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More details:
General: http://www.learning-with-kernels.org/

Example of more complex bounds:

http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz
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Announcements 1

� Midterm on Wednesday

� open book, texts, notes,…

� no laptops

� bring a calculator
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Announcements 2

� Final project details are out!!!
� http://www.cs.cmu.edu/~guestrin/Class/10701/projects.html

� Great opportunity to apply ideas from class and learn more

� Example project: 
� Take a dataset
� Define learning task
� Apply learning algorithms
� Design your own extension
� Evaluate your ideas

� many of suggestions on the webpage, but you can also do your own

� Boring stuff:
� Individually or groups of two students

� It’s worth 20% of your final grade

� You need to submit a one page proposal on Wed. 3/22 (just after the break)

� A 5-page initial write-up (milestone) is due on 4/12 (20% of project grade)

� An 8-page final write-up due 5/8 (60% of the grade)

� A poster session for all students will be held on Friday 5/5 2-5pm in NSH atrium (20% of the 
grade)

� You can use late days on write-ups, each student in team will be charged a late day per day. 

� MOST IMPORTANT:
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What now…

� We have explored many ways of learning from 

data

� But…

� How good is our classifier, really?

� How much data do I need to make it “good enough”?
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How likely is learner to pick a bad 

hypothesis

� Prob. h with errortrue(h) ≥ ε gets m data points right

� There are k hypothesis consistent with data

� How likely is learner to pick a bad one?
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Union bound

� P(A or B or C or D or …)
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How likely is learner to pick a bad 

hypothesis

� Prob. h with errortrue(h) ≥ ε gets m data points right

� There are k hypothesis consistent with data

� How likely is learner to pick a bad one?
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Review: Generalization error in 

finite hypothesis spaces [Haussler ’88]

� Theorem: Hypothesis space H finite, dataset D

with m i.i.d. samples, 0 < ε < 1 : for any learned 
hypothesis h that is consistent on the training data:
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Using a PAC bound

� Typically, 2 use cases:

� 1: Pick ε and δ, give you m

� 2: Pick m and δ, give you ε
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Review: Generalization error in 

finite hypothesis spaces [Haussler ’88]

� Theorem: Hypothesis space H finite, dataset D

with m i.i.d. samples, 0 < ε < 1 : for any learned 
hypothesis h that is consistent on the training data:

Even if h makes zero errors in training data, may make errors in test
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Limitations of Haussler ‘88 bound

� Consistent classifier

� Size of hypothesis space
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Simpler question: What’s the 

expected error of a hypothesis?

� The error of a hypothesis is like estimating the 

parameter of a coin!

� Chernoff bound: for m i.d.d. coin flips, x1,…,xm, 
where xi ∈ {0,1}. For 0<ε<1:
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But we are comparing many 

hypothesis: Union bound

For each hypothesis hi:

What if I am comparing two hypothesis, h1 and h2?
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Generalization bound for |H| 

hypothesis

� Theorem: Hypothesis space H finite, dataset D

with m i.i.d. samples, 0 < ε < 1 : for any learned 
hypothesis h:
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PAC bound and Bias-Variance 

tradeoff 

� Important: PAC bound holds for all h, 

but doesn’t guarantee that algorithm finds best h!!!

or, after moving some terms around,
with probability at least 1-δδδδ::::
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What about the size of the 

hypothesis space?

� How large is the hypothesis space?
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Boolean formulas with n binary features
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Number of decision trees of depth k

Recursive solution 

Given n attributes

Hk = Number of decision trees of depth k

H0 =2

Hk+1 = (#choices of root attribute) *

(# possible left subtrees) *

(# possible right subtrees)

= n * Hk * Hk

Write Lk = log2 Hk

L0 = 1

Lk+1 = log2 n + 2Lk

So Lk = (2k-1)(1+log2 n) +1
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PAC bound for decision trees of 

depth k

� Bad!!!

� Number of points is exponential in depth!

� But, for m data points, decision tree can’t get too big…

Number of leaves never more than number data points
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Number of decision trees with k leaves

Hk = Number of decision trees with k leaves

H0 =2

Reminder:

Loose bound:
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PAC bound for decision trees with k 

leaves – Bias-Variance revisited
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What did we learn from decision trees?

� Bias-Variance tradeoff formalized

� Moral of the story:

Complexity of learning not measured in terms of 

size hypothesis space, but in maximum number of 

points that allows consistent classification

� Complexity m – no bias, lots of variance

� Lower than m – some bias, less variance
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What about continuous hypothesis 

spaces?

� Continuous hypothesis space: 

� |H| = ∞

� Infinite variance???

� As with decision trees, only care about the 

maximum number of points that can be 
classified exactly!
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How many points can a linear 

boundary classify exactly? (1-D)
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How many points can a linear 

boundary classify exactly? (2-D)
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How many points can a linear 

boundary classify exactly? (d-D)
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Shattering a set of points
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VC dimension
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PAC bound using VC dimension

� Number of training points that can be 

classified exactly is VC dimension!!!

� Measures relevant size of hypothesis space, as 
with decision trees with k leaves

� Bound for infinite dimension hypothesis spaces:
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Examples of VC dimension

� Linear classifiers: 

� VC(H) = d+1, for d features plus constant term b

� Neural networks

� VC(H) = #parameters

� Local minima means NNs will probably not find best 
parameters

� 1-Nearest neighbor?
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Another VC dim. example

� What’s the VC dim. of decision stumps in 2d?
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PAC bound for SVMs

� SVMs use a linear classifier

� For d features, VC(H) = d+1:
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VC dimension and SVMs: Problems!!!

� What about kernels?

� Polynomials: num. features grows really fast = Bad bound

� Gaussian kernels can classify any set of points exactly

Doesn’t take margin into account

n – input features
p – degree of polynomial
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Margin-based VC dimension

� H: Class of linear classifiers: w.Φ(x)  (b=0)

� Canonical form: minj |w.Φ(xj)| = 1

� VC(H) = R2 w.w

� Doesn’t depend on number of features!!!

� R2 = maxj Φ(xj).Φ(xj) – magnitude of data

� R2 is bounded even for Gaussian kernels → bounded VC 

dimension

� Large margin, low w.w, low VC dimension – Very cool!
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Applying margin VC to SVMs?

� VC(H) = R2 w.w

� R2 = maxj Φ(xj).Φ(xj) – magnitude of data, doesn’t depend on choice of w

� SVMs minimize w.w

� SVMs minimize VC dimension to get best bound?

� Not quite right: ����

� Bound assumes VC dimension chosen before looking at data

� Would require union bound over infinite number of possible VC 
dimensions…

� But, it can be fixed!
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Structural risk minimization theorem

� For a family of hyperplanes with margin γ>0

� w.w � 1

� SVMs maximize margin γ + hinge loss

� Optimize tradeoff training error (bias) versus margin γ
(variance)
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Reality check – Bounds are loose

� Bound can be very loose, why should you care?

� There are tighter, albeit more complicated, bounds

� Bounds gives us formal guarantees that empirical studies can’t provide

� Bounds give us intuition about complexity of problems and 
convergence rate of algorithms

ε

m (in 105)

d=2000

d=200

d=20

d=2
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What you need to know

� Finite hypothesis space

� Derive results

� Counting number of hypothesis

� Mistakes on Training data

� Complexity of the classifier depends on number of 

points that can be classified exactly

� Finite case – decision trees

� Infinite case – VC dimension

� Bias-Variance tradeoff in learning theory

� Margin-based bound for SVM

� Remember: will your algorithm find best classifier?
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Big Picture
Machine Learning – 10701/15781

Carlos Guestrin

Carnegie Mellon University

March 6th, 2006
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What you have learned thus far

� Learning is function approximation
� Point estimation
� Regression
� Naïve Bayes
� Logistic regression
� Bias-Variance tradeoff
� Neural nets
� Decision trees
� Cross validation
� Boosting
� Instance-based learning
� SVMs
� Kernel trick
� PAC learning 
� VC dimension
� Margin bounds
� Mistake bounds
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Review material in terms of…

� Types of learning problems

� Hypothesis spaces

� Loss functions

� Optimization algorithms
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Text Classification

Company home page

vs

Personal home page

vs

Univeristy home page

vs

…



2006 Carlos Guestrin 43

Function fitting
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Monitoring a complex system

� Reverse water gas shift system (RWGS)

� Learn model of system from data

� Use model to predict behavior and detect faults
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Types of learning problems

� Classification

� Regression

� Density estimation
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The learning problem

Data

<x1,…,xn,y>

Learning task

Features/Function approximator

Loss function

Optimization algorithm

Learned function
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Comparing learning algorithms

� Hypothesis space

� Loss function

� Optimization algorithm
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Naïve Bayes versus Logistic 

regression
Naïve Bayes Logistic regression
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Naïve Bayes versus Logistic regression –

Classification as density estimation

� Choose class with highest probability

� In addition to class, we get certainty measure
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Logistic regression versus Boosting

BoostingLogistic regression

Log-loss

Classifier

Exponential-loss
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Linear classifiers – Logistic 

regression versus SVMs

w
.x

+
 b

 =
 0
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What’s the difference between SVMs and 
Logistic Regression? (Revisited again)

Almost always no!Often yes!Solution sparse

Type of learning

Yes!Yes!High dimensional 
features with 
kernels

Loss function Log-lossHinge loss

Logistic

Regression

SVMs
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SVMs and instance-based learning

Classify as

SVMs

<x1,…,xn,y>

Classify as

Instance based learning

Data
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Instance-based learning versus 

Decision trees

1-Nearest neighbor Decision trees
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Logistic regression versus Neural nets

Logistic regression Neural Nets
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Linear regression versus Kernel 

regression

Linear

Regression

Kernel

regression

Kernel-weighted

linear regression
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Kernel-weighted linear regression
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SVM regression

w
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BIG PICTURE 
(a few points of comparison)

Naïve 
Bayes

Logistic 
regression

Neural
Nets

Boosting

SVMs

Instance-based
Learning

SVM 
regression

kernel
regression

linear
regression

Decision
trees

Log-loss/MLELL

Margin-basedMrg

RegressionReg

Squared errorRMS

ClassificationCl

density estimationDE
learning

task

loss

function

DE, LL

DE, LL

DE,Cl,Reg,RMS

Cl, exp-loss

DE,Cl,Reg

DE,Cl,Reg

Cl, Mrg

Reg, Mrg

Reg, RMS

Reg, RMS

This is a very incomplete view!!! 


