More details:

General: http://www.learning-with-kernels.org/
Example of more complex bounds:
http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz

PAC-learning, VC Dimension and Margin-based Bounds

Machine Learning - 10701/15781
Carlos Guestrin
Carnegie Mellon University

March 6th, 2006

Announcements 1

- Midterm on Wednesday
\square open book, texts, notes,...
\square no laptops
\square bring a calculator

Announcements 2

- Final project details are out!!!
\square http://www.cs.cmu.edu/~guestrin/Class/10701/projects.html
\square Great opportunity to apply ideas from class and learn more
\square Example project:
- Take a dataset
- Define learning task
- Apply learning algorithms
- Design your own extension
- Evaluate your ideas
\square many of suggestions on the webpage, but you can also do your own
- Boring stuff:
\square Individually or groups of two students
\square It's worth 20\% of your final grade
\square You need to submit a one page proposal on Wed. 3/22 (just after the break)
\square A 5-page initial write-up (milestone) is due on $4 / 12$ (20% of project grade)
\square An 8-page final write-up due $5 / 8$ (60\% of the grade)
\square A poster session for all students will be held on Friday 5/5 2-5pm in NSH atrium (20\% of the grade)
\square You can use late days on write-ups, each student in team will be charged a late day per day.
■ MOST IMPORTANT:

What now...

- We have explored many ways of learning from data

■ But...
\square How good is our classifier, really?
\square How much data do I need to make it "good enough"?

How likely is learner to pick a bad hypothesis

- Prob. h with error $_{\text {true }}(\mathrm{h}) \geq \varepsilon$ gets m data points right
- There are k hypothesis consistent with data
\square How likely is learner to pick a bad one?

$$
\begin{aligned}
& P\left(\begin{array}{c}
\text { at hast on of the } k \text { was bad } \\
\text { and it got lucky }
\end{array}\right. \\
& P(\text { one got lucky }) \leq(1-\varepsilon)^{m}
\end{aligned}
$$

Union bound

$$
P(A \text { or } B \text { or } C \text { or } D \text { or } \ldots) \leqslant P(A)+P(B)+P(C)+\cdots
$$

How likely is learner to pick a bad hypothesis

- Prob. h with error $_{\text {true }}(\mathrm{h}) \geq \varepsilon$ gets m data points right
- There are k hypothesis consistent with data
\square How likely is learner to pick a bad one?
$P\left(h_{1}\right.$ bad 8 got lucky or hz had \& got lucky. or han...)

$$
\begin{aligned}
& \leq P\left(h_{1} \text { bad } 8 \text { lucky }\right)+P\left(h_{2} \text { bad lucky }\right)+P\left(h_{3} \ldots\right)+\ldots \\
& \leq(1-\varepsilon)^{m} \\
& \leq K(1-\varepsilon)^{m} \\
& \leqslant|H| e^{-\varepsilon m} \\
& \begin{array}{l}
\text { how big is } K \\
K \leqslant|H| \quad \text { (losses bound!) }
\end{array} \\
& 1-\varepsilon \leq e^{-\varepsilon} \quad\left(\begin{array}{cc}
\text { make } & e q . \\
\text { simper }
\end{array}\right)
\end{aligned}
$$

Review: Generalization error in finite hypothesis spaces [Haussler '88]

- Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0<\varepsilon<1$: for any learned hypothesis h that is consistent on the training data:

Using a PAC bound

- Typically, 2 use cases:

$$
P\left(\operatorname{error}_{\substack{\mathfrak{z} \\ \text { free }}}(h)>\epsilon\right) \leq|H| e^{-m \epsilon}
$$

$\square 1$: Pick ε and δ, give you m2: Pick m and δ, give you ε
(1)

\qquad
ane $2 \delta \leq|H| e^{-m \varepsilon}$

$$
\ln \gamma \leq \ln |H|-m \varepsilon
$$

$\sum_{k}^{\varepsilon} \leq \frac{1}{\Gamma m}\left(\ln |H|+\ln \frac{1}{\delta}\right)$ true error S

before you run the algorithm

Review: Generalization error in finite hypothesis spaces [Haussler '88]

- Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0<\varepsilon<1$: for any learned hypothesis h that is consistent on the training data:

$$
\begin{aligned}
& P(\operatorname{error} \mathcal{X}(h)>\epsilon) \leq|H| e^{-m \epsilon} \\
& \text { if I can always learn a } \\
& \text { consistrent classifier then }
\end{aligned}
$$

Even if h makes zero errors in training data, may make errors in test

Limitations of Haussler ' 88 bound
(1)-Consistent classifier

$$
P\left(\operatorname{crror}_{\substack{x \\ \text { the }}}(h)>\epsilon\right) \leq|H| e^{-m \epsilon}
$$

there may not be such h in class
(2) - Size of hypothesis space bound depends on
 really really large?
infinite?

$$
w \text { contimais }
$$

Simpler question: What's the expected error of a hypothesis?

- The error of a hypothesis is like estimating the parameter of
don't know it

$$
\theta \text { v. } \hat{\theta}
$$

- Chernoff bound: for m i.d.d. coin flips, $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}$, where $x_{i} \in\{0,1\}$. For $0<\varepsilon<1$:

$$
P\left(\theta-\frac{1}{m} \sum_{i} x_{i}>\epsilon\right) \leq e^{-2 m \epsilon^{2}}
$$

But we are comparing many hypothesis: Union bound

For each hypothesis h_{i} :

$$
\left.P \text { error }_{\text {true }}\left(h_{i}\right)-\text { error }_{\text {train }}\left(h_{i}\right)>\epsilon\right) \leq e^{-2 m \epsilon^{2}}
$$

What if I am comparing two hypothesis, h_{1} and h_{2} ?

Generalization bound for $|\mathrm{H}|$ hypothesis

Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0<\varepsilon<1$: for any learned hypothesis h :

$$
P\left(\text { error }_{\text {true }}(h)-\operatorname{error}_{\text {train }}(h)>\epsilon\right) \leq|H| e^{-2 m \epsilon^{2}}
$$

PAC bound and Bias-Variance tradeoff

P (error $_{\text {true }}(h)-$ error $\left._{\text {train }}(h)>\epsilon\right) \leq|H| e^{-2 m \epsilon^{2}}$
or, after moving some terms around, with probability at least $1-\delta$:

- Important: PAC bound holds for all h,
but doesn't guarantee that algorithm finds best h!!!

What about the size of the hypothesis space?

$$
m \geq \frac{1}{2 \epsilon^{2}}\left(\ln |H|+\ln \frac{1}{\delta}\right)
$$

- How large is the hypothesis space? |H|

Boolean formulas with n binary features
$m \geq \frac{1}{2 \epsilon^{2}}\left(\ln |H|+\ln \frac{1}{\delta}\right)$ what's $\ln |H|$?

Number of decision trees of depth k

Recursive solution
Given n attributes
$H_{k}=$ Number of decision trees of depth k
$\mathrm{H}_{0}=2$
$\mathrm{H}_{\mathrm{k}+1}=(\# \mathrm{choices}$ of root attribute) *
(\# possible left subtrees) *
(\# possible right subtrees)

$$
=n * H_{k}{ }^{*} H_{k}
$$

Write $L_{k}=\log _{2} H_{k}$
$\mathrm{L}_{0}=1$
$L_{k+1}=\log _{2} n+2 L_{k}$
So $L_{k}=\left(2^{k}-1\right)\left(1+\log _{2} n\right)+1$

PAC bound for decision trees of depth K

$$
m \geq \frac{\ln 2}{2 \epsilon^{2}}\left(\left(2^{k}-1\right)\left(1+\log _{2} n\right)+1+\ln \frac{1}{\delta}\right)
$$

- Bad!!!
\square Number of points is exponential in depth!

■ But, for m data points, decision tree can't get too big...

Number of decision trees with k leaves

$$
m \geq \frac{1}{2 \epsilon^{2}}\left(\ln |H|+\ln \frac{1}{\delta}\right)
$$

$\mathrm{H}_{\mathrm{k}}=$ Number of decision trees with k leaves
$\mathrm{H}_{0}=2$

$$
H_{k+1}=n \sum_{i=1}^{k} H_{i} H_{k+1-i}
$$

Reminder:

$$
\mid \text { DTs depth } k \mid=2 *(2 n)^{2^{k}-1}
$$

$$
H_{k} \leq n^{k-1}(k+1)^{2 k-1}
$$

PAC bound for decision trees with k leaves - Bias-Variance revisited

$$
H_{k}=n^{k-1}(k+1)^{2 k-1} \quad \quad \operatorname{error}_{t r u e}(h) \leq \operatorname{error}_{\text {train }}(h)+\sqrt{\frac{\ln |H|+\ln \frac{1}{\delta}}{2 m}}
$$

$$
\operatorname{error}_{t r u e}(h) \leq \operatorname{error}_{t r a i n}(h)+\sqrt{\frac{(k-1) \ln n+(2 k-1) \ln (k+1)+\ln \frac{1}{\delta}}{2 m}}
$$

What did we learn from decision trees?

- Bias-Variance tradeoff formalized
$\operatorname{error}_{t r u e}(h) \leq \operatorname{error}_{t r a i n}(h)+\sqrt{\frac{(k-1) \ln n+(2 k-1) \ln (k+1)+\ln \frac{1}{\delta}}{2 m}}$
- Moral of the story:

Complexity of learning not measured in terms of size hypothesis space, but in maximum number of points that allows consistent classification
\square Complexity $m-$ no bias, lots of variance
\square Lower than m - some bias, less variance

What about continuous hypothesis spaces?

$\operatorname{error}_{t r u e}(h) \leq$ error $_{\text {train }}(h)+\sqrt{\frac{\ln |H|+\ln \frac{1}{\delta}}{2 m}}$

- Continuous hypothesis space:
$\square|\mathrm{H}|=\infty$
\square Infinite variance???
- As with decision trees, only care about the maximum number of points that can be classified exactly!

How many points can a linear boundary classify exactly? (1-D)

How many points can a linear boundary classify exactly? (2-D)

How many points can a linear boundary classify exactly? (d-D)

Shattering a set of points

Definition: a dichotomy of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is shattered by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

VC dimension

Definition: The Vapnik-Chervonenkis dimension, $V C(H)$, of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $V C(H) \equiv \infty$.

PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
\square Measures relevant size of hypothesis space, as with decision trees with k leaves
\square Bound for infinite dimension hypothesis spaces:
$\operatorname{error}_{t r u e}(h) \leq$ error $_{t r a i n}(h)+\sqrt{\frac{V C(H)\left(\ln \frac{2 m}{V C(H)}+1\right)+\ln \frac{4}{\delta}}{m}}$

Examples of VC dimension

$\operatorname{error}_{t r u e}(h) \leq \operatorname{error}_{\text {train }}(h)+\sqrt{\frac{V C(H)\left(\ln \frac{2 m}{V C(H)}+1\right)+\ln \frac{4}{\delta}}{m}}$

- Linear classifiers:
$\square \mathrm{VC}(\mathrm{H})=\mathrm{d}+1$, for d features plus constant term b
- Neural networks
$\square \mathrm{VC}(\mathrm{H})=$ \#parameters
\square Local minima means NNs will probably not find best parameters
- 1-Nearest neighbor?

Another VC dim. example

- What's the VC dim. of decision stumps in 2d?

PAC bound for SVMs

- SVMs use a linear classifier

For d features, $\mathrm{VC}(\mathrm{H})=\mathrm{d}+1$:
$\operatorname{error}_{t r u e}(h) \leq \operatorname{error}_{t r a i n}(h)+\sqrt{\frac{(d+1)\left(\ln \frac{2 m}{d+1}+1\right)+\ln \frac{4}{\delta}}{m}}$

VC dimension and SVMs: Problems!!!

Doesn't take margin into account

error $_{\text {true }}(h) \leq$ error $_{\text {train }}(h)+\sqrt{\frac{(d+1)\left(\ln \frac{2 m}{d+1}+1\right)+\ln \frac{4}{\delta}}{m}}$

- What about kernels?
\square Polynomials: num. features grows really fast $=$ Bad bound

num. terms $=\binom{p+n-1}{p}=\frac{(p+n-1)!}{p!(n-1)!}$
n - input features
p - degree of polynomial
\square Gaussian kernels can classify any set of points exactly

Margin-based VC dimension

- H: Class of linear classifiers: $\mathbf{w} . \Phi(\mathbf{x}) \quad(\mathrm{b}=0)$
\square Canonical form: $\min _{\mathrm{j}}\left|\mathbf{w} . \Phi\left(\mathbf{x}_{\mathrm{j}}\right)\right|=1$
- $\mathrm{VC}(\mathrm{H})=\mathrm{R}^{2}$ w.w
\square Doesn't depend on number of features!!!
$\square \mathrm{R}^{2}=\max _{\mathrm{j}} \Phi\left(\mathbf{x}_{\mathrm{j}}\right) . \Phi\left(\mathbf{x}_{\mathrm{j}}\right)$ - magnitude of data
$\square R^{2}$ is bounded even for Gaussian kernels \rightarrow bounded VC dimension
- Large margin, low w.w, low VC dimension - Very cool!

Applying margin VC to SVMs?

$\operatorname{error}_{t r u e}(h) \leq$ error $_{t r a i n}(h)+\sqrt{\frac{V C(H)\left(\ln \frac{2 m}{V C(H)}+1\right)+\ln \frac{4}{\delta}}{m}}$

- $\mathrm{VC}(\mathrm{H})=\mathrm{R}^{2} \mathbf{w} . \mathbf{w}$
$\square \mathrm{R}^{2}=\max _{\mathrm{j}} \Phi\left(\mathbf{x}_{\mathrm{j}}\right) \cdot \Phi\left(\mathbf{x}_{\mathrm{j}}\right)$ - magnitude of data, doesn't depend on choice of \mathbf{w}
- SVMs minimize w.w
- SVMs minimize VC dimension to get best bound?
- Not quite right: :
\square Bound assumes VC dimension chosen before looking at data
\square Would require union bound over infinite number of possible VC dimensions...
\square But, it can be fixed!

Structural risk minimization theorem

$\operatorname{error}_{t r u e}(h) \leq \operatorname{error}_{\text {train }}^{\gamma}(h)+C \sqrt{\frac{\frac{R^{2}}{\gamma^{2}} \ln m+\ln \frac{1}{\delta}}{m}}$
$\operatorname{error}_{\text {train }}^{\gamma}(h)=$ num. points with margin $<\gamma$

- For a family of hyperplanes with margin $\gamma>0$
$\square \mathbf{w} . \mathbf{w} \leq 1$
- SVMs maximize margin $\gamma+$ hinge loss
\square Optimize tradeoff training error (bias) versus margin γ (variance)

Reality check - Bounds are loose

- Bound can be very loose, why should you care?
\square There are tighter, albeit more complicated, bounds
\square Bounds gives us formal guarantees that empirical studies can't provide
\square Bounds give us intuition about complexity of problems and convergence rate of algorithms

What you need to know

- Finite hypothesis space
\square Derive results
\square Counting number of hypothesis
\square Mistakes on Training data
- Complexity of the classifier depends on number of points that can be classified exactly
\square Finite case - decision trees
\square Infinite case - VC dimension
- Bias-Variance tradeoff in learning theory
- Margin-based bound for SVM

■ Remember: will your algorithm find best classifier?

Big Picture

Machine Learning - 10701/15781
Carlos Guestrin
Carnegie Mellon University
March 6th, 2006

What you have learned thus far

- Learning is function approximation
- Point estimation
- Regression
- Naïve Bayes
- Logistic regression
- Bias-Variance tradeoff
- Neural nets
- Decision trees
- Cross validation
- Boosting
- Instance-based learning
- SVMs
- Kernel trick
- PAC learning
- VC dimension
- Margin bounds
- Mistake bounds

Review material in terms of...

- Types of learning problems
- Hypothesis spaces
- Loss functions
- Optimization algorithms

Text Classification

Function fitting

Temperature data

Monitoring a complex system

- Reverse water gas shift system (RWGS)
- Learn model of system from data
- Use model to predict behavior and detect faults

Types of learning problems

- Classification

Input - Features

- Regression
- Density estimation

Output?

The learning problem

Comparing learning algorithms

- Hypothesis space
- Loss function
- Optimization algorithm

Naïve Bayes versus Logistic regression

Naïve Bayes

$$
\begin{aligned}
P(Y \mid X) & =\frac{P(X \mid Y) P(Y)}{P(X)} \\
P(X \mid Y) & =\prod_{i} P\left(X_{i} \mid Y\right)
\end{aligned}
$$

Logistic regression
$P(Y=1 \mid x)=\frac{1}{1+\exp \left(w_{0}+\sum_{i} w_{i} x_{i}\right)}$

Naïve Bayes versus Logistic regression Classification as density estimation

$$
P(Y \mid X)
$$

- Choose class with highest probability

■ In addition to class, we get certainty measure

Logistic regression versus Boosting

Logistic regression

$$
P\left(Y=y_{i} \mid \mathbf{x}\right)=\frac{1}{1+\exp \left(-y_{i}(\mathbf{w} \cdot \mathbf{x}+b)\right)}
$$

Log-loss
$\sum_{j=1}^{m} \log \left[1+\exp \left(-y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right)\right)\right]$

Boosting

Classifier

$$
\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(\mathbf{x})\right)
$$

Exponential-loss

$$
\frac{1}{m} \sum_{j=1}^{m} \exp \left(-y_{j} \sum_{t=1}^{T} \alpha_{t} h_{t}\left(\mathbf{x}_{\mathbf{j}}\right)\right)
$$

Linear classifiers - Logistic regression versus SVMs

What's the difference between SVMs and Logistic Regression? (Revisited again)

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
Solution sparse	Often yes!	Almost always no!
Type of learning		

SVMs and instance-based learning

SVMs

Instance based learning

$$
\operatorname{sign}\left(\sum_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)-0.5 \sum_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)\right)
$$

Instance-based learning versus Decision trees

1-Nearest neighbor

Decision trees

Logistic regression versus Neural nets

$$
g\left(w_{0}+\sum_{i} w_{i} x_{i}\right)=\frac{1}{1+e^{-\left(w_{0}+\sum_{i} w_{i} x_{i}\right)}}
$$

Logistic regression
Neural Nets

Linear regression versus Kernel regression

Linear
Regression

Kernel
regression

Kernel-weighted linear regression

Kernel-weighted linear regression

Local basis functions for each region
Kernels average between regions

SVM regression

$\min _{\mathbf{w}, \xi, \bar{\xi}} \quad \frac{1}{2} \mathbf{w} \cdot \mathbf{w}+C \sum_{j=1}^{m}\left(\xi_{j}+\bar{\xi}_{j}\right)$
s.t.

$$
\begin{aligned}
& y_{j}-\left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right) \leq \epsilon+\xi_{j} \\
& \left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right)-y_{j} \leq \epsilon+\bar{\xi}_{j} \\
& \xi_{j} \geq 0, \quad \bar{\xi}_{j} \geq 0, \quad \forall j
\end{aligned}
$$

