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Abstract. Many classification algorithms suffer from a lack of human
interpretability. Using such classifiers to solve real world problems often
requires blind faith in the given model. In this paper we present a novel
approach to classification that takes into account interpretability and
visualization of the results. We attempt to efficiently discover the most
relevant snapshot of the data, in the form of a two-dimensional scatter
plot with easily understandable axes. We then use this plot as the basis
for a classification algorithm. Furthermore, we investigate the trade-off
between classification accuracy and interpretability by comparing the
performance of our classifier on real data with that of several traditional
classifiers. Upon evaluating our algorithm on a wide range of canonical
data sets we find that, in most cases, it is possible to obtain additional
interpretability with little or no loss in classification accuracy.

1 Introduction

In this paper we present a classification algorithm that takes into account human
interpretability of the results. We attempt to find the most relevant snapshot of a
data set, in the form of a two-dimensional scatter plot with easily understandable
axes. This search procedure results in a transformation of our original attributes
into two new features, which not only results in a potentially useful visualization
of the data, but can be used as the basis for a simple classifier. Using this
classifier, we can begin to investigate the trade-off between classification accuracy
and interpretability. We call this process Autonomous Visualization (AV).

Previously, there has been much work on the visualization of large data sets,
which usually involves projecting several dimensions onto a two-dimensional plot
that is easy for humans to comprehend. de Oliveira and Levkowitz provide a
recent survey of the field [4].

Many have tackled the problem of data-driven scientific discovery [11,6,8].
Others have attempted to add interpretability to clustering [15,14,1]. Our work
differs from these in that we are dealing with the problem of classification, and
that we do not limit our techniques to any specific application area.

Goldberger et al. describe a dimensionality reduction technique that can be
used for producing visualizations of high-dimensional data [9]. While their ap-
proach of finding an optimal transformation of the data to a lower-dimensional
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Fig. 1. Left: The AV plot for a breast cancer data set separates the benign and ma-
lignant cases along a diagonal decision boundary. Right: This SDSS star/galaxy plot
produced by AV clearly separates the two classes while maintaining interpretable axes.

space before running nearest neighbor is similar in nature to what we are at-
tempting, one key difference is that the scatter plots they produce do not have
easily interpretable axes. This is also true for other techniques that produce fea-
tures that are linear combinations of the inputs, such as principal components
analysis and projection pursuit [7,13].

Others have proposed classifiers that take interpretability into account, but
we differ by not relying on the format of a rule set or nearest neighbor to make
our classifier interpretable, but rather on direct visualization [16,10,3].

2 Methodology

Our approach in designing a visualizable, interpretable classification algorithm
assumes that the data consists of real-valued input attributes and a single, dis-
crete output. At a high level, our technique consists of three steps: (1) We search
over two-dimensional scatter plots of the data, and select the most relevant plot
(where relevance in this context is defined below); (2) Given the most relevant
plot, we transform the data into the two dimensions defined by its axes, and
then train a simple classifier in this transformed space; (3) We classify future
data points by transforming them into this two-dimensional space, and applying
the classifier trained in the previous step.

2.1 Scatter Plots

In order to find the most relevant snapshot of the data, we search through
the space of possible two-dimensional scatter plots. To ensure that the features
plotted on the two axes are understandable to humans, as well as to make our
search tractable, we limit the types of scatter plots we consider. First, each of
the two axes in a scatter plot represents an arithmetic expression of only one or
two input attributes. Expressions of more than two attributes begin losing their
ease of interpretability. Furthermore, we limit the possible arithmetic expressions
to ones that contain commonly understood operators. We refer to the pair of
expressions that define a scatter plot as a pairexp (e.g., the axes in Figure 1).
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2.2 Relevance

The single most important aspect of the Autonomous Visualization process is
determining which scatter plots are better than others. This relies on defining
a relevance metric that allows us to score pairs of expressions on how likely
they are to produce interesting visualizations of the data. One characteristic of
visually appealing scatter plots is that points from the same class tend to be
grouped together, and apart from points in other classes. We developed a metric
based on this intuition, as well as an efficient algorithm to compute these scores.

We consider the input data to have been generated by a set of two-dimensional
Gaussian distributions, one per class. Thus, we transform the data into the two
dimensions defined by the current pairexp, and compute for each class k the
maximum likelihood Gaussian, with mean μk and covariance Σk. We then com-
pute the number of misclassifications that would occur if we used the Gaussians
to classify the points in our data set. We define the score of the current pairexp
to be this training set error. Intuitively, a plot that has well separated classes
should obtain a lower training set error, and thus a better score, than a plot
whose classes are not well separated. We use training set error rather than vali-
dation set error on a held out set because it is precisely the points in the training
set that we wish to visualize.

Our score can now be written as
∑

i I(ci �= ĉi), where I(·) is the indicator
function, ĉi = argmaxkP (xi|ci = k)P (ci = k) is the class predicted by the
Gaussian Bayes classifier, and ci is the correct output class for point xi.

2.3 Classification

Once we find the best pair of expressions, we have two human interpretable axes
on which to plot our data. However, we also now have transformed the original
m-dimensional input space to a two-dimensional space that can be used for
Gaussian Bayes classification. We classify new data points using the maximum
likelihood Gaussians learned for this new transformed space. Specifically, we
compute the predicted class ĉi for each point to be classified, as above.

3 Acceleration

3.1 Accelerating Score Computation

Näıvely, we can compute the relevance score for a pairexp by iterating through
every point in the data set and checking its Gaussian Bayes classification against
the true class label. This approach clearly takes linear time in the number of data
points, per pairexp. However, by exploiting the spatial structure of our data, we
developed an efficient algorithm for computing the score using kd-trees [2].

The first step in efficiently computing the score for a given pairexp of up to
four attributes (i.e., up to two per expression) is constructing a kd-tree with
these attributes as its dimensions. Note that although kd-tree construction is an
O(n log n) operation, since we are constructing the kd-tree with the raw attribute
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values (i.e., no expression-specific information) we only need to construct one tree
for all possible pairexps of these four attributes. With our current set of legal
expressions, this amounts to one tree constructed per nearly 3,000 pairexps.

We traverse the tree linearly, and at a given kd-tree node, we attempt to
calculate the number of misclassified points belonging to that node without
actually iterating through all of them. Given the bounding hyperrectangle for
the node, we check to see if any of the class Gaussians are dominant. In other
words, for every geometric location x in the bounding box, does there exist a
class k such that P (cx = k|x) > P (cx = l|x) for all classes l? If so, we say
that class k dominates this node, since every point will be classified as class k.
We can thus prune our search, because all points of other classes belonging to
this node will be misclassified, and we can immediately compute the score. If no
class dominates the node, we sum the results of recursive calls to the node’s two
children. We only ever iterate through the individual points of a node if we are
at a leaf node that is not dominated by any single class. For more details, please
refer to our technical report [5].

Finally, it is important to note that due to the monotonicity of our scoring
metric, we can perform early termination pruning, which is a significant source of
computational gain. As we traverse the kd-tree, we can terminate immediately
after computing a misclassification score that is greater than the best one so
far, even if we have only looked at a tiny portion of the tree. This allows this
algorithm to run much faster than the näıve one in practice.

3.2 Accelerating Pairexp Search

Finding the optimal scatter plot that represents the best scoring pairexp involves
a hefty combinatorial search. The search can be divided into a two-stage hierar-
chy. At an outer level, we iterate over tuples of attributes. In an inner loop, given
a tuple of attributes, we iterate over possible pairexps that can be generated from
those attributes. For high dimensional data sets, it is computationally infeasible
for both stages to be exhaustive, since we would have to consider O(m4) tuples,
where m is the number of dimensions.

Rather than exhaustively considering all possible 2-,3-, and 4-tuples of the
input attributes, we instead perform a greedy search, followed by one step of hill-
climbing: (1) We exhaustively consider all pairs of attributes, remembering which
pair produced the best scoring pairexp (e.g., if the best scoring two attribute
pairexp was [x, log y], then we remember (x, y) as the best pair); (2) Given the
best pair, we consider all triples that contain the best pair; (3) Given the best
triple, we consider all quadruples that contain the best triple; (4) Starting from
the best quadruple, we consider all other quadruples that can be obtained by
changing each of the four attributes, one at a time.

Note that only the outer stage is greedy; our inner loop search over pairexps
of a given tuple is exhaustive. This heuristic search now only has a quadratic
dependency on m, since steps 2-4 are now linear. Furthermore, this quadratic de-
pendency is ameliorated by the fact that, in contrast to quadruples, the number
of pairexps that can be generated from a pair of attributes is quite limited.
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4 Experimental Results

We evaluated both the näıve and kd-tree based implementations on twelve dif-
ferent data sets. Eleven come from the UC Irvine repository, while EDSGC is a
subset of the Edinburgh/Durham Southern Galaxy Catalogue.

4.1 Interpretability

We produced a scatter plot for each of the twelve data sets. Figure 1 contains
a representative sample, and the entire set of plots is available in our technical
report [5]. We see that our algorithm succeeds in producing some separation
of the classes. Furthermore, the axes represent simple expressions involving at-
tributes that are well known to the domain experts that would be interested
in analyzing the data. This stands in contrast to the alternative of plotting the
data as projected onto its top two principal components, since in this case, the
axes are no longer directly interpretable.

In order to verify that our algorithm was producing interesting and inter-
pretable visualizations of the data, we consulted a domain expert in astronomy,
who provided us with real data from the Sloan Digital Sky Survey (SDSS).
Given ten real input attributes, and a 50,000 record subset of the data cor-
responding to a region of the sky deemed interesting by the astronomer, AV
produced the star/galaxy plot seen in Figure 1. The domain expert confirmed
that the plot was precisely the kind of plot he would expect from this data.
This anecdotal evidence supports our claim that AV indeed produces useful
visualizations.

Furthermore, in order to determine whether the complexity of our binary
arithmetic expressions was warranted, we ran a version of our algorithm that
considered only pairexps with unary expressions on the two axes. When applied
to the SDSS data, this version produces a rather uninspiring plot, indicating
that there are indeed data sets that are best visualized by combining multiple
attributes on a single axis.

4.2 Classification Accuracy

We computed five-fold cross validation accuracies after running our AV classifier
on all the data sets. For the sake of comparison, we ran nine canonical classifiers
on the same data [17]. It should be noted that, for the sake of expediency, we
limited all larger data sets to 5,000 randomly selected records.

When we compare the classification accuracies of our classifier with those of
the canonical algorithms, we find that the AV classifier is competitive. In Fig-
ure 2, we see a pairwise comparison between our classifier and the nine canonical
classifiers. On average, the classification accuracy of AV is only 0.168 percentage
points lower than the other algorithms. In fact, AV outperforms 1-nearest neigh-
bor and näıve Bayes. On these data sets, the best performing algorithm was a
support vector machine with quadratic kernels, and AV is only 2.348 percentage
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Fig. 2. Left: A pairwise comparison between AV and canonical classifiers, showing the
difference in classification accuracy, averaged over all data sets. Right: Timing analysis
of AV on expanded EDSGC data set, as number of records is increased.

points less accurate on average. In Table 1, we see that AV outperforms the av-
erage canonical classifier on all data sets except iris, realmpg, sonar and vehicle.
However, although close at times, AV is never the most accurate classifier on a
given data set.

4.3 Efficiency

Table 1 shows timing results for running AV with both the kd-tree and non-
kd-tree implementations of the algorithm. We see that by implementing our
algorithm using kd-trees, we make noticeable gains in efficiency over the näıve
implementation, especially for larger data sets. The adult data set, for instance,
sees a 4.12 fold speed-up, and the EDSGC data set sees a speed-up of 8.12. It
is important to note, however, that the vehicle data set performs slightly more
slowly under the kd-tree algorithm than the näıve one. This is perhaps due to
the relatively small size of the data set preventing the algorithm from overcom-
ing the six pairwise class comparisons it must do per kd-tree node, a problem
not encountered in the 50,000 record forest data set, despite its seven output
classes.

Furthermore, we timed the kd-tree implementation on the EDSGC data set
as we varied the number of points from 50,000 to the full 1.4 million record data
set. The resulting plot, as shown in Figure 2, is mostly linear, but begins to dip
slightly as we approach the size of the full data set. When compared to the plot
for the näıve implementation, we see that the overhead of building the kd-trees
is a small price to pay for the gain in efficiency.

It is important to note that the timing costs reported here are only incurred
during the training phase of the classifier. Once a relevant pairexp has been
found during training, future data points can be classified simply by transforming
them to the two-dimensional space and applying the Gaussian Bayes classifier.
Alternatively, for a large data set, time can be saved by training only on a subset
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Table 1. Classification accuracy and timing results

Accuracy (%) Timing (sec)

Data set Records Attributes best average AV kd-tree Näıve

Abalone 4178 8 55.47 53.28 53.84 308 339
Adult 48844 6 83.92 80.87 82.02 502 2069

Breast-w 701 9 97.42 96.15 96.19 22 59
Diabetes 770 8 77.47 74.51 77.34 22 55
EDSGC 50000 22 99.46 95.16 99.16 2221 18037

Forest 50000 10 69.82 67.40 68.12 4856 8445
Heart-statlog 272 13 85.19 80.16 81.48 21 46

Ionosphere 357 34 91.74 87.59 91.17 69 183
Iris 155 4 96.67 95.78 93.33 2.0 7.2

Realmpg 394 7 82.91 72.79 70.66 2.0 6.8
Sonar 210 60 87.02 77.51 74.04 140 227

Vehicle 851 18 80.50 69.35 60.52 279 268

of the data in order to obtain the best pairexp, but then transforming the entire
data set for visualization purposes.

5 Discussion

There is much flexibility inherent to the AV process, which provides ample op-
portunity for exploration during algorithm design. For instance, before settling
on the Gaussian Bayes misclassification score, we implemented several others
for comparison. The first attempt was a pairwise count that penalized points of
differing classes that were in close proximity to each other. We found that this
algorithm generally produced poorer visualizations, and relied on several param-
eters that we found difficult to set. (Leban et al. propose a similar method, which
they use to successfully analyze and visualize gene expression data [12].) In an-
other attempt, we tried maximizing the Gaussian log likelihood of the data, and
found that while we produced visualizations that were at least as good as our
current results, it was difficult to optimize the algorithm in terms of efficiency,
which we believe is the key to making it tractable to search such an intense
diversity of scatter plots. We faced a similar situation when we tried a Gaussian
misclassification score that allowed full covariance matrices, rather than the di-
agonal matrices that we use in our current algorithm. In fact, since our relevance
score is simply a training set error, conceivably any classifier can be substituted
for the Gaussian Bayes classifier that we use, either for computing the score or
for classifying new data.

6 Conclusion

We have described a novel approach to classification that takes into account
interpretability of the results. We have detailed an algorithm that produces rel-
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evant scatter plots of real-valued data sets, and evaluated it in terms of inter-
pretability, classification accuracy, and efficiency. For most problems we consid-
ered, our algorithm was competitive with state-of-the-art classifiers. We provided
compelling evidence that it is possible to obtain additional interpretability with
little or no loss in classification accuracy. Furthermore, we showed that our al-
gorithm is efficient, making it feasible for use on large, real-world data sets.
Finally, our results demonstrate the potential for further investigation into the
opportunities and challenges of integrating visualization with classification.
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