which one was actually
intended. Instead of using only one type of syntactic
evidence as in N-gram approaches, we can employ the
synergy of several types of features. Following previ-
ous works (Golding, 1995), we have tried two types
of features: contexrt words and collocations. Context-
word features is used to test for the presence of a par-
ticular word within +/- K words of the target word,

and collocations test for a pattern of up to L con-
tiguous words and/or part-of-speech tags around the
target word. To automatically extract from feature
space the discriminative features and to combine them
in disambiguation, we have investigated two machine
learning algorithms; namely RIPPER and Winnow.

4.1 Learning Algorithms
4.1.1 RIPPER

RIPPER is a propositional rule learning algorithm
that constructs a ruleset which accurately classifies
the training data. A rule in the constructed ruleset is
represented in the form of a conjunction of conditions:

if Ty and T and ... T,, then class C,.

T, and T3 and . .. Ty, is called the body of the rule. C,
is a target class to be learned; it can be a positive or
negative class in case of learning one class problem,
or any class in case of learning multiple classes. A
condition Tj tests for a particular value of an attribute,
and it takes one of four forms: A, = v, A, > 0,A. <0
and v € A,, where A, is a nominal attribute and v is a
legal value for A,,; or A, is a continuous variable and 6
is some value for A, that occurs in the training data;
or A is a set-value attribute and v is a value that
is an element of A,. In fact, a condition can include
negation. A set-valued attribute is an attribute whose
value is a set of string. The primitive tests on a set-
valued attribute A, are of the form “v € A,”.

When constructing a rule, RIPPER finds the test
that maximizes information gain for a set of examples
S efficiently, making only a single pass over S for each
attribute. All symbols v that appear as elements of
attribute A for some training examples are considered
by RIPPER. One of the most powerful ability of RIP-
PER is to learn the set-valued attributes, and this
ability is one of the main reasons for choosing RIP-
PER for our task. Using the set-valued attributes,
examples can be represented in a more compact form.
In case of one class concept, we provide training data
set composed of positive and negative examples of the
concept. Given the training set, RIPPER first par-
titions the data into two sets, a “growing set” and
“pruning set”, and then repeatedly constructs one rule
at a time that classifies data in the growing set, until
all positive examples are covered. A rule is initial-
ized with an empty body and then built by adding
conditions to the body until no negative example is
covered. After a rule is constructed, the rule is imme-
diately pruned. To prune a rule, RIPPER deletes any
final sequence of conditions from the rule according
to some heuristic (Cohen, 1995). The goal of pruning
a rule, which may overfit the growing set when the
set contains noisy data, is to improve error rates on
unseen data in the pruning set. The algorithm can

also handle multiple classes with slight modification
(Cohen, 1995).

4.1.2 Winnow

The Winnow algorithm used in our experiment is
the algorithm described in (Blum, 1997). We will
briefly explain the algorithm here. Winnow is a net-
work that is composed of several nodes connected to
a target node (Littlestone, 1988; Golding and Roth,
1996). Each node called specialist looks at a partic-
ular value of an attribute of the target concept, and
will vote for a value of the target concept based on
its specialty; i.e., based on a value of the attribute
it examines. The global algorithm will then combine
the votes from all specialists, and make a prediction
based on weighted-majority votes. The pair of (at-
tribute=value) that a specialist examines is a candi-
date of features we are trying to extract.

In our experiment, we have each specialist examine
one or two attributes. For example, a specialist may
predict the value of the target concept by checking for
(attributel=valuel) and (attribute2=value2). A spe-
cialist only makes a prediction if its condition is true
(in case of one attribute), or both of its conditions are
true (in case of two attributes), and in that case it pre-
dicts the most popular outcome out of the last & times
it had the chance to predict. In fact, we may have each
specialist examine more than two attributes, but for
the sake of simplification of preliminary experiment,
let us assume that two attributes for each specialist
are enough to learn the target concept.

The global algorithm updates the weight of any spe-
cialist based on the vote of that specialist. The weight
of any specialist is initialized to 1. In case that the
global algorithm predicts incorrectly, the weight of the
specialist that predicts incorrectly is halved and the
weight of the specialist that predicts correctly is mul-
tiplied by 3/2. The weight of a specialist is halved
when it makes a mistake even if the global algorithm
predicts correctly. This weight updating method is
the same as the one used in (Blum, 1997). A special-
ist may choose to abstain instead of giving a predic-
tion on any given example in case that it did not see
the same value of an attribute in the example. The
advantages of Winnow, which made us decide to use
for our task, are that (1) it runs fast because of its
incremental algorithm (2) it is not sensitive to extra
irrelevant features (Littlestone, 1988).

4.2 Word Segmentation System :
FEATURE-1 €& FEATURE-2

4.2.1 FEATURE-1

One straightforward way of handling segmentation
ambiguities is to enumerate all ambiguous strings
found in the training corpus and register them as spe-
cial entries in our dictionary. For each ambiguity, we

find its confusion set by listing all of its possible seg-
mentations. For instance, C' = {sn 21, a1 nm} is the
confusion set of the string “ana1”. Then we learn the
features that can discriminate each segmentation in
the set by RIPPER and Winnow based on our train-
ing set. In a context, the disambiguation process will
determine based on the obtained features which seg-
mentation in the confusion set is most probable. Ex-
amples of features for the confusion set {x1n 1, 11 n}
include:

(1) snm number
(2) wa within -10 words

where (1) is a collocation that tends to imply sn na,
and (2) is a context-word that tends to imply snn 1. In
general, this method is very powerful for the training
set. However, problems occur when the string we want
to disambiguate in the test set is unseen and cannot be
found from the dictionary. In such cases, FEATURE-
1 just relies on the performance of maximal matching.

4.2.2 FEATURE-2

FEATURE-1 tries to find all ambiguous word se-
quences and learns features that can classify only
elements in confusion sets. Instead of doing that,
FEATURE-2 generates all possible prefiz sets from a
word list, and then learns features that classify words
in prefix sets. A prefix set is a set of words, where if
a and b are any two words in the set, then either a is
a prefix of b or b is a prefix of a. An instance of prefix
sets is {1, wn, wnwne}. Certainly {an, sn} is another
prefix set which we must consider too. According to a
prefix set such as {#n, sn, snune}, training examples
are then collected from the training corpus, and used
to extract features that discriminate words in the set.
The extracted features are then employed to decide
the way of segmenting a string; i.e., a1nune should be
segmented to 31 nug, Or ¥N WY Or WINNE.

Models learned by FEATURE-2 are more general
than those of FEATURE-1 as they are able to be
used for handling unseen ambiguous strings more ef-
fectively. For instance, assume that a string winsas,
which can be segmented in 2 ways as %1 nsas and w1
5849, does not appear in our training set. However,
the model for the prefix set {sn, »n} can be used
to segment the string. FEATURE-1 is slightly bet-
ter than FEATURE-2 in handling strings of confusion
sets found in the training set.

4.3 Applying RIPPER and Winnow in Thai
Word Segmentation

We construct our word segmentation systems,
FEATURE-1 and FEATURE-2, based on RIPPER
and Winnow algorithms as shown in Figure 1. Our
systems are integration of maximal matching + POS
tagger, RIPPER and Winnow algorithms. The train-

Trai ning Set Sent ence

/\ Maxi mal Mat chi ng

Ri pper W nnow +
l l POS Tagger
Rul eSet Net wor k l
| N-Best Segnentation

Segnent ed Sent ence

Figure 1: Our word segmentation system

ing set consists of raw sentences together with the cor-
responding segmented and tagged sentences. In the
training mode, a training set composed of segmented
and tagged sentences is passed to RIPPER and Win-
now algorithms to learn a ruleset and a network, re-
spectively by using the algorithms described above.
After a ruleset or a network is learned, a test set is
fed to the system for evaluating the performance.

For each sentence from the test set, N-best seg-
mented sentences are generated. Among these sen-
tences, the sentence that mostly matches the ruleset
or the network is then selected as the answer. We will
describe how to train each algorithm below.

Each training example consists of ten attributes;
four attributes for the first and second words before
and after the target word, four attributes for the cor-
responding part-of-speech tags, and two attributes for
two sets of ten words before and after the target word.
To train RIPPER, one might use positive and nega-
tive examples for constructing a definition for a target
word. In that case, we must generate both positive
and negative examples, and construct rulesets sepa-
rately for all words. However, the training task will
become difficult. As RIPPER can learn a ruleset from
training set with multiple classes of positive examples,
we then train the algorithm only with positive exam-
ples of all target words in a confusion set or a prefix
set. This makes the training task easier. For one con-
fusion set or prefix set, we will have one ruleset for
classifying the words in the set.

For Winnow, we train the algorithms basically by
the same examples as in RIPPER, as Winnow can also
learn multiple class examples. However, an example
which contains the set-value attributes cannot be di-
rectly used because Winnow does not accept set-value
attributes. Therefore, we first expand each example
into several examples each of which includes only one

word in the set-value attributes.

5 Preliminary Results

To test the performance of the different approaches,
we select a set of ambiguous strings to use in the
benchmark tests. To see the effect of context depen-
dency to the performance, we group the strings into
two groups according to their context dependency.

To run experiments, each paragraph from our
25,000 sentence corpus including these ambiguous
strings is separated into sentences and then into
words. Each word is assigned an appropriate part of
speech manually by linguists. For simplicity, we as-
sume that words in each sentence other than the tar-
get word are unambiguous. Therefore, each sentence
has only one ambiguous string to disambiguate. The
resulting corpus is then separated into two parts; the
first part about 80 % of the corpus is used as a train-
ing set and the rest is used as a test set. Based on the
prepared corpus, experiments were conducted to com-
pare our methods with others. The performance was
measured by the percentage of the number of correctly
segmented sentences to the total number of sentences.
Note that this is different from other measures which
use some kind of percentage of all correctly segmented
words to all words. For FEATURE-1 and FEATURE-
2, we measured the performance on both the training
set and the test set to compare the effectiveness of
each method on seen data with thai on unseen data.
For the maximal matching and trigram methods, ex-
periments were also done on both sets, but only to
see the performance on different data. The results are
shown in Table 1.

The experimental results reveal that, compared
to itself, each algorithm gives higher accuracy on
the problem of context independent ambiguity than
that of context dependent one; i.e., context indepen-
dent words are easier to handle than context depen-
dent words. In general, Winnow obtains the highest
accuracy, followed by RIPPER, Trigram and max-
imal matching. Comparing between FEATURE-1
and FEATURE-2, FEATURE-1 (both FEATURE-1-
RIPPER and FEATURE-1-Winnow) disambiguates
words more accurately than FEATURE-2 in almost
every case. While this demonstrates that FEATURE-
1 does better for a fixed set of trained ambiguous
strings, we believe FEATURE-2 is better for unseen
strings by virtue of its nature. To support this claim,
we made another experiment on a set of a small num-
ber of unseen ambiguous strings. According to the
experiment, we found that FEATURE-2 surpassed
FEATURE-1 with varied margins for every string.
Therefore, if we can construct the complete confusion
sets for all or most ambiguous strings, FEATURE-
1 may be our choice for the task. If this is not the

Context Independent Context Dependent
Training Set (%) | Test Set (%) | Training Set (%) | Test Set (%)

Maximal Matching 79.74 78.85 52.10 53.52
Trigram 99.81 99.77 73.30 73.15
FEATURE-1-RIPPER 99.94 99.74 96.98 86.60
FEATURE-1-Winnow 100.00 99.70 100.00 95.33
FEATURE-2-RIPPER 98.52 91.27 93.28 89.00
FEATURE-2-Winnow 99.97 93.82 100.00 92.10

Table 1: The result of comparing different approaches

case, however, a suitable model may be the combi-
nation in which FEATURE-1 would be used when
the ambiguous strings are in some confusion sets, and
FEATURE-2 would be used otherwise. Which one is
better in practice is what we intend to find out in our
future works.

6 Conclusion

In this paper, we have successfully applied two learn-
ing algorithms, i.e., RIPPER and Winnow, to the task
of Thai word segmentation. RIPPER and Winnow
have shown their ablility to construct rulesets or net-
works that extract the features in the data effectively.
The learned features, which are context words and
collocations, can capture useful information that can-
not be found by traditional word segmentation model
such as trigram, and make the task of word seg-
mentation more accurate. The experimental results
show that RIPPER and Winnow outperform trigram
model, and that Winnow is superior to RIPPER. Our
future works include in-depth investigation of feature-
based approaches and application of these to the tasks
of Thai part-of-speech tagging and spell checking.

References

1997. Empirial Support for Winnow
and Weighted-Majority Algorithm: Results on a
Calendar Scheduling Domain.
26.

Avrim Blum.

Machine Learning,

William W. Cohen. 1995. Fast Effective Rule Induc-
In Proceedings of the Twelfth International
Conference on Machine Learning. Morgan Kauf-

tion.

mann.

Andrew R. Golding and Dan Roth. 1996. Applying
Winnow to Context-Sensitive Spelling Correction.
In Proceedings of the Thirteenth International Con-
ference on Machine Learning.

Andrew R. Golding. 1995. A Bayesian Hybrid
Method for Context-sensitive Spelling Correction.

In Proceedings of the Third Workshop on Very Large
Corpora.

Asanee Kawtrakul, Supapas Kumtanode, Thitima
Jamjanya, and Chanvit Jewriyavech. 1995. A Lex-
ibase Model for Writing Production Assistant Sys-
tem. In Proceedings of the Symposium on Natural
Language Processing in Thailand ’95.

Nick Littlestone. 1988. Learning Quickly when Irrele-
vant Attributes Abound: A New Linear-Threshold
Algorithm. Machine Learning, 2.

Surapant Meknavin. 1995. Towards 99.99% Accuracy
of Thai Word Segmentation. Oral Presentation at
the Symposium on Natural Language Processing in
Thailand ’95.

Yuen Poowarawan. 1986. Dictionary-based Thai Syl-
lable Separation. In Proceedings of the Ninth FElec-
tronics Engineering Conference.

Ampai Pornprasertkul. 1994. Thai Syntactic Analy-
sis. Ph.D. thesis, Asian Institute of Technology.

1991. Dictionary-based Thai
Word Separation. Senior Project Report.

Sampan Rarunrom.

Virach Sornlertlamvanich. 1993. Word Segmentation
for Thai in a Machine Translation System (in Thai).

David Yarowsky. 1994. Decision Lists for Lexical Am-
biguity Resolution. In Proceedings of 32nd Annual
Meeting of the Association for Computational Lin-
guistics.

