
Frameworks on the Rise

Kevin Bierhoff
Two Sigma Investments

www.cs.cmu.edu/∼kbierhof

Ciera Jaspan and
Jonathan Aldrich

Carnegie Mellon University
www.cs.cmu.edu/∼cchristo
www.cs.cmu.edu/∼aldrich

George Fairbanks
Rhino Research

rhinoresearch.com

ABSTRACT
Software frameworks have changed significantly since they were
described by researchers more than a decade ago. They have en-
tered mainstream use in most domains of software development,
and their structure and interaction mechanisms have evolved. This
paper provides a revised definition of frameworks and surveys com-
monly used frameworks to extract two categorizations: a catego-
rization of the different kinds of frameworks found in the wild and a
summary of common interaction mechanisms employed by frame-
works. Four popular frameworks are described in detail to illus-
trate these findings. The paper also discusses unique framework
challenges and avenues for future research on frameworks.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software

General Terms
Design, languages

Keywords
Interaction mechanism, inversion of control, plugin

1. INTRODUCTION
Software frameworks are in nearly ubiquitous use by software

practitioners today. Yet frameworks and their unique challenges
have received comparatively little attention from researchers in the
past decade. Early research on frameworks was thorough [John-
son, 1992, 1997b,a, Johnson and Foote, 1988, Fontoura et al., 2000,
Riehle, 2000], but the reality of software frameworks today is quite
different from when they were first described. Not only are frame-
works more commonly used for building a diverse range of applica-
tions, but the ways in which frameworks interact with plugins have
evolved dramatically as well. As a case in point, frameworks no
longer rely exclusively on object-oriented design patterns [Gamma
et al., 1994] but instead use a variety of mechanisms to instantiate
and communicate with plugins. Nor are frameworks always instan-
tiated, but instead may exist at runtime independently of plugins.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

This paper attempts to remedy this situation by describing the
state of the practice and identifying new research paths. The paper
describes and categorizes the nature, structure, and challenges of
many software frameworks in common use today. We hope that
this will renew research interest in addressing these challenges, and
we hope that practitioners can gain a better understanding of the
“beast” they are dealing with day-to-day.

In this paper we describe four popular frameworks in depth –
ASP.NET, Open|SpeedShop, Eclipse SWT, and the Facebook API –
because they are good examples of what frameworks do today. We
provide a partial guide to categorizing frameworks: whether they
have a runtime existence separate from plugins, whether the plugin
has initial control, whether they are quality attribute frameworks
that hoist management of a particular quality attribute, and whether
they are domain frameworks that define concepts and relationships
in a specialized domain. We list and organize the interaction mech-
anisms between frameworks and plugins, including callbacks, plu-
gin loading, dependency injection, advice, and framework libraries.
As we will see, these are largely independent from the program-
ming language used to implement frameworks and their plugins.

Recent research has aimed at dealing with various framework
challenges, such as expression of common interactions with frame-
works [Fairbanks, 2007], expression of framework constraints [Jas-
pan and Aldrich, 2009, Hou et al., 2004], and automatically extract-
ing plugin-framework interactions [Heydarnoori, 2009]. However,
we believe that this is only the beginning, and we hope that re-
search will catch up to the remaining challenges of using software
frameworks.

2. FRAMEWORKS: A DEFINITION
This paper does not provide an a priori definition of what makes

a piece of software into a framework. Our approach is pragmatic
and attempts to crystallize important aspects of framework practice
today. It is guided by an examination of a variety of frameworks
including the ones listed in Table 1. The interaction mechanisms
we describe are important concepts employed by many frameworks
and cover the majority of what is found in practice. However, we
expect there are additional mechanisms present in frameworks that
we have not examined and anticipate the definition to change as
frameworks evolve and new frameworks are invented.

2.1 What Frameworks Are
A software framework, or simply framework, encapsulates archi-

tectural code reuse: it provides an architectural skeleton suitable for
a particular class of software applications [Johnson, 1997b]. Such
a framework is meant to be enriched with framework plugins, also
called framework extensions, to form an application.

Plugins accept the framework’s architecture as their own and

receive any quality attributes, such as performance, reliability, or
scalability, that follow from that architecture. In addition, frame-
works may provide domain-specific concepts and relationships, of-
ten as a set of classes and associations, which plugin developers
can reuse and extend. The architecture and code reuse provided
by frameworks can thus make development quicker and less error-
prone for applications in the target domain. Furthermore, the com-
mon architecture provided by a framework helps to reduce architec-
tural mismatch [Garlan et al., 1995] between independent frame-
work plugins.

In order to provide architectural reuse, a framework controls
not just application structure but also the flow of execution. The
framework supports customization by invoking plugin code at de-
fined points during application execution. This inversion of control
[Johnson, 1997b] creates challenges because developers must know
under what circumstances their plugin code will be invoked. Fur-
thermore, in implementing plugin code developers must follow the
architectural constraints specified by the framework, so that they
will realize the qualities encapsulated in the framework architec-
ture. This can be difficult, especially when the framework con-
straints are not clearly expressed [Jaspan and Aldrich, 2009, Hou
and Hoover, 2001].

2.2 Frameworks Are Not Libraries
The architectural reuse provided by frameworks is different than

library-based reuse. First, libraries are typically called from a de-
veloper’s code, but this situation is reversed with frameworks, which
typically invoke the plugin developer’s code at times defined by
the framework. Once a framework has passed control to a plugin,
however, the plugin often has access to library-like functionality
provided by the framework.

Second, a library provides functionality suitable for a sub-domain
of an application, while a framework defines the domain for the
entire application. An accounting application and a graphics appli-
cation can both use a math library, but only a web application can
use a web framework. Using a framework for an application in a
mismatched domain is sometimes possible, but awkward.

3. FRAMEWORKS IN PRACTICE
The term framework was originally defined by Johnson as “a

reusable design of all or part of a system that is represented by a set
of abstract classes and the way their instances interact” [Johnson,
1997b]. However, we believe that this definition does not capture
the breadth of how frameworks are currently used. Therefore, we
will begin by examining four industrial frameworks from a variety
of domains, communities, and languages.1 For each example, we
describe how it employs some of the interaction mechanisms we
will describe in the section on Interaction Mechanisms.

3.1 Example: ASP.NET
ASP.NET has become one of the largest platforms for commer-

cial web application development and supports one of the largest
communities of users; the official ASP.NET help forum alone has
over 440,000 registered users alone and thousands of new posts
per day. ASP.NET’s success is due in part to the fact that devel-
opers may gradually increase their abilities within the framework.
While their first website may have just a few buttons and textboxes,

1Almost all the frameworks described in this paper are written in
class-based object-oriented languages, but we do not believe that
software frameworks preclude other languages. The wide interest
in frameworks in class-based OO-languages is an artifact of the
culture of this group, rather than a technological constraint.

ASP.NET also supports highly sophisticated functionality for com-
mercial websites.

ASP.NET itself is simply a server which, when it receives a re-
quest for a web page, interprets the developer’s code to generate
that web page and sends HTML back to the client. The developer
provides two program artifacts that represent a single web page.
The ASPX file provides the “view” of the web page. It is similar to
HTML, but it contains ASP tags that the framework will interpret
into HTML. The code-behind file, written in either VB.NET or C#,
provides the “model” for the web page. This file contains event
handlers that will be called when the user performs some action
on the page, and it contains “lifecycle methods” that will allow the
developer to insert functionality when the framework is translating
the ASPX file into HTML.

Collectively, this pair of files is referred to as a page in ASP.NET,
and it can be seen as a plugin to the framework. By creating sev-
eral of these plugins and connecting them together with traditional
web links, the developer can create a complete web application. A
sampling of the framework-based features of ASP.NET are listed
below:

Plugin loading. ASP.NET loads a plugin dynamically when it
receives a request for a URL. The framework takes the URL and
may do some URL rewriting to generate the path to the ASPX file.
The framework then loads the code-behind file and begins the pro-
cess of translating the ASPX file into HTML.

Callbacks. While the framework is translating the ASPX file
into HTML, it calls into the code-behind file at pre-defined execu-
tion points that represent some interesting phase in the translation
process. There are more than 10 of these phases, ranging from
“before initialization” to “all web controls loaded in memory with
user data” to “just before rendering into HTML” to “just before de-
stroying all memory”. These phases are collectively known as the
page’s lifecycle. The plugin may choose to implement methods in
the code-behind file that represent each of these phases, also known
as lifecycle events. This allows the developer to add functionality
such as dynamically adding controls to the rendered HTML based
on user input in another control, populating a control with database
values, or checking for errors in the user input and generating warn-
ings.

Advice. Web pages for a web application share a lot of code, par-
ticularly in the look of the web page. To assist developers and pre-
vent code duplication, ASP.NET allows developers to define tem-
plates, called master pages, which encapsulate the look of a page.
These templates are easily reused by plugin developers by simply
declaring which master page the plugin is using. The framework
then handles merging these pages before the lifecycle events occur.

In addition to web pages, developers can create new web con-
trols. These are another type of plugin into the ASP.NET frame-
work, also with a view (ASCX files) and a code-behind file. Like
pages, they have a lifecycle that allows developers to dynamically
change how the ASCX file is translated into HTML.

3.2 Example: Open|SpeedShop
Frameworks are not unique to the Java community; they have

existed in some form for decades and can be found in other lan-
guages as well. One such example is Open|SpeedShop, a C++-
based performance analysis framework for large scale platforms
[Open|SpeedShop, 2009]. Using Open|SpeedShop, developers can
create new performance analyses while reusing many of the exist-
ing tools for dynamic binary instrumentation, data storage, offline
analysis, and visualization of results.

Callbacks. Open|SpeedShop has three types of plugins: col-
lectors, views, and wizards. A collector plugin describes how to

instrument the code and gather data. This data may be analyzed di-
rectly, or it may be stored in a database to analyze later. View plug-
ins perform any required analysis and display the results to the user,
either through the command line or through Open|SpeedShop’s GUI
framework. Finally, a wizard plugin helps the user configure analysis-
specific parameters. Each of these plugins has a separate interface
that it must implement; this allows the plugins to be developed in-
dependently and reused to create new analyses.

Plugin loading. Open|SpeedShop loads plugins dynamically by
looking into a named directory and linking plugins into the frame-
work. The plugins use a naming convention to allow them to be
found by the framework.

Framework library. Open|SpeedShop provides access to sev-
eral common infrastructures, including a dynamic instrumentation
tool, a data storage library, and a multicast communication net-
work.2

3.3 Example: Eclipse
Researchers and practitioners have, over the past several years,

built a large number of plugins that extend Eclipse [Gamma and
Beck, 2003]. The authors all developed plugins to Eclipse’s Java
IDE that make their research available to mainstream Java devel-
opers [Fairbanks, 2007, Jaspan and Aldrich, 2009, Bierhoff et al.,
2009]. Eclipse is a successful and highly extensible framework;
in truth it is more accurately a collection of frameworks that them-
selves are plugins to other, lower-level frameworks inside the Eclipse
platform.

Eclipse is based on a module system that controls module-to-
module code visibility and access. On top of that sits a GUI frame-
work, the SWT, that provides functionality similar to X windows,
Swing, or the .NET GUI toolkit. Arbitrary GUI applications can be
built using the SWT. Since IDEs are GUI applications, Eclipse then
layers plugins onto the SWT that facilitate IDE development. The
Java Development Tools (JDT) form one of many IDEs built with
Eclipse; other languages, including C and PHP, are also available.
Some of Eclipse’s framework features are the following:

Runtime existence. Various pre-packaged collections of Eclipse
plugins can be downloaded as fully functional applications. Eclipse
for Java developers, for instance, is fully functional as an IDE, but
plugins can be added as needed. Eclipse comes with its own startup
executable; plugin writers do not have to instantiate Eclipse or even
their own plugin themselves.

Plugin loading. Plugins are added to Eclipse by placing their bi-
naries into a well-known directory. Eclipse reads plugin-provided
configuration files that define how this plugin extends other plug-
ins. The existing plugins are in fact responsible for handling these
various extensions the new plugin makes to them and for instance
display additional menu items and call the appropriate code in the
new plugin when these items are selected.

Advice. One of Eclipse’s more unique features amongst GUI
toolkits is that its module system prevents plugins from accessing
code in other plugins unless these other plugins permit the access.
Exerting this level of control involves the use of custom “classload-
ers” that intercept object instantiations and perform security checks
around them.

Framework libraries. Eclipse’s frameworks provide large li-
braries of re-usable functionality. For instance, the SWT frame-
work offers dialog widgets, and the JDT provides access to its com-
piler and typechecker. These are usually accessed either through

2While these infrastructures are currently built in to
Open|SpeedShop, the team is investigating a redesign that
would allow these infrastructures to be swapped out in the same
style as the existing plugins.

singletons or direct instantiation (again, with access checks) sim-
ilar to a conventional library. However, these “libraries” also act
as frameworks in notifying their clients of events: dialog widgets
propagate events such as mouse clicks to listeners, and the JDT can
notify other plugins of changing source code and other events.

3.4 Example: Facebook
The Facebook API [Facebook, 2009] has recently received a lot

of attention due to Facebook’s popularity. It allows separate web-
sites, referred to as “Facebook applications”, to access Facebook’s
social networking data and interact with Facebook users. The Face-
book API is a framework because applications can “plug into” and
appear on Facebook’s websites. Facebook users can find applica-
tions in a registry, links to applications can appear on Facebook
websites, and in certain cases Facebook will even request content
from applications by “calling” application code and displaying the
result (for instance, to generate application-specific message at-
tachments). Hence we can think of applications as plugins and the
Facebook website as the framework.

The Facebook API stands out from most frameworks discussed
in this paper because no static or dynamic linking of code is nec-
essary for Facebook and its applications to interact. Applications
are hosted on separate Web servers and can be written in differ-
ent programming languages than the PHP-based Facebook website.
Nonetheless, many framework concepts directly carry over:

Callbacks. Facebook provides websites where application de-
velopers can register their applications. They will, in particular,
provide the HTTP URLs of entry points into various parts of their
application. A required URL is the “canvas page”, the welcome
page for users. But more URLs can be specified, for instance if the
application wishes to be notified when users un-subscribe from it.

Facebook “invokes” applications at various points, by sending
HTTP requests to the application-provided URLs. For instance, if
a user clicks on a link to an application then Facebook will forward
the user to the application’s canvas page. When a user unsubscribes
from the application, Facebook does not forward the user to the
application, but it nonetheless sends an HTTP request to the “un-
subscribe” URL (if provided). These requests have a documented
shape: Facebook promises to include certain parameters in the re-
quest, such as the user on whose behalf the invocation is made.

Advice. Facebook (optionally) “wraps” output from the applica-
tion into Facebook’s own look and feel. This is true for application
content displayed on Facebook’s websites (such as message attach-
ments), but also for application websites such as the canvas page.
When content is to be displayed on Facebook’s websites then appli-
cations have to format their response in certain ways. Application-
specific websites, on the other hand, can contain arbitrary HTML.

Framework library. Additionally, Facebook offers a library of
functions to applications, which can be used to, for instance, re-
trieve information about users and their friends. Facebook even
defines its own database query language for applications to use
when the library functions are insufficient. It is this (traditional)
part of the Facebook API that raises privacy concerns because ap-
plications may store the information they retrieve, although doing
so is expressly forbidden by Facebook.

Constraints. Therefore, Facebook also imposes constraints on
applications: they are required to respect users’ privacy, and in or-
der to maintain isolation between application and Facebook data,
Facebook disables certain HTML and JavaScript features. Obvi-
ously, applications must also format their HTTP responses to Face-
book in a certain way.

The Facebook API offers extremely loose coupling between plu-
gin and frameworks: applications can in principle be written in any

programming language, as long as they produce the expected HTTP
responses. Even the library, while written by Facebook mostly for
PHP-based applications, can be invoked from other languages, be-
cause it uses HTTP to communicate with Facebook’s servers as
well. As such, we believe that the Facebook API is an interesting,
albeit atypical, example of a framework.

4. CATEGORIZING FRAMEWORKS
Table 1 contains an archival analysis of frameworks used in in-

dustry and some of their selected characteristics. A glance at the
table, itself only a sampling of existing frameworks, reveals great
diversity, so it is worthwhile to identify a few salient overlapping
categories of frameworks to help organize and understand how they
vary.

Runtime existence. While the earliest frameworks had no run-
time existence until the plugin instantiated them, it is now common
for a framework to have runtime existence independent of any plug-
ins. Music playing programs can play back music but many of them
also allow plugins to extend their core functions, providing support
for new media files or internet streams. The Eclipse IDE runs stan-
dalone but can also be extended with plugins. GUI frameworks,
however, have no runtime existence until a program is written that
uses them.

Initialization. In some frameworks the plugin gets initial con-
trol, often through a main routine, that performs some initialization
then hands over control to the framework. The alternative is for the
framework to own the main routine and instantiate the plugins. The
secton below on plugin loading describes the mechanics of this in
more detail.

Quality attribute frameworks. Quality attributes are extra-
functional properties of a system, such as performance, security,
or scalability, and they are strongly influenced by a system’s ar-
chitecture. Since a framework can define part or all of an applica-
tion’s architecture, it can hoist [Fairbanks, 2010] the management
of a quality attribute, taking it out of the hands of the application.
EJB is an application server that hoists scalability and concurrency,
largely freeing plugin writers from worrying how to achieve these.

Domain frameworks. Domain frameworks provide a collec-
tion of objects that work together to define how a domain works.
Some domain frameworks encode business domains, like the IBM
San Francisco framework [Bunting, 2000], which encodes standard
IT domains including accounts receivable and payable. Other do-
main frameworks encode programming domains, like GUI frame-
works, which encode the domain entities in user interfaces includ-
ing menus and buttons.

5. INTERACTION MECHANISMS
This section catalogues mechanisms that frameworks use to in-

teract with plugins: callbacks, plugin loading, dependency injec-
tion, advice, and framework libraries. We find all of these mecha-
nisms in a wide variety of frameworks, realized with different tech-
niques and programming languages. Common to many of them is
the inversion of control principle, which shifts control over some
aspect of the plugin’s runtime behavior to the framework.

5.1 Callbacks
Callbacks are methods implemented by a plugin that the frame-

work will invoke at certain well-known moments [Fontoura et al.,
2001]. The framework defines which callbacks a plugin can react
to, and the set of callbacks defined by a framework is somewhat
dependent on the framework’s purpose. The set of callbacks, re-
gardless of mechanism, is always defined by the framework and

reacted to by the plugin.
The callback interaction mechanism has been called the Holly-

wood principle (“don’t call us, we’ll call you”) and has been viewed
as the defining mechanism of a framework [Fowler, 2005] because
it embodies the inversion of control. That is, when a program and a
library interact, the program is in control and tells the library what
to do and when to do it. This is reversed in frameworks, with the
framework telling the plugin what to do and when to do it.

5.1.1 Types of callbacks
Typical types of callbacks include:
Lifecycle. Framework-relevant points in the plugin’s “lifecycle”,

such as initialization and destruction (most frameworks).
Events. Events, such as mouse clicks, received from a “user” or

another entity in the environment (GUI frameworks).
Hooks. Points in the framework’s execution where plugins can

contribute to the framework’s built-in behavior, such as when the
screen is about to be re-drawn or when data structures are populated
from an HTTP request (see ASP.NET). 3

5.1.2 Callback mechanisms
Implementation strategies for this mechanism include the fol-

lowing:
Type-based. Extensions must implement a framework-provided

interface or subclass a framework-provided class in which the sig-
natures of callback methods are defined. It is this interaction mech-
anism that, in object-oriented languages, is often realized with a va-
riety of design patterns [Gamma et al., 1994] such as the template
method and observer patterns. Observers, for instance, which are
objects implementing an interface for receiving event notifications,
can be registered to receive events such as mouse clicks. Template
methods define an algorithm skeleton (for instance, for handling
an HTTP request) that invoke abstract methods (to be implemented
by the plugin) to fill in details at various points in the algorithm’s
execution. They are popular for implementing framework lifecycle
callbacks.

Reflection-based. Extensions place framework-defined annota-
tions on their methods or use a naming convention to mark methods
as callbacks. Registering explicitly with the framework is typically
not necessary in this case. The JUnit framework, for instance, treats
methods whose names start with “test” or are marked with a “Test”
annotation as unit tests.

Event loop. Some frameworks, such as Microsoft Foundation
Classes, require plugins to have a single event handling loop. Events
are often assigned a constant integer value.

Function pointers. In languages like C, a table of function
pointers can serve the same purpose as implementing an interface.
The Facebook API even uses URLs to define callbacks. Facebook
sends requests to these URLs at the right moment. Facebook in-
cludes HTTP parameters, which are similar to method parameters,
in these requests that indicate the user making the request, etc.

Build tricks. Extensions can provide implementations for pre-
defined function signatures that will be invoked in the right places
after the linker connects the framework and plugin code. In this
scenario it is harder for multiple plugin points to receive the same
lifecycle events. For instance, Apache can be compiled to use a
number of different event processing loops with different strategies
for distributing requests among threads.

3It can be hard to distinguish events from framework lifecycle call-
backs because one can cause the other. For example, data structures
are populated (a framework lifecycle callback) because a HTTP re-
quest was sent by a user (an event).

Fr
am

ew
or

k
L

an
gu

ag
e

In
de

pe
n-

de
nt

ru
nt

im
e

ex
is

te
nc

e

Q
A

or
D

om
ai

n
fr

am
e-

w
or

k

In
iti

al
iz

at
io

na
Pl

ug
in

lo
ad

in
g

C
al

lb
ac

ks
D

ep
en

de
nc

y
in

je
ct

io
n

A
dv

ic
e

K
ey

-v
al

ue
co

di
ng

b
Fr

am
ew

or
k

lib
ra

ry

A
SP

.N
E

T
C

#,
V

B
.N

E
T

N
o

D
om

ai
n

Fr
am

ew
or

k
N

am
in

g
co

nv
en

tio
n

H
oo

ks
Fr

am
ew

or
k

ob
je

ct
s

Pl
ug

in
-d

efi
ne

d
G

en
er

ic
an

d
co

de
-g

en
.

R
eu

se

O
pe

nS
pe

ed
-

Sh
op

C
++

N
o

D
om

ai
n

Fr
am

ew
or

k
N

am
in

g
L

if
ec

yc
le

N
o

B
ot

h
N

o
R

eu
se

E
cl

ip
se

Ja
va

Y
es

D
om

ai
n

Fr
am

ew
or

k
C

on
fig

ur
at

io
n

fil
es

E
ve

nt
s,

lif
ec

yc
le

N
o

Fr
am

ew
or

k-
de

fin
ed

N
o

R
eg

is
tr

at
io

n,
re

us
e

Fa
ce

bo
ok

A
ny

(P
H

P)
Y

es
D

om
ai

n
B

ot
h

C
on

fig
ur

at
io

n
(w

eb
fo

rm
)

E
ve

nt
s

N
o

Fr
am

ew
or

k-
de

fin
ed

N
o

Fr
am

ew
or

k
co

nt
ro

l,
re

us
e

A
pp

le
ts

Ja
va

N
o

D
om

ai
n

Pl
ug

in
Pr

og
ra

m
m

at
ic

E
ve

nt
s,

lif
ec

yc
le

N
o

N
o

G
en

er
ic

ac
ce

ss
R

eg
is

tr
at

io
n,

re
us

e
A

pa
ch

e
C

Y
es

B
ot

h
Fr

am
ew

or
k

C
on

fig
ur

at
io

n
fil

es
H

oo
ks

N
o

Fr
am

ew
or

k-
de

fin
ed

N
o

R
eu

se

A
W

T
/S

w
in

g
Ja

va
N

o
D

om
ai

n
Pl

ug
in

Pr
og

ra
m

m
at

ic
E

ve
nt

s,
ho

ok
s

N
o

N
o

N
o

R
eg

is
tr

at
io

n,
re

us
e

C
or

ba
V

ar
io

us
Y

es
B

ot
h

B
ot

h
Pr

og
ra

m
m

at
ic

L
if

ec
yc

le
N

o
Fr

am
ew

or
k-

de
fin

ed
N

o
N

o

E
nt

er
pr

is
e

Ja
va

B
ea

ns
(E

JB
)

Ja
va

Y
es

B
ot

h
Fr

am
ew

or
k

A
nn

ot
at

io
ns

,
co

nfi
g

fil
es

L
if

ec
yc

le
Fr

am
ew

or
k

ob
je

ct
s,

O
R

-m
ap

pi
ng

B
ot

h
N

o
Fr

am
ew

or
k

co
nt

ro
l

JU
ni

t/
N

U
ni

t/
...

V
ar

io
us

N
o

D
om

ai
n

Fr
am

ew
or

k
A

nn
ot

at
io

ns
,

in
te

rf
ac

es
L

if
ec

yc
le

N
o

B
ot

h
N

o
R

eu
se

M
ic

ro
so

ft
Fo

un
da

tio
n

C
la

ss
es

(M
FC

)

C
/C

++
N

o
D

om
ai

n
Pl

ug
in

Pr
og

ra
m

m
at

ic
E

ve
nt

s
N

o
N

o
N

o
R

eg
is

tr
at

io
n,

re
us

e

.N
E

T
G

U
Is

C
#

N
o

D
om

ai
n

Pl
ug

in
Pr

og
ra

m
m

at
ic

E
ve

nt
s,

lif
ec

yc
le

Fr
am

ew
or

k
ob

je
ct

s
N

o
St

at
ic

co
de

ge
ne

ra
tio

n
R

eg
is

tr
at

io
n,

re
us

e
R

ub
y

on
R

ai
ls

R
ub

y
N

o
D

om
ai

n
Fr

am
ew

or
k

N
am

in
g

E
ve

nt
s

O
R

-m
ap

pi
ng

N
o

D
yn

am
ic

co
de

ge
ne

ra
tio

n
R

eu
se

Se
rv

le
ts

Ja
va

N
o

D
om

ai
n

Fr
am

ew
or

k
C

on
fig

fil
es

E
ve

nt
s

N
o

N
o

G
en

er
ic

ac
ce

ss
R

eu
se

Sp
ri

ng
Ja

va
N

o
D

om
ai

n
D

ep
en

ds
C

on
fig

Fi
le

s
L

if
ec

yl
e,

ev
en

ts
C

om
po

ne
nt

w
ir

in
g

Pl
ug

in
-d

efi
ne

d
G

en
er

ic
ac

ce
ss

Fr
am

ew
or

k
co

nt
ro

l,
re

us
e

W
eb

O
bj

ec
ts

Ja
va

N
o

D
om

ai
n

Fr
am

ew
or

k
C

on
fig

fil
es

H
oo

ks
O

R
-m

ap
pi

ng
N

o
G

en
er

ic
an

d
co

de
-g

en
.

R
eu

se

X
Se

rv
er

C
Y

es
D

om
ai

n
B

ot
h

Pr
og

ra
m

m
at

ic
E

ve
nt

s
N

o
N

o
N

o
R

eg
is

tr
at

io
n,

re
us

e

Ta
bl

e
1:

A
n

ar
ch

iv
al

an
al

ys
is

of
fr

am
ew

or
ks

an
d

th
ei

r
ch

ar
ac

te
ri

st
ic

s
a B

ot
h

m
ea

ns
fr

am
ew

or
k

an
d

pl
ug

in
ru

n
on

se
pa

ra
te

m
ac

hi
ne

s
or

pr
oc

es
se

s.
b N

ot
cu

rr
en

tly
di

sc
us

se
d

in
th

e
te

xt
.W

e
ar

e
in

ve
st

ig
at

in
g

th
is

as
an

ad
di

tio
na

lm
ec

ha
ni

sm
.

5.1.3 Callback variation points
Optionality. Some callbacks are optional; others are required.

One way of thinking about a required callback is that a plugin is not
a valid plugin unless it is able to handle the callback. In practice,
however, plugins often do nothing during a required callback, and
therefore frameworks have moved to using optional callbacks. For
instance, the EJB 2.0 specification defined various interfaces that
all plugins had to implement. In EJB 3.0, the callbacks previously
required by these interfaces are now marked with annotations. If a
plugin does not use a particular annotation, then it wishes not to do
anything during that callback.

Registration. Plugins sometimes have to explicitly register to
receive a particular callback; at other times the mere presence of a
callback method will prompt the framework to invoke that method
at the appropriate time. Plugins typically have to explicitly regis-
ter to receive events, while lifecycle callbacks are often delivered
automatically.

5.2 Plugin Loading
When a framework starts, it must somehow discover the plugins,

and these plugins must be instantiated. Ralph Johnson’s original
paper on frameworks [Johnson, 1992] describes how, in Smalltalk,
the framework was told about plugins by modifying a dictionary
in the Smalltalk image. This mechanism is not commonly used
now because no mainstream languages have an equivalent to the
Smalltalk image. Instead, either the plugin adds itself to the frame-
work, or it leaves declarative clues for the framework to find it.
Examples of these clues include configuration files, annotations,
naming conventions, and placement in a known directory.

Either frameworks or plugins can own the main routine, but in
both cases the framework eventually takes over control flow. When
a plugin has the main routine, developers have more control over
the startup process, but this option accommodates only a single plu-
gin. When the framework has the main routine, they can be inde-
pendent functional applications (Eclipse, for instance).

Programmatic. Plugins can be run directly and subsequently
register themselves with the framework. With this choice, the frame-
work is sometimes called a toolkit. The style of use is often that the
plugin has main routine, does some initialization (e.g., creating a
window, adding widgets to it) then hands control over to the frame-
work a single time and subsequently only gets callbacks. The AWT
framework, for instance, relies on the application developer to in-
stantiate windows and dialogs as needed.

Declarative. Extensions to be loaded can be defined in a declar-
ative way. At startup time, the framework reads these declarations
and is responsible for instantiating, typically using reflection (see
below for details). Declarations can take the form of configuration
files or markers.

With configuration files, the framework instantiates plugins based
on entries in declarative configuration files. Eclipse, for instance,
expects archives with plugin binaries (JAR files) to be placed into
a particular directory and these JAR files to contain an XML con-
figuration file. Eclipse then uses reflection to instantiate classes
mentioned in the configuration file.

With markers, the framework examines available classes and in-
stantiates marked components. The markers vary, and can be anno-
tations, implemented interfaces, or class/method naming conven-
tions. For example, classes to be loaded as EJB plugins can be
marked with framework-defined annotations. The EJB framework
searches known directories for classes with these annotations and
instantiates them as needed. Many EJB frameworks can even dis-
cover and instantiate “new” and replaced plugins while running.

Some frameworks that support declarative loading (such as Eclipse)

also support plugin-initiated loading in order to allow plugins to in-
stantiate new framework plugins at runtime.

5.3 Dependency Injection
Dependency injection is a mechanism found in many recent frame-

works that allows the frameworks to instantiate any resources that
a plugin needs on the plugin’s behalf. This idea complements the
idea of callbacks by allowing plugins to indicate their need for a
particular resource, such as a database connection, or a reference to
another plugin. At the appropriate time, the framework will provide
that resource to the plugin: the framework injects the requested re-
source into the plugin.

5.3.1 Types of Dependency Injection
Dependency injection seems to come in a number of different fla-

vors that are useful to distinguish. Notice that in all cases, the desire
is to avoid plugins having to set up dependencies to other compo-
nents themselves. Thus, dependency injection is inversion of de-
pendency control away from the plugin and towards the framework
(somewhat similar to a linker, but object- rather than type-based).

Injecting framework objects. Objects created by the frame-
work can be injected to give plugins access to them. For instance,
EJB plugins are injected with a “context” object that allows them
to call framework methods. The context object implements a pub-
lished interface, but its implementation is framework vendor-specific.
Thus, this form of dependency injection promotes the framework’s
ability to instantiate classes of its choosing.

Component wiring. References to plugin-defined components
may be injected into each other to establish the “wiring” between
these components. Doing so makes this wiring more flexible and
simplifies, for instance, inserting an intermediary component some-
where or creating circular dependencies. The Spring framework for
instance can instantiate a set of plugin-defined objects (“beans”)
and inject references to beans into other beans based on a declara-
tive configuration. Ideally, individual beans do not instantiate any
objects themselves. This is often implemented using key-value
coding.

Object-relational mappings. A variety of frameworks for han-
dling object-relational mappings were developed over the last decade,
including EJB, Hibernate, Apple WebObjects, .NET persistency,
and Ruby on Rails. They all provide support for representing re-
lational databases with objects. In these frameworks, the classes
representing individual database tables are often defined in frame-
work plugins, but they are instantiated and populated (with cell val-
ues from the database) by the framework, and references to other
tables are typically injected into these objects as well.

5.3.2 Implementation Strategies
Well-known methods (interface implementation). Plugins can

implement interfaces that define methods for receiving certain re-
sources. Similarly to a callback, the framework will instantiate the
resource and invoke the plugin’s methods (typically once when the
plugin is initialized) to provide the resource.

Dependency annotations. Plugins can annotate methods or even
fields as receivers of resources, and the framework will use reflec-
tion to assign the resource to the annotated field or invoke the an-
notated method.

Configuration file. Some frameworks such as the above men-
tioned Spring framework can inject object references into other ob-
jects according to a declarative configuration file.

Auto-generated code. Frameworks can generate code that ini-
tializes the resource. For instance, the .NET GUI framework gen-
erates code that instantiates and configures GUI widgets in dialogs

according to what the developer configures graphically with a spe-
cial “form editor”. Fields holding the various form elements, such
as checkboxes, “magically” become available in the developer-written
code.

5.4 Advice, Wrappers, and Interceptors
Advice is a term used in Aspect-Oriented Programming (AOP)

to describe code executed “before”’, “after”’, or “around” a par-
ticular operation. Advice on a method can be seen as intercepting
calls to the method and executing the advice code before and/or af-
ter the “advised” method is invoked. The framework controls the
order that the advice occurs in, while the individual pieces (both
the advice and the thing being advised) are typically unaware of
or at least oblivious to what is occurring. Thus, advice represents
inversion of execution order control.

5.4.1 Types of Advice
Frameworks sometimes use advice in their implementation, al-

low plugins to define advice, or both.
Implemented by framework. Advice is often implemented by

the framework to “guard” plugin actions. EJB framework imple-
mentations use advice to check whether the user invoking an op-
eration on an EJB plugin is allowed to do so: they advise the in-
voked operation with the necessary check. As another example,
the Facebook API defines a custom mark-up language, FBML, for
conveniently inserting Facebook resources (such as a user profile
picture) into web pages generated by a Facebook application. This
process gives applications a look-and-feel that is similar to Face-
book’s own websites. This re-writing of FBML into HTML is the
Facebook API on behalf of Facebook applications and can be seen
as “after” advice.

Implemented by plugins. Advice has become so important
that EJB plugins themselves can, since EJB 3.0, specify meth-
ods they want invoked “before” or “after” their other operations
– for instance, to perform custom access control. As another ex-
ample, Open|SpeedShop advises a target program to measure its
performance, and it allows plugin developers to write performance-
related advice. The framework takes care of invoking the plugin-
defined advice when executing the target program. In these cases,
the plugins define the advice, although the framework still takes
care of applying it.

5.4.2 Implementation Strategies
Though using an AOP programming language such as AspectJ

directly allows the programmer to create advice, it also involves us-
ing a special compiler and language constructs. In practice, frame-
works are not written in an AOP language and instead implement
the needed mechanisms in a conventional programming language:

Weaving. In true AOP fashion, advice can be placed by re-
writing source code or bytecode. This is not an option if such ar-
tifacts are not available. Since weaving requires a compiler-like
infrastructure, this option is unpopular.

Wrappers. A wrapper is a framework-generated class with the
same interface as the advised class. It executes the desired advice
before and/or after calling methods of the wrapped class. The hard
part, of course, is to make sure that the rest of the program calls the
wrapper, rather than the wrapped class directly. This sometimes
requires plugins to not instantiate other plugins directly but rather
to use a framework-provided mechanism for doing so.

Advice-aware programming. Code can be written to allow ad-
vice, for instance by explicitly calling the framework to perform
any advice. As case in point, Facebook applications have to include
Facebook-provided code that triggers the replacement of FBML

elements with suitable HTML and JavaScript before sending the
result to the user’s Web browser. By not including the Facebook-
provided code, Facebook applications can communicate with their
users directly. Obviously, this approach is error-prone because plu-
gin developers may simply forget to invoke the advice they need.

5.5 Framework Libraries
Frequently, frameworks not only call into plugins, but they also

provide services that plugins can invoke. Notice that this often im-
plies the possibility of reentrant calls in the framework, since the
plugin will call the framework as part of a callback that the frame-
work invoked.

5.5.1 Types of framework-provided libraries
Providing such a “library” to plugins can have several motiva-

tions:
Controlling framework services. Framework plugins gain in-

fluence on how the framework does its work. For instance, EJBs
can start and stop database transactions by calling appropriate meth-
ods on the frameworks. (Doing so is optional; alternatively, trans-
action demarcation can be configured declaratively with annota-
tions or XML files.)

Component registration. Framework plugins are able to pro-
grammatically register new components with the framework. GUI
frameworks such as AWT or even Eclipse’s SWT, for instance, al-
low plugins to create new dialogs and register event listeners with
the framework. Doings so puts the registered components under
the framework’s control and the framework will call them back as
desired.

Re-use. Framework plugins can re-use implementations of domain-
typical operations. For example, the Facebook API provides vari-
ous functions that allow Facebook applications to query informa-
tion about the current user and her friends. It also includes a simple
AJAX (Asynchronous Java and XML) implementation. Both of
these are very useful in creating social networking websites.

5.5.2 Implementation mechanisms
Implementation strategies for this interaction mechanisms are

surprisingly manyfold, considering this mechanism is very similar
to conventional libraries.

Direct instantiation. Conventional libraries are usually imple-
mented as classes that clients can instantiate. Direct instantiation of
framework classes by framework plugins is sometimes allowed, in
particular in GUI frameworks where plugins can instantiate widget
classes directly.

Callback interfaces. In order to avoid dependency on frame-
work classes, the framework frequently “injects” (using dependency
injection) a object implementing a well-known interface into the
plugin. This object provides framework services.

Singleton objects. Similar to callback interfaces, plugins are
sometimes expected to use certain singletons [Gamma et al., 1994]
to invoke framework services. This is for instance popular in Eclipse.

Configuration-based instantiation. Frameworks that need to
expose complex data structures to plugins can instantiate the data
structures on behalf of the plugin and use dependency injection to
provide them to the plugin. ASP.NET, for instance, instantiates ob-
jects representing Web forms based on plugin-defined ASPX files.

6. DISCUSSION

6.1 Differences Due to Programming Languages
Frameworks are often some of the more creative examples of

programs written in a particular language, taking advantage of es-

oteric or “dangerous” features (such as reflection) that most pro-
grammers try to stay away from. Partially because frameworks take
advantage of these features, there is no question that framework im-
plementations depend enormously on the programming language
they are written in. C-based frameworks, for instance, have a hard
time with object-oriented design patterns, although many patterns
can certainly be “hacked up”. Reflection is very popular in the
framework writer’s toolbox, and so languages without reflection
will require other solutions. Finally, the ability to add classes and
methods at runtime makes dynamically typed languages attractive
for framework development. Since frameworks operate on the fringes
of the programming language they are written in we believe that
they are a very good starting point for understanding the strengths
and weaknesses of different languages.

Differences in how interaction mechanisms are implemented are
therefore partially due to which programming language is employed
in each mechanism, but also due to the environment that the frame-
work operates in (for instance, remote vs. local invocation of plug-
ins). In addition, there seem to be mechanisms that are simply “in
style”: a few years ago, XML-based configuration was the state-
of-the-art in many frameworks. Annotations have since been in-
troduced into new and existing frameworks, such as EJB (previ-
ously XML-based) and JUnit (previously used naming convention).
However, this paper shows that these different mechanisms serve a
handful of purposes. Framework implementations may appear to
be different, but they have a lot of common goals.

We believe that interaction mechanisms put a new twist on many
of the fundamental concerns of a programming language that re-
searchers have identified over the last several decades, such as mod-
ularity, low coupling, and re-use: frameworks certainly achieve
very low coupling between highly modularized components and
enable substantial re-use of complicated machinery. But they do
so by resorting to mechanisms that are often considered “unsafe”,
such as reflection or even a dynamically typed programming lan-
guage. It remains to be seen whether interaction mechanisms can
be supported by programming languages more directly.

6.2 A Common Vocabulary
The interaction mechanisms we identify in this paper could form

a common vocabulary for talking about the mechanics of frame-
works. Frameworks have been characterized as “components + pat-
terns” [Johnson, 1997b], and this paper shows that object-oriented
design patterns can indeed be used to implement some of the in-
teraction mechanisms we have identified. But nowadays many in-
teraction mechanisms are typically implemented using reflection or
other “unsafe” mechanisms rather than design patterns. Thus, in-
teraction mechanisms capture a framework-related purpose, while
the use of design patterns is a technical choice for implementing
the mechanisms.

Our discussion of implementation mechanisms reveals that the
same mechanisms (in particular, design patterns, configuration files,
interfaces, and annotations) are used for different interaction mech-
anisms. Moreover, the same interaction mechanisms come into
play in frameworks for vastly different purposes: domain-specific
as well as quality attribute frameworks; frameworks for developing
desktop applications (such as Eclipse) as well as for highly dis-
tributed applications (such as Facebook). Many of the differences
between frameworks appear to be motivated by the specific con-
cerns and constraints that the framework addresses, but they still
use similar interaction mechanisms to do so. Therefore, we believe
that interaction mechanisms provide a level of abstraction suitable
for documenting and discussing frameworks: independent from im-
plementation specifics, and independent of the framework’s actual

purpose.

6.3 Remaining Challenges
Understanding non-local framework-plugin interactions. In

order to accomplish a single task, a plugin must interact with vari-
ous parts of a framework, perhaps implementing several callbacks
across several subclasses. One empirical evaluation showed that
15% of framework-plugin interactions served multiple goals [Fair-
banks, 2007]. Identifying a set of interactions as related is exac-
erbated by the fact that many framework interaction mechanisms
are identical to framework implementations. For example, it can be
difficult for a programmer to know if a framework class is meant for
subclassing by a plugin. And someone looking at the plugin code
may have a difficult time comprehending the overall architecture
since the framework defines the architectural skeleton.

Expressing and checking constraints. Researchers have devel-
oped good specification languages for libraries, but they are still
working to identify the constraints that frameworks impose on plu-
gins. Languages exist to express some constraints, such as FCL
[Hou et al., 2004] design fragments [Fairbanks, 2007], and FU-
SION [Jaspan and Aldrich, 2009], but none of these is yet a com-
plete solution. Constraints must still be checked, perhaps using
static or dynamic analysis of the plugin source code.

Bridging programmatic and declarative. Many frameworks
require plugins to write both source code and declarative state-
ments. These two forms must be consistent, for example, an entry
in an XML file must correspond to an identically named class in
Java source code. Type checkers generally work in one or the other
form but not cross forms.

Programming language support. Ideally, given the prevalence
of frameworks, direct support for framework interaction mecha-
nisms would be high priority requirements future programming
languages. Such language support might include ways to help with
problems mentioned above, including localizing framework-plugin
interactions, specifying framework constraints, and bridging pro-
grammatic and declarative parts of plugins.

Architecture languages. Despite frameworks providing an ar-
chitectural skeleton for applications, frameworks are a poor fit for
existing architecture description languages (ADLs). While most
ADLs have “port” elements that represent a means to communicate
between components, these ports are narrow and shallow to enforce
encapsulation. Framework interactions with plugins, in contrast,
are wide and deep: to accomplish simple tasks, a plugin may need
to interact with many classes in the framework and may need to tra-
verse deep into the framework’s objects. Consequently, it is diffi-
cult to satisfactorily represent framework-plugin interactions using
most ADLs.

7. CONCLUSIONS
Frameworks have been on the rise during the past decade, mak-

ing inroads into many domains of software engineering. And yet,
they have done so without correspondingly significant research in-
terest. This paper attempts to change this situation and allow re-
searchers to focus more on the unique challenges that frameworks
entail. To this end, the paper investigates a variety of current object-
oriented frameworks, provides a working defintion of what frame-
works are and are not, categorizes frameworks along several dimen-
sions, and identifies a number of interaction mechanisms, which
are ways in which frameworks and their plugins interact. Interac-
tion mechanisms can be implemented in a variety of different ways,
from design patterns and strongly typed interfaces to reflection, an-
notations, and even URLs. We hope that our categorizations and
interaction mechanisms can serve as a common vocabulary for dis-

cussing frameworks that is independent of programming languages
and specific implementation details that other researchers will ex-
tend and build upon.

Acknowledgments
The authors recognize Bill Scherlis for his observation of deep-
wide versus shallow-narrow interfaces, and thank <others>, and
Morgan Stanfield for their comments on drafts of this paper.

References
K. Bierhoff, N. E. Beckman, and J. Aldrich. Practical API pro-

tocol checking with access permissions. In Proceedings of the
23rd European Conference on Object-Oriented Programming
(ECOOP’09), pages 195–219. Springer-Verlag, July 2009.

R. Bunting. Bridging the framework modeling and implementation
gap. IBM Systems Journal, 39(2):267–284, 2000. ISSN 0018-
8670.

Facebook, 2009. URL http://developers.facebook.com/.

G. Fairbanks. Design Fragments. PhD thesis, Carnegie Mellon
University, 2007.

G. Fairbanks. Risk-Centric Software Architecture. Taylor and Fran-
cis, 2010. URL http://rhinoresearch.com/book.

M. Fontoura, W. Pree, and B. Rumpe. UML-F: A model-
ing language for object-oriented frameworks. In ECOOP
’00: Proceedings of the 14th European Conference on Object-
OrientedProgramming, pages 63–82, London, UK, 2000.
Springer-Verlag. ISBN 3-540-67660-0.

M. Fontoura, W. Pree, and B. Rumpe. The UML Profile for Frame-
work Architectures. Addison-Wesley Professional, 2001. ISBN
0201675188.

M. Fowler. Inversion of control, June 2005. URL
http://martinfowler.com/bliki/InversionOfControl.html.

E. Gamma and K. Beck. Contributing to Eclipse: Principles, Pat-
terns, and Plugins. Addison-Wesley Professional, 2003. ISBN
0321205758.

E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1994. ISBN 0201633612.

D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch,
or, why it’s hard to build systems out of existing parts. In Pro-
ceedings of the 17th International Conference on Software En-
gineering, pages 179–185, Seattle, Washington, April 1995.

A. Heydarnoori. Supporting Framework Use via Automatically Ex-
tracted Concept-Implementation Templates. PhD thesis, Univer-
sity of Waterloo, 2009.

D. Hou and H. J. Hoover. Towards specifying constraints for
object-oriented frameworks. In CASCON ’01: Proceedings of
the 2001 conference of the Centre for AdvancedStudies on Col-
laborative research, page 5. IBM Press, 2001.

D. Hou, H. J. Hoover, and P. Rudnicki. Specifying framework con-
straints with fcl. In H. Lutfiyya, J. Singer, and D. A. Stewart,
editors, CASCON, pages 96–110. IBM, 2004.

C. Jaspan and J. Aldrich. Checking framework interactions with
relationships. In Proceedings of the 23rd European Conference
on Object-Oriented Programming (ECOOP’09), pages 27–51.
Springer-Verlag, July 2009.

R. E. Johnson. Documenting frameworks using patterns. In
OOPSLA ’92: Conference Proceedings on Object-Oriented Pro-
gramming Systems, Languages, and Applications, pages 63–
76, New York, NY, USA, 1992. ISBN 0-201-53372-3. doi:
http://doi.acm.org/10.1145/141936.141943.

R. E. Johnson. Components, frameworks, patterns. SIGSOFT Soft-
ware Engineering Notes, 22(3):10–17, 1997a. ISSN 0163-5948.
doi: http://doi.acm.org/10.1145/258368.258378.

R. E. Johnson. Frameworks = (components + patterns). Commu-
nications of the ACM, 40(10):39–42, 1997b. ISSN 0001-0782.
doi: http://doi.acm.org/10.1145/262793.262799.

R. E. Johnson and B. Foote. Designing reusable classes. Journal
of Object-Oriented Programming, 1:22–35, June/July 1988.

Open|SpeedShop, 2009. URL
http://www.openspeedshop.org.

D. Riehle. Framework Design: A Role Modeling Approach. PhD
thesis, Swiss Federal Institute of Technology, Zurich, 2000.

