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Abstract

For assembly tasks parts often have to be oriented before
they can be put in an assembly. The results presented in this
paper are a component of the automated design of parts
orienting devices. The focus is on orienting parts with
minimal sensing and manipulation. We present a new ap-
proach to parts orienting through the manipulation of pose
distributions. Through dynamic simulation we can deter-
mine the pose distribution for an object being dropped from
an arbitrary height on an arbitrary surface. By varying the
drop height and the shape of the support surface we can
find the initial conditions that will result in a pose distribu-
tion with minimal entropy. We are trying to uniquely orient
a part with high probability just by varying the initial con-
ditions. We will derive a condition on the pose and velocity
of an object in contact with a sloped surface that will allow
us to quickly determine the final resting configuration of the
object. This condition can then be used to quickly compute
the pose distribution. We also show simulation and experi-
mental results that confirm that our dynamic simulator can
be used to find the true pose distribution of an object.

1 Introduction

In our research we are trying to develop strategies to orient
three-dimensional parts with minimal sensing and manip-
ulation. That is, we would like to bring a part from an un-
known position and orientation to a known orientation (but
possibly unknown position) with minimal means. In gen-
eral, it is not possible to orient a part completely without
sensors, but it is sufficient if a particular orienting strategy
can bring a part into one particular orientation with high
probability. The sensing is then reduced to a binary de-
cision: a sensor only has to detect whether the part is in
the right orientation or not. If not, the part is fed back to
the parts orienting device. Assuming the orienting strat-
egy succeeds with high probability, on average it takes just
a few tries to orient the part. An alternative view of this
type of manipulation is to consider it as manipulation of the
pose distribution. The goal then is to find the pose distri-
bution with minimal entropy, thereby maximally reducing
uncertainty.
Suppose a polyhedron is initially in a random configura-
tion and the only force acting on it is gravity. We can then
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compute an approximation of the probability distribution
function (pdf) of resting configurations. This approxima-
tion will not only depend on the geometry and mass distri-
bution of the polyhedron, but also on the physical model
(quasistatic vs. dynamic) and the coefficients of friction
and restitution. To orient the part, a robot arm with a cam-
era could detect the current orientation, pick up the part
and then put it in the desired orientation. This approach
can be costly if high throughput is necessary; a robot can
typically orient only one part at a time and might have to re-
grip to get the part from initial to desired configuration. A
more common approach for small parts is to have a partic-
ular (moving) surface for a part that can orient many parts
at the same time. Examples are SONY’s APOS system
(Hitakawa, 1988), vibratory bowls and conveyor belts with
obstacles that align the parts (Akella et al., 1997; Peshkin
and Sanderson, 1988; Wiegley et al., 1996). In the APOS
system parts are fed over a vibrating tray with extrusions
such that parts will either get stuck in only one orienta-
tion, or otherwise are fed over the tray again. Vibratory
bowls let parts vibrate to the top of the bowl. In the bowl
are obstacles that align the parts in a certain way. Con-
veyor belts can serve a similar function: parts are put on
the belt and are aligned by obstacles (or gates) along the
way. The design of APOS trays, vibratory bowls and ob-
stacles on conveyor belts is currently still done by hand by
experienced engineers who intuit what could work. Still, it
typically takes at least a week to design a good APOS tray
or vibratory bowl.
In this article we will discuss briefly the use of dynamic
simulation for the design of support surfaces that reduce
the uncertainty of a part’s resting configuration1. As the
support surface is changed, the pdf of resting configura-
tions will change as well. The pdf will also vary with the
initial drop position above the surface. The following fig-
ure and paragraph illustrate the basic idea:
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Figure 1: A part is dropped on a surface.

A part is released from a certain height and relative hori-
zontal position with respect to the bowl. The only forces
acting on the part are gravity and friction. We assume
the bowl doesn’t move. We can compute the final rest-

1For more details seeMoll and Erdmann(2000).



ing configuration for all possible initial orientations. This
will give us the pdf of stable poses. The goal is to find
the drop height, relative position and bowl shape that will
maximally reduce uncertainty. In section3 we will present
some results for this example.
In section4 we will explain the notion of capture regions
and introduce an extension and relaxation of this notion in
the form of so-called quasi-capture regions. These quasi-
capture regions allow for fast computation of the pose dis-
tribution. In section5 we will present our simulation and
experimental results. Finally, in section6 we will discuss
the results presented in this paper. But first we will give an
overview of related work.

2 Related Work

2.1 Parts Feeding and Orienting
One of the most comprehensive works on the design of
parts feeding and assembly design is (Boothroyd et al.,
1982), which describes vibratory bowls as well as non-
vibratory parts feeders in detail. The APOS parts feeding
system is described byHitakawa(1988). It is part of the
automatic assembly system called SMART (Sony Multi-
Assembly Robot Technology). One of the strong points
of the APOS system is its flexibility: by replacing the tray
and fine-tuning the vibrating motion, other parts can be ori-
ented.How these trays are designed andhowto change the
motion is not clear. Automating the design of these trays
would increase the flexibility even further.
Berkowitz and Canny(1996, 1997) use dynamic sim-
ulation to design a sequence of gates for a vibratory
bowl. They represent the effects produced by the gates
as state transitions in a non-deterministic state automaton.
The dynamics are simulated with Mirtich’s impulse-based
dynamic simulator,Impulse(Mirtich and Canny, 1995).
Christiansen et al.(1996) use genetic algorithms to design
a near-optimal sequence of gates for a given part. Optimal-
ity is defined in terms of throughput. Here, the behavior of
each gate is assumed to be known. So, in a sense (Chris-
tiansen et al., 1996) is complementary to (Berkowitz and
Canny, 1997): the latter focuses on modeling the behav-
ior of gates, the former finds an optimal sequence of gates
given their behavior.
Goldberg(1993) showed that it is possible to orient polyg-
onal parts with a frictionless parallel-jaw gripper with-
out sensors.Goldbergconjectured andChen and Ierardi
(1995) proved that for everyn-sided polygonal part, a se-
quence of ‘squeezes’ can be computed inO(n2) time that
will orient it up to symmetry. The length of such a se-
quence isO(n). These results might have analogues in
three dimensions.Marigo et al.(1997) showed how to ori-
ent and position a polyhedral part by rolling it between the
two hands of a parallel-jaw gripper. Here, however, infinite
friction is assumed, whereas Goldberg assumed no friction.
In (Rao et al., 1995) an algorithm is described to orient
polyhedral parts using so-called pivot grasps. A part is

grasped with two hard finger contacts and is then free to
rotate around the axis formed by the contacts. Their al-
gorithm computes anm×m matrix of pivot grasps, where
m is the number of stable configurations and each entry
corresponds to a transition from one stable configuration
to another. In general, there will be some null entries in
this matrix. In other words, it is not always possible to go
from any stable configuration to any other. A vision sys-
tem is used to determine a part’s location and orientation.
In (Gudmundsson and Goldberg, 1997) a similar system is
described, where a robot arm picks up parts that pass on
a conveyor belt, but here the focus is on tuning the speed
of the conveyor belt.Gudmundsson and Goldberganalyt-
ically show how to maximize throughput as a function of
the speed of the conveyor belt.
Erdmann and Mason(1988) developed a tray-tilting sen-
sorless manipulator that can orient planar parts in the pres-
ence of friction. If it isn’t possible to bring a part into a
unique orientation, the planner tries to minimize the num-
ber of final orientations. In (Erdmann et al., 1993) it is
shown how (with some simplifying assumptions) three-
dimensional parts can be oriented using a tray-tilting ma-
nipulator. In particular, for polyhedral parts withn faces
a sequence of ‘tilts’ of lengthO(n) can be found inO(n3)
time. Zumel(1997) used a variation of the tray tilting idea
to orient planar parts.Zumelused two actuated arms con-
nected at a hinge to tilt parts from one arm to the other.
The stable poses of the part at different angles were pre-
computed. The planner then found a sequence of joint an-
gle pairs for the two arms that would orient the part.
In recent years much work has been done on programmable
force fields to orient parts (Böhringer et al., 1997, 1999;
Kavraki, 1997). The idea is that some kind of force ‘field’
(implemented using e.g. MEMS actuator arrays) can be
used to push the part in a certain orientation.Kavraki
(1997) presented a vector field that induced two stable con-
figurations for most parts. B̈ohringer et al. used Goldberg’s
algorithm (1993) to define a sequence of ‘squeeze fields’
to orient a part. They also gave an example of how pro-
grammable vector fields can be used to simultaneously sort
different parts and orient them.Luntz et al.(1997) imple-
mented a parcel transport and manipulation system using a
distributed actuator array borrowing ideas from Böhringer
et al.

2.2 Stable Poses

Quasistatic dynamics is often assumed when computing
the stable poses of an object. Furthermore, usually it is
assumed that the part is in contact with a flat surface and
is initially at rest.Boothroyd et al.(1972) were among the
first to analyze this problem. Using potential energy argu-
ments and some simplifying assumptions they were able to
get good approximations of the pdf’s of some parts. They
also introduced a method to get a static solution for the pdf:
the probability of coming to rest on a face is simply pro-
portional to the area of the face’s projection on a sphere
centered at the center of mass. The probability of an unsta-



ble face is added to the probability of the face onto which it
rolls. An O(n2) algorithm forn-sided polyhedrons, based
on this idea, was implemented byWiegley et al.(1992).
Mirtich et al.(1996) improved this method by approximat-
ing some of the dynamic effects. In particular, they com-
puted the area of the intersection of a face with a unit-area
circle centered around the center of mass projected on the
plane defined by that face. This was then taken as a mea-
sure of stability for that face.
Kriegman(1997) introduced the notion of acapture region:
a region in configuration space such that any initial config-
uration in that region will converge to one final configu-
ration. He also described an algorithm based on Morse
theory that computes the maximal capture regions of an
object. Note that this work doesn’t assume quasistatic dy-
namics; as long as the part is initially at rest and in contact,
and the dynamics of the system are dissipative, the capture
regions will be correct. The capture regions will in general
not cover the entire configuration space.

2.3 Collision and Contact Analysis

Computing reaction forces for an object in contact with a
surface is far from trivial. In fact,Baraff (1993) showed
that deciding whether a configuration with dynamic fric-
tion is consistent isNP-complete (in terms of the number
of contact points).Erdmann(1994) introduces the general-
ized friction cone, which embeds the force constraints that
define the Coulomb friction cone into the part’s configura-
tion space. The possible motions have a simple geometric
interpretation with this representation. Another geometric
approach to analyze multiple frictional contacts was pro-
posed byBrost and Mason(1989). Their approach is lim-
ited to two dimensions (however, the configuration space
is three-dimensional). It represents forces in a dual space
as points. A friction cone is then reduced to a line segment
in the dual space, and the dual of multiple friction cones
is a convex polygon.Trinkle and Zeng(1995) developed a
model to predict the quasistatic motion of a planar part in
multiple contact. Their analysis yields inequalities that de-
fine regions in the space of friction coefficients for which
a particular contact mode (i.e., sliding, rolling, separating
or a combination thereof) is feasible. Related to this is the
work of Wang and Mason(1987). They introduce an im-
pact space, defined as all combinations of orientation and
contact motion direction. Within this space one can ana-
lytically identify the areas that correspond to the different
contact modes.
For rigid body collisions several models have been pro-
posed. Many of these models are either too restrictive
(e.g., Routh’s model (1897) constrains the collision im-
pulse too much) or allow physically impossible collisions
(e.g., Whittaker’s model (1944) can predict arbitrarily high
increases of system kinetic energy). Recently,Chatterjee
and Ruina(1998) proposed a new collision rule, which
avoids many of these problems. Chatterjee introduced a
new collision parameter (besides the coefficients of fric-
tion and restitution): the coefficient oftangentialrestitu-

tion. With this extra parameter a large part of the allowable
collision impulse space can be accounted for, and at the
same time this collision rule restricts the predicted colli-
sion impulse to the allowable part of impulse space. This
is the collision rule we will use.
Instead of having algebraic laws, one could also try to
model object interactions during impact. This approach
is, for instance, taken byBhatt and Koechling(1995a,b),
who modeled impacts as a flow problem. While this might
lead to more accurate predictions, it is obviously computa-
tionally more expensive. Also, in order to get a good ap-
proximation of the pdf of resting configurations, this level
of accuracy might not be required. On the other hand, it is
also possible to combine the effects of multiple collisions
that happen almost instantaneously.Goyal et al.(1998a,b)
studied these “clattering” motions and derived the equa-
tions of motion.
Given a collision model and the equations of motion, one
can simulate the motion of a part. Most of the complexity
in dynamic simulation is due to collision detection. Using a
particular quaternion representation for orientation,Canny
(1986) reduces the problem of finding the distance between
polyhedrons to finding the distance between a point and a
number of hyperplanes in 7 dimensions.Lin and Canny
(1991) designed a fast algorithm to incrementally find the
closest point between two convex polyhedra. In cases
where there are a large number of collisions or with contact
modes that change frequently one can simulate the dynam-
ics using so-called impulse-based simulation (Mirtich and
Canny, 1995). However, there are limits to what systems
one can simulate. Under certain conditions the dynamics
become chaotic (Bühler and Koditschek, 1990; Feldberg
et al., 1990; Kechen, 1990). We are mostly interested in
systems that arenot chaotic, but where the dynamics can
not be modeled with a quasistatic approximation.

2.4 Shape Design

The shape of an object and its environment impose con-
straints on the possible motions of an object.Caine(1993)
presented a method to visualize these motion constraints,
which can be useful in the design phase of both part and
manipulator. In (Krishnasamy, 1996) the mechanics of en-
trapment are analyzed. That is,Krishnasamydiscusses
conditions for a part to “get trapped” and “stay trapped”
in an extrusion in the context of the APOS parts feeder.
In (Lynch et al., 1998) the optimal manipulator shape and
motion are determined for a particular part. The problem
here was not to orient the part, but to perform a certain jug-
gler’s skill (the “butterfly”). With a suitable parametriza-
tion of the shape and motion of the manipulator, a solution
was found for a disk-shaped part that satisfied their mo-
tion constraints. Examples of these constraints are: (1) the
part cannot break contact, and (2) the part must always be
rolling. Although the analysis focuses mainly on the jug-
gling task, it shows that one can simulate and optimize dy-
namic manipulation tasks using a suitable parametrization
of manipulator (or surface) shape and motion.



Stable Poses

Entropy
quasistatic approximation 0.20 0.13 0.16 0.21 0.14 0.16 1.78
dynamic, flat surface, drop height ish = 0 0.18 0.16 0.14 0.34 0.05 0.13 1.66
dynamic, bowl shape isy = 0.24x2, h = 0.28,
initial hor. pos.x0 =−0.41

0.24 0.03 0.03 0.50 0.08 0.15 1.35

Table 1: Probability distribution function of stable poses for two surfaces. The initial velocity is zero and the initial rotation
is uniformly random.

3 Example

Let us continue the example of section1 to illustrate the
general idea before we go into more detail. Table1 shows
three different pose distributions. Each stable pose corre-
sponds to a set of contact points (marked by the black dots
in the table). For an arbitrarily curved support surface the
stable poses do not necessarily correspond to edges of the
convex hull of the part. We therefore define a stable pose
as a set of contact points. This means that any two poses
with the same set of contact points are considered to be the
same as far as the pose distribution is concerned. In our
example the support surface is a parabolay = ax2 with pa-
rametera. Other parameters are the drop height,h, and the
initial horizontal position of the drop location,x0.
The first row in the table shows the pdf assuming qua-
sistatic dynamics. In this case the surface is flat and the
part is released in contact with the surface. The second
row shows how the pdf changes if we model the dynamics.
The initial conditions are the same as for the quasistatic
case, yet the pdf is significantly different. The third row
shows the pdf for the optimal values fora, h andx0.
The objective function over which we optimize is the
entropy of the pose distribution. Ifp1, . . . , pn are the
probabilities of then stable poses, then the entropy is
−∑n

i=1 pi log pi. This function has two properties that make
it a good objective function: it reaches its global minimum
whenever one of thepi is 1, and its maximum for a uni-
form distribution. By searching the parameter space we
can find thea, h andx0 that minimize the entropy. In the
third row of the table the pose distribution is shown with
minimal entropy2. The table makes it clear that even with
a very simple surface we can reduce the uncertainty greatly
by taking advantage of the dynamics.

4 Analytic Results

In our efforts to analyze pose distributions in a dynamic
environment, we have been working on a generalization of
so-called ‘capture regions’ (Kriegman, 1997) that we have
termedquasi-capture regions. (Quasi-capture regions will
be defined more precisely later.) Specifically, for a part
in contact with a sloped surface, we would like to deter-

2This is a local minimum found with simulated annealing and might
not be the global minimum.

mine whether it is captured, i.e., whether the part will con-
verge to the nearest stable orientation. Ideally these quasi-
capture regions would induce a partition of configuration
phase space, so that for each point in phase space we would
immediately know what its final resting configuration is.
Of course, this is not the case in general, since with a suffi-
ciently large velocity an object can reach any stable orien-
tation. But if we restrict the velocity to be small to begin
with, then we are able to quickly determine the pose distri-
bution. It has been our experience that without the use of
quasi-capture regions a lot of computation time is spent on
the final part/surface interactions (e.g, clattering motions)
before the part reaches a stable pose. In other words,with
our analytic results it is possible to avoid computing a po-
tentially large number of collisions.
So far we have focused on the two dimensional case. To
illustrate the notion of capture, we will start with another
example. Consider a rod of lengthl with center of mass
at distanceR from each vertex. One can visualize this as
a disk with radiusR and uniform mass, but with contact
points only at the ends of the rod:

1 2

R Rα
l

Figure 2: A rod with an offset center of mass.
Let the ‘side’ of the rod where the center of mass is above
the rod be the high energy side, and the other side be the
low energy side. We can then define that the rod is ‘on’
the high energy side if and only if the center of mass is
between and above the end points of the rod. Suppose the
rod is in contact with a flat, horizontal surface. For the rod
to make a transition from one side to the other, it will have
to rotate, either by rolling or by bouncing. At some point
during the transition the center of mass will pass over the
contact point. Its potential energy at that point will always
be greater than or equal to the potential energy at the start
of the transition. Hence, to make that transition the rod has
to have a minimum amount of kinetic energy. We say the
rod is captured if its kinetic energy is less than this amount:

1
2 m‖v‖2 <−mg∆h ⇒ ‖v‖2 <−2g∆h. (1)

Figure3 illustrates this.
For a surface that is not horizontal the capture condition is
not that simple. By bouncing and rolling down the slope,
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Figure 3: Capture condition for a rod on a horizontal sur-
face.

the rod can increase its kinetic energy. There are some
additional complicating factors. For instance, a change in
orientation can increase the kinetic energy, but to rotate to
the other side the rod has to rotate back, undoing the gain in
kinetic energy. In what follows the surface is still assumed

to be flat but now sloped at an angleφ: φ .
What we will show below is a sufficient condition on the
pose and velocity of the rod such that it is quasi-captured.
The condition will be of the following form: if the current
kinetic energy plus the maximal increase in kinetic energy
is less than some bound, the rod is captured. This bound
depends on the current orientation, the current velocity, the
slope of the surface and the geometry of the rod. Because
of the way we have set up our generalized coordinates, the
kinetic energy is1

2 m‖v‖2. In other words, the mass is just
a constant scalar (as opposed to a mass matrix for the more
general case). Without loss of generality we can assume
m = 2. That way the kinetic energy is simply‖v‖2.
Let a bounce be defined as the flight path between two im-
pacts. The closest distance between the rod and the slope
during one bounce can be described by

d(t) = 1
2 g(cosφ)t2 +(vy cosφ+ vx sinφ)t−dθ(t), (2)

wherevx andvy are the translational components of the ve-
locity anddθ(t) is a component that depends on the orienta-
tion. We can use this equation to derive an upper bound on
the maximum increase of the kinetic energy. Let the rod
be in contact att = 0 (so d(0) = 0). Let t̂ be the small-
est positive solution tod(t) = 0. The change in height is
then∆h = 1

2 gt̂2 +vyt̂, so that the change in kinetic energy is
∆‖v‖2 = 2g∆h. To find the maximum∆‖v‖2 for all veloc-
ity vectors of lengthv we can parametrize the translational
velocity asvx = vcosξ andvy = vsinξ, and maximize over
ξ. This ignores the rotational component of the velocity,
but it can be shown that by assuming the rod can rotate
to an ‘ideal’ orientation this approach will give an upper
bound for the true maximal increase of the kinetic energy.
In this ideal orientation the rod is parallel to the surface
and the center of mass is below the contact points. Letθ̂ be
equal to endpoint 1’s relative orientation in the ideal orien-
tation. One can verify that endpoint 1’s relative orientation
is then equal toπ

2 −
α
2 −φ.

It can also be shown that in order toroll to the other side
the rod’s kinetic energy needs to be larger than

−2gR(1+ sinθ+(sign(cosθ)−1)sin α
2 sinφ). (3)

Here,θ is the relative orientation of the contact point with
respect to the center of mass. We assume0 ≤ φ < π

2 . With
these results we can now state our main result; an extension

and relaxation of the notion of capture regions. It is an
extension in the sense that it applies to sloped surfaces and
it is a relaxation, because capture is only guaranteed under
some extra assumptions which will be discussed later.

Definition 1. Let a quasi-capture regionbe defined as a
region in phase space such that the rod is in contact with
the surface and cannot leave the region with one bounce or
roll.

Theorem 1. The rod with a velocity vector of lengthv and
in contact with the surface is in a quasi-capture region if
the following condition holds:

v2 + 2vcosξsinφ
cos2 φ (vsin(ξ+φ)+

√
v2 sin2(ξ+φ)−2gdn cosφ)

−2g( dn
cosφ +Rε)≤−2gR

(
1+ cos(α

2 +φ)
)
,

whereξ is the direction that will result in the largest in-
crease of kinetic energy,dn = R(cos α

2 − sin(θ + φ)) and

ε = cos(α
2 +φ)− cos(α/2)

cosφ +max
(
tanφ, 2sin α

2 sinφ
)
.

Proof outline. (For details see (Moll and Erdmann, 2000)).
After one bounce the orientation is assumed to be in the
ideal orientation, as this will result in the largest increase
in kinetic energy. The translation of the center of mass
in the direction normal to the surface is equal todn. This
can be seen by noting thatdn is simply the difference be-
tween the (signed) distances to the surface in the initial
configuration and a configuration with the ideal orienta-
tion. The path of the center of mass during the bounce is
described by1

2 gt2 cosφ + v(sinξcosφ + cosξsinφ)t + dn.
We can solve this expression fort and use the smallest
positive solution to find an upper bound on∆‖v‖2. Sub-
stituting θ̂ in expression3 gives−2gR(1+ cos(α

2 +φ)). In
other words, if the kinetic energy after the bounce is less
than−2gR(1 + cos(α

2 + φ)) and the rod is in the ideal ori-
entation, the rod cannot roll to the other side.
We can combine the two bounds to obtain a sufficient con-
dition to determine whether the rod can rotate to other side
if its new orientation after one bounce is equal to the ideal
orientation.Unfortunately this condition does not imply a
similar condition for the general case where the new orien-
tation is not necessarily equal to the ideal orientation. Cur-
rently we have a bound of the following formf (θ̂)≤ g(θ̂),
where f (·) computes the kinetic energy after one bounce
for a given new orientation andg(·) computes the energy
needed to roll to the other side for a given orientation3. We
would like to find the smallest possibleε such that

f (θ̂)−2gRε≤ g(θ̂) ⇒ ∀θ̃. f (θ̃)≤ g(θ̃).

It is not hard to seeε has to be equal tomaxθ̃(g(θ̂)−g(θ̃)−
f (θ̂)+ f (θ̃))/(−2gR). It can be shown that this correction

3Sog(θ) equals expression3.



ε is equal to

cos(α
2 +φ)− cos(α/2)

cosφ +max
(
tanφ, 2sin α

2 sinφ
)

Combining all the bounds we arrive at the desired result.

Note that forφ = 0 this bound reduces tov2 ≤ −2gR(1 +
sinθ). In other words, this bound is as tight as possible for
the caseφ = 0, i.e., for a horizontal table.
For an arbitrarydn it is not possible to compute the opti-
mal ξ analytically. Fortunately, wecan analytically solve
for ξ if we assume that the bounce consists of pure transla-
tion. The resultingξ can be used as an approximation. The
approximation for the bound for∆‖v‖2 then simplifies to

∆‖v‖2 ≤− 2gdn
cosφ + v2 sinφ

1−sinφ (1+
√

1−4dng(1− sinφ)/(v2 cosφ))

The relative error in this approximation depends onφ, dn,
v andg and can be computed numerically. Somewhat sur-
prisingly, the relative error appears to be constant inv, dn
andg. The relative error does vary significantly withφ, but
is still fairly small (on the order of10−2).
The theorem above shows a sufficient condition on the ve-
locity and pose of the rod such that it cannot rotate to the
other side during one bounce. But suppose there is a se-
quence of bounces, each of them increasing the kinetic en-
ergy. It is possible that the rod satisfies the quasi-capture
condition, but is still able to rotate to the other side in more
than one bounce. Thus, the theorem by itself is not enough
to guarantee that the rod will converge to its closest sta-
ble orientation. In the analysis above we have ignored the
dissipation of kinetic energy during collisions. If in the
case the capture condition is true the dissipation of kinetic
energy is larger than the increase due to the bounce, the
rod will indeed be captured after an arbitrary number of
bounces. To make sure this is the case the coefficients of
restitution can not be too large.
In figure4 the quasi-capture velocity is plotted as a func-
tion of the slope of the surface and the orientation of the
rod. The slope ranges from 0 toπ2 and the orientation
ranges from 0 to2π. Note that the orientation of the rod is
not the same as the relative orientation of the contact point.
However, for each combination ofφ andθ the relative ori-
entation of the contact point can be easily computed. The
other relevant parameter values for this plot are:R = 1,
g =−9.81 andα = π

2 . The little bump in the middle corre-
sponds to the rod being captured on the high-energy side.
The bigger bumps on the left and right correspond to being
captured on the low-energy side.

Figure 4: Quasi-capture velocity as a function of the slope
of the surface and the orientation of the rod

5 Simulation and Experimental Re-
sults

We have written a simulator to numerically compute the
pose distribution of a polygonal part in a dynamic environ-
ment. It uses the analytic results from the previous section
to stop simulating the motion of the part once it is captured.
The simulator allows us to search for the surface and drop
height that reduce the entropy of the pose distribution of a
given part maximally.
To verify the simulations we also performed some experi-
ments. Our experimental setup was as follows. We used an
air table to effectively create a two-dimensional world. By
varying the slope of the air table we can vary gravity. At
the bottom of the slope is the surface on which the object
will be dropped. The angleφ of the surface in the plane
defined by the air table can, of course, be varied.
The rod of the previous section has been implemented as a
plastic disk with two metal pins sticking out from the top
at an equal distance from the center of the disk. When re-
leased from the top of the air table the disk can slide under
the surface and will only collide at the pins. Experimen-
tally we determined the pose distribution of the rod for dif-
ferent values forg, h andφ by determining the final stable
pose for 72 equally spaced initial orientations. Our sim-
ulation and experimental results of some tests have been
summarized in table2. The rows marked with an asterisk
have been used to estimate the moment of inertia of the rod
and the coefficients of friction and restitution. Note that for
a low drop height and a horizontal surface (row 13 in ta-
ble 2) the pdf is equal to the quasistatic approximation, as
one would expect. More surprisingly, we see that the prob-
ability of ending up on the low-energy side can be changed
to approximately 0.95 by settingg, h and φ to appropri-
ate values. In other words we can reduce the uncertainty
almost completely.
The differences between the simulation and experimental
results can be traced back to several different error sources.



g (m/s2) h (m) φ Sim. Exp.
1 -0.684 0.246 0.467 0.934 0.96

∗ 2 -0.684 0.186 0.467 0.914 0.93
3 -0.684 0.122 0.467 0.896 0.94
4 -0.684 0.0580 0.467 0.850 0.94
5 -1.53 0.0580 0.467 0.850 0.93

∗ 6 -1.53 0.122 0.467 0.896 0.92
7 -1.53 0.186 0.467 0.912 0.97
8 -1.53 0.246 0.467 0.934 0.97

∗ 9 -2.62 0.246 0.467 0.912 0.94
10 -2.62 0.186 0.467 0.914 0.93
11 -2.62 0.122 0.467 0.896 0.93
12 -2.62 0.0580 0.467 0.852 0.94
13 -2.62 0.0760 0.000 0.750 0.75
14 -2.62 0.156 0.000 0.884 0.83

∗ 15 -2.62 0.220 0.000 0.918 0.85
16 -2.62 0.284 0.000 0.874 0.89

Table 2: Simulation and experimental results for the rod.
Shown are the probabilities of ending up on the low-energy
side for different values forg, h andφ. The drop height is
measured from the center of the disk to the surface.

First, there are measurement errors in the experiments: in
some cases slight changes in the initial conditions will
change the side on which the rod will end up. Second, since
the simulations are run with finite precision, it is possible
that numerical errors affect the results. Finally, the physical
model is not perfect. In particular, the rigid body assump-
tion is just false. The surface on which the rod lands is
coated with a thin layer of foam to create a high-damping,
rough surface. This is done to prevent the rod from collid-
ing with the sides of the air table.

6 Discussion

We have shown a sufficient condition on the position and
velocity of the simplest possible ‘interesting’ shape (i.e., a
rod with an offset center of mass) that guarantees conver-
gence to the nearest stable pose under some assumptions.
This condition gives rise to regions in configuration phase-
space, where each point within such a region will converge
to the same stable pose. We have coined the term quasi-
capture regions for these regions, since they are very simi-
lar to Kriegman’s notion of capture regions.
The quasi-capture regions also apply to general polygo-
nal shapes. However, we can no longer use the symme-
try of the rod. So the quasi-capture expressions for gen-
eral polygonal shapes become more complex. On the other
hand, we might be able to orient planar parts by using a
setup similar to the one described in section5 and attach-
ing two pins to the top of the part. Generalizing the quasi-
capture regions to three dimensions is non-trivial and is an
interesting direction for future research.

The simulation and experimental results show that the sim-
ulator is not 100% accurate, but that it is a useful tool for
determining the most promising initial conditions for un-
certainty reduction. In other words, the optimum predicted
by the simulator will probably be near-optimal in the ex-
periments. We can then experimentally search for the true
optimum.
With future research we hope to improve the constraints
on the quasi-capture velocity by taking into account more
information, such as the direction of the velocity vector. If
improving the quasi-capture bounds is impossible, it might
be possible to get better approximations for pose distribu-
tions. As noted in (Moll and Erdmann, 2000) it is possible
to get a good estimate of the maximal uncertainty reduc-
tion after only a small number of bounces of the rod. So
another interesting line of research would be to find out
how accurate these approximations are in general. We are
also planning to do more experiments to verify our current
and future analytic results.
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