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Abstract Although the present work does in fact employ training
data, it does so in the interest of calibrating the results

Six hundred faults were induced by injection into five live obtained from an experimental detection and diagnostic
campus networks at Carnegie Mellon University in order system designed specifically to accommodate noisy,
to determine whether or not particular network faults nonstationary, nonspecific domains.  The system
have unique signatures as determined by out-of-band generalizes by virtue of its log analysis capabilities; all
monitoring instrumentation. If unique signatures span monitored data and events are recorded in log files.
networks, then the monitoring instrumentation can be These files are processed by the system, resulting in
used to diagnose network faults, or distinguish among testable and reproducible detections and diagnoses of
fault classes, without human intervention, using anomalous conditions. Any monitored process or
machine-generated diagnostic decision rules.  This device can be used to populate the logs with data.
would be especially useful in large, unmanned systems
in which the occurrence of novel or unanticipated faults The specific objective of the present work is to conduct
could be catastrophic. Results indicate that significant a designed experiment to test the detection and diag-
accuracy in automated detection and discrimination nosis capabilities of a system for handling faults in local
among fault types can be obtained using anomaly sig- area networks.  Networks were selected as a test
natures as described here. domain because their operating characteristics include

nonlinear, nonstationary dynamic behavior.  The experi-
ment uses automated injection techniques to induce1. Objective carefully calibrated fault conditions into multiple, live net-

Fault detection and diagnosis in noisy, nonlinear, non- works. These faults may manifest differently on different
stationary domains is intrinsically hard.  This is compli- networks. The experiment aims to use monitored
cated further when one’s understanding of the particular results from the injections in determining whether or not
domain is incomplete, thus making modeling difficult. it is possible to construct reliable diagnostic decision
Examples of such domains, whose dynamic characteris- rules, spanning all injected networks, that will dis-
tics change over time, are chemical plants (catalyst ac- criminate successfully among various fault conditions.
tivity decays with use), semiconductor fabrication
processes (plasma etch characteristics change due to If the experiment is successful, suggesting that fault-
erosion and accumulated contamination) and network specific signatures are consistent across network
communications (traffic and configuration conditions drift domains, then out-of-band monitoring instruments can
with time).  Perhaps because such domains are so dif- be used to identify network faults or fault classes, with-
ficult to track and understand, reliable fault detection out human intervention, using machine-generated diag-
and diagnosis techniques are badly needed. nostic decision rules. This would be especially useful in

large, unmanned systems in which the occurrence of
It is common that in the environments described, no unanticipated faults could be catastrophic.
training examples or training sets are available, par-
ticularly for unanticipated faults.  This is largely because
these environments are incompletely understood, due to 2. Background and related work
their complexity and dynamic character.  Moreover, their A long-term goal is to develop diagnostic systems that,
missions tend to change frequently, as when new like people, can ascertain from their environments the
chemicals or semiconductors are brought to manufac- necessary relationships among environmental stimuli for
ture, or when new applications, software or machinery ensuring success in their missions without external aid.
are placed in service on a network.  The present work is The word "mission" can be interpreted in several ways:
directed at understanding how to acquire enough infor- maintain equilibrium or homeostasis; compensate for
mation from the environment itself to be able to for- the effects of external disturbances; keep a system
mulate a useful, adaptable fault detection and diagnosis operating under unanticipated conditions that may affect
system.
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its ability to deliver reliably dependable service. Implied that the present work avoids, by detecting anomalous
in all these is the idea of adaptation to changes in conditions in the network traffic environment itself, not
operational environments.  One problem encountered in the originating nodes.  Iyer et al. [6] have devised an
evolving environments is that the definition of a fault approach that takes raw error logs containing a single
may change, depending on local circumstances. Based entry for each error, and produces a list of symptoms
on static measures, what constitutes a fault under some that characterize persistent errors.  Lee et al. [8], in an
conditions may not constitute a fault under other (often analysis of event logs, identified errors on the basis of
unpredictable) conditions in a different time or place. knowledge of the architectural and operational charac-
This suggests that a diagnostic system must find a way teristics of systems measured. Similarly, Thearling and
to accommodate to these changing situations. Iyer [15] developed a diagnostic reasoning technique

which operates on the basis of observed erroneous be-
The present work builds on foundations established ear- havior and system structure.
lier by Maxion and Feather.  Maxion [11] established the
learning mechanism by which adaptive stability could be

3. Faults, anomalies and signaturesachieved in environments whose operating characteris-
Historically, "fault" and "failure" have been defined intics drift over time.  Maxion [12] also showed that
several ways. Maxion and Feather [13] noted the evolu-process anomalies could be detected reliably in noisy
tion of the definition of "fault" from Avizienis [1] (thecommunication environments like Ethernet networks.
deviation of one or more logic values ... from theirMaxion and Feather [13] showed that anomalous net-
design-specified values) through Siewiorek and Swarzwork events such as broadcasts and jabbers could be
[14] (a physical change in hardware) to Laprie’s [7] "thedetected using these anomaly detectors, but this was
cause of an error". Perhaps the least context-sensitivedone by empirical observation, rather than by designed
definition comes from Webster’s 3rd International Un-study. Feather [5] replicated this work, and showed that
abridged Dictionary: a fault is "a defect in quality" and avectors of measured features could be indicative of net-
failure is a "lack of satisfactory performance or effect; towork faults, although again no designed experiment was
fail is to disappoint the expectations of" (emphasisdone. The current work extends earlier results by per-
added).forming a designed experiment to determine whether or

not faults can be represented reliably by vectors of
The clear sense one gains here is that a failure is ameasured parameters undergoing continuous,
departure from expected conditions.  Expectations canenvironmentally-driven adaptation, and whether or not
be set either by specification or by experience, neither ofsuch vectors are sufficiently consistent under different
which is guaranteed to be complete.  In real-world en-environmental conditions to be classified reliably by a
vironments, expected conditions are normal conditions,decision rule applied to the vector features. One advan-
and hence there is some motivation for casting devia-tage of this technique is that adaptation to new or
tions from normalcy as failures.changing environments is automatic.

In the present work a fault is regarded as a departureOther work in diagnosis addresses related, but not iden-
from expected operating conditions -- it produces antical, issues.  In contrast to the present technique, many
anomaly in the observed operating environment.  Manyapproaches have relied largely on preconceived, static
faults have characteristic suites of symptoms, some-fault definitions in predominantly stable environments,
times called syndromes or signatures.  We want to see ifdependent to varying degrees on characteristics of par-
network faults (1) can be detected reliably by notingticular systems. One example is that of Lin and
performance anomalies; and (2) can be discriminated bySiewiorek [9] who used system-dependent trend
virtue of their signatures.  If signature discrimination isanalysis rules in measuring system behaviors to suggest
possible, then simple, machine-generated pattern-that increasing rates of intermittent faultiness are predic-
recognition filters can be used to detect and diagnosetive of hard failure. In a similar approach to system-level
network faults in real time.  Similar techniques can bediagnosis, Tsao [16] used heuristics that relied on the
applied in many other domains.relative timing of fault detections at different points in a

system’s architectural hierarchy.  Signature classifica- Signatures are often thought of in terms of absolute
tion was not a part of these approaches, and the par- measures on various parameters of a stimulus signal.
ticular heuristics used may have been valid only for the For network traffic phenomena this would mean ab-
architectures being used, needing to be invented anew solute measures of raw packet traffic or raw collision
for alternative architectures.  The adaptive distributed counts, for example. Because different networks
system-level diagnosis (DSD) work of Bianchini et al. operate normally at different mean levels, an absolute
[3] [2] has addressed network diagnosis by detecting collision count of 200 per minute on one network might
faulty nodes in a network.  The method relies on signals be acceptably normal, while on another network, per-
transmitted among the nodes to determine the up/down haps less utilized, the same count of 200 would be un-
operational status of a given node.  The node itself acceptably high.  Hence, it is difficult to compare
could be operational, but still faulty in terms of trans- measurements between different network environments.
mitting destructive network traffic, which the DSD algo- Maxion and Feather [13] have discussed the implica-
rithm would never see.  It is exactly this kind of situation tions of normalcy and faulty behavior previously.
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To facilitate a standard of comparison among different clients. Symmetrically, the lower-end machines are
network environments, the measure used was not raw most often used as client machines.  High-performance
counts, but rather levels of anomalous conditions. machines employed as clients only infrequently monop-
Therefore, a count of 200 collisions per minute on one olize network bandwidth in large data transfers. There
network might be considered normal, while the same were 419 client machines and 20 server machines in-
count on another network would be consider out of nor- cluded in the study, as shown in Table 4-1.
mal range, or anomalous. The comparison, then, is a

Machines typical of each type are:measure of the extent to which a network operates
within its normal range on any of a number of dimen-
sions. On any dimension a network may measure nor- • Low -- Sun-3, IBM RT, NeXT, Encore Mul-
mal or anomalous.  The signature uses these indications timax, microVAX/VAX, Motorola MC68xxx,
of normal or abnormal, instead of raw measures.  While Sequent Balance, Gateway, Toshiba 5200,
absolute raw measures may change, anomalies do not. IBM L40SX, Intel i386, Omron, Ariel, Macin-
Maxion [12] has discussed how a monitoring system can tosh, Olivetti M380, Kinetics, Sony
adapt its concepts of anomalous behavior, even when NWS-1250, TI Explorer.
the observed environment is changing over time.

• High -- DEC 2100-5000, Sun-4, i486/66, HP
720/730, IBM RS6000, Alpha, Iris.4. Experimental environment

Given that the objective is to test the adequacy of
anomaly signatures under various operating conditions,

Network System Clients Servers Total
there are many experimental environments that would Performance

Levelbe suitable.  Since much of our previous work has been
conducted in the network environment, and networks Network 1/5FL low 57 0 57
exhibit the characteristics necessary for testing the idea high 57 1 58

115of anomaly signatures (noise, trend, dynamic behavior,
disparate environments, etc.), the CMU campus network Network 2/3PU low 76 2 78

high 71 1 72was selected as a real-world environment for ex-
150perimentation.

Network 3/3PR low 11 6 17
Monitoring and diagnosis of networks is tremendously high 14 9 23

40challenging. Special equipment is needed, continuous,
error-free monitoring is necessary, and the operating

Network 4/7FL low 18 0 18
conditions of networks themselves practically defy high 34 0 34

52scrutiny. It is perhaps less the goal to show that the
proposed technique works for networks than it is to Network 5/DOH low 45 0 45
show that it works at all.  If it works in networks, it should high 36 1 37

82also work in less challenging circumstances.

4.1. CMU network configuration Table 4-1: Breakdown of machine performanceThe CMU Computer Science network is configured with
classes, high and low, on each monitored network.a Cisco AGS+ intelligent bridge/router acting exclusively
5FL, 3PU, etc. are codes for network names.  Totalin bridging mode as a common backbone for 18 Ether-
population is 439 systems.net networks, 13 of which are in use.  Five of these 13

networks were employed in the present injection and
monitoring study. The machine population of the net-

4.3. Traffic characteristicswork is roughly 1300 stations of various kinds, including
Different networks exhibit different behaviors. Non-servers. The population must be estimated at any given
uniform network behavior is one of the conditions undertime because it changes rapidly, often from one day to
scrutiny in this work, since there is an expectation thatthe next.
individual network characteristics will influence fault
detection and/or diagnosis. Five networks were4.2. Performance of networked computers
selected for the study on the basis of their availabilityThe computers on each monitored network were clas-
and their operating characteristics.  One of the networkssified into two groups: low and high performance.  Two
had a low-performance client population and no serversgroups were used, instead of three, to avoid splitting
(network 4). One of the networks had relatively fewhairs in attempting to classify something as medium per-
clients, but many servers (network 3).  Network 2 had aformance, rather than high or low, in a three-way clas-
large client population, including many high-sification scheme. The classification was based
performance clients, and a moderate server population.primarily on a machine’s MIPS rating as an indication of
Network 1 has over a hundred clients, evenly split be-its ability to saturate the network.  It should be noted that
tween low- and high-performance machines, and onlyhigh-end machines are often used as servers, which are
one server.  Network 5 has a slightly lower population,typically responsible for more network bandwidth than
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but its clients are engaged in graphics and virtual reality
research, making them heavier network users than
might otherwise be expected. Figure 4-1 shows the
mean and standard deviation performance in packet
traffic per minute for each of the five networks over the
same five-day period.  Activities that are typical of net-
work usage at CMU are: electronic mail, AFS/NFS/RFS,
X, telnet, and backup (which has the highest average
network usage of all these activities).  Most traffic is
tcp/ip (udp).
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Ethernet collisions over 24 hours: Network 5, 20-Nov-92 (Friday)

Figure 4-2: Scattergram showing raw collision
data containing 24 fault injections, all detected cor-
rectly.
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Figure 4-1: Mean and standard deviation of daily
packet traffic for five different monitored networks.
There are significant differences in the behaviors of
the several networks, that could be expected  to in-
fluence the detection of faults and the ability to dis-
criminate among them.
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Mean daily packet traffic, Network 2: Sep - Nov 1992tigated, and also an indication of the difficulty of doing
so, Figure 4-2 shows an example of a typical network
day on one of the quieter networks, network 5.  It is
interesting to note that all of the injected faults for this

Figure 4-3: Ninety-day mean daily packet trafficnetwork were correctly detected for the day shown.
(network 2) showing positive trend (dotted line) sig-
nificant at the .0001 level.One characteristic required for the study was non-

stationarity, or trend. If the characteristics of the
stochastic process that generated the time-series net-
work behavior are not invariant with respect to time (i.e., 5. Injected faults
the process is nonstationary), it will often be difficult to Five faults were selected for injection testing.  Each fault
represent the time series over past and future time inter- is representative of typical network faults that could im-
vals by a simple model.  Trend, loosely defined as a pair or disable network performance.  The following fault
long-term change in the mean, is typically measured in conditions were selected for injection, based on their
terms of the slope of the regression line plotted over the propensity for natural occurrence, and on the abilities of
designated time period. A regression analysis of the our instruments to induce and monitor them faithfully
mean daily packet traffic for network 2 showed sig- and repeatably.  These fault types accounted for 76% of
nificant positive trend at the .0001 level. The regression confirmed faults over an observation period of two years
equation is y = 38516.5 + 155.7x.  The data are graphed on the Computer Science networks at Carnegie Mellon
in Figure 4-3 with the regression trend line super- University.
imposed. Other networks analyzed showed similar posi-
tive trend at similar significance levels. Pseudo-runt flood -- A runt packet is one which vio-

lates the Ethernet standard by being smaller than the
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60-byte specified minimum size.  Because our in-
strumentation lacks the capability to detect true runts, 1- FAULT TYPE
60-byte packets were employed as pseudo-runts. This 1 = 60-Byte Pseudo-Runt Storm

2 = Network Pagingdid not affect detection and discrimination. High packet
3 = Bad Frame-Check Sequencerates are characteristic of runt floods, resulting in
4 = Jabberresource contention problems.
5 = Broadcast

2- NETWORK TYPE (1, 2, 3, 4, 5)
Network paging -- This condition occurs when a disk- 3- INJECTION NUMBER (1-24)
less workstation runs a process too large for its physical 4- DESTINATION ADDRESS, UNUSUAL ACTIVITY

5- DESTINATION ADDRESS, INCREASED ACTIVITYmemory. Memory swaps are then done over the net-
6- DESTINATION ADDRESS, CEASED ACTIVITYwork to a file server.  When conducted over even
7- DESTINATION ADDRESS, SUDDEN APPEARANCEmoderately extended periods, network paging can
8- SOURCE ADDRESS, UNUSUAL ACTIVITY

cause significant latency due to bandwidth limitations. 9- SOURCE ADDRESS, INCREASED ACTIVITY
10- SOURCE ADDRESS, CEASED ACTIVITY

Bad frame-check sequence -- This condition occurs 11- SOURCE ADDRESS, SUDDEN APPEARANCE
12- PERCENT_UTILIZATIONwhen the frame-check sequence on a packet has been
13- PACKET_COUNTcorrupted or incorrectly computed by the receiving sta-
14- COLLISION_COUNTtion; this necessitates a retransmission, which increases
15- PACKET LENGTH < 63

traffic moderately on the network. 16- PACKET LENGTH 64-127
17- PACKET LENGTH > 1024

Jabber -- This condition is caused by excessive trans-
mission of oversized packets, i.e., packets longer than
the protocol-specified 1518-byte limit.  The condition

Table 6-1: Measured parameters (4-17) whichresults in extreme loss of bandwidth.
describe anomalies on the network.  These ele-

Broadcast storm -- This condition causes host ments, together with items 1-3, constitute the fea-
response time to become slow, and network utilization tures in the anomaly feature vectors.
to be very high.  It is often caused by flawed protocols,
software errors or flawed configurations that overuse the
Ethernet broadcast address. Broadcast packets are 7.1. Fault injection system
sent to every node on the network.  In accordance with The fault injection system operates in one of two modes.
the Ethernet protocol, every station is required to read One is to accept a schedule of fault types, network seg-
broadcast packets.  When there are too many broadcast ments and times; at the appointed time, the chosen fault
packets, stations become bogged down in attempting to is automatically injected into the selected network.  The
respond to every packet.  (Normally, hosts respond only schedule can extend over many weeks, months, or even
to packets sent to its own destination, ignoring all other years. The second mode is more automated in that the
packets.) Because excessive broadcasts would be system itself selects the fault types and injection times,
detrimental to network operations, the broadcast fault thereby constituting a "robo-colleague" who conducts
was simulated using short packets excluding the broad- blind experiments.  In either mode a log is kept of the
cast address.  For this reason, the broadcast fault fea- faults injected and their injection times.  This log can be
ture vector may be similar to, but still discriminable from, used after the fact to verify what actually happened.  In
the pseudo-runt feature vector (the collision feature in a the blind-experimenter mode, diagnostic systems can be
real broadcast storm would have a high value). used to detect and identify faults without knowing in ad-

vance what the faults are, or when they occurred; diag-
noses are later verified against the log.  The present6. Measured data
experiment was not blind.Fourteen parameters of network performance were

measured, as described in items 4-17 below, subject to The software/hardware system for fault injection con-
the limitations of available instrumentation.  Measures sists of a MicroVax workstation which drives the fault-
were taken on two general types of information -- injection software, and an HP 4972A LAN analyzer.  The
primary and secondary.  Primary, direct measures were MicroVax communicates with the HP, using the DDCMP
items 12-17, such as percent utilization and collision protocol. When a fault is to be injected, as determined
count. Secondary, or inferential, measures were ad- by the injection schedule, the MicroVax synthesizes the
dress items 4-11, which covary in this experiment with injection code which is then downline loaded onto the
fault-specific performance. HP in real time, after which the HP is remotely com-

manded to execute the code. Execution thereby causes
the HP to generate code-directed traffic patterns and7. Instrumentation
faults, injecting the traffic into the active network.  DuringInstrumentation consisted of a fault injection system and
this period the HP is under remote control by thetwo out-of-band hardware monitoring systems.
MicroVax.
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7.2. Monitoring system
The out-of-band monitoring instrumentation consists of

Fault-1 (60-Byte pseudo-runt storm)two custom pieces of hardware, each controlled by
Week-1 Net-1 Net-2 Net-3 Net-4 Net-5

software on the MicroVax.  Hardware monitors are at- Mon Tue Wed Thu Fri
tached to each monitored network.  One instrument

Fault-2 (Network paging)gathers statistics for packet traffic, collisions, percent
Week-2 Net-1 Net-2 Net-3 Net-4 Net-5utilization and uptime.  The other instrument gathers

Mon Tue Wed Thu Fridata about packet types, packet lengths, packet sources
and destinations, etc. All instrumentation is time Fault-3 (Bad frame-check sequence)
synchronized. Monitors operate at a 200 ms sample Week-3 Net-1 Net-2 Net-3 Net-4 Net-5

Mon Tue Wed Thu Frirate, and observations are collapsed into one-minute
periods. All data are written to on-line logs in real time.

Fault-4 (Jabber)Because the monitoring is done out of band (monitoring Week-4 Net-1 Net-2 Net-3 Net-4 Net-5
instruments do not share the same data path, or band, Mon Tue Wed Thu Fri
as the measured device, hence do not influence

Fault-5 (Broadcast storm)measured devices by their presence), monitoring has no
Week-5 Net-1 Net-2 Net-3 Net-4 Net-5effect on the parameters being measured.

Mon Tue Wed Thu Fri

7.3. Analysis system
The analysis system is completely automated. Table 8-1: Schedule of injections for five faults.
Monitored data, logged by filename according to data
type, time and date, are processed without human inter-

five networks (weekend days excluded), consumingvention as they accumulate.  Some exceptions were
181.7 megabytes of storage.  When the data were ex-made at the end of the experiment, because the evalua-
panded for analysis, they occupied even more space,tion of the experimental data demanded certain
and spanned 2925 files.  The bookkeeping alone is amanipulations that are not part of everyday processing,
considerable chore.such as gathering all results into a single file for global

assessments. Details of relevant analyses are given in
Data quality was very good.  Missing or corrupt dataSection 8.3.
constituted only .1% of the data.  Standard data imputa-
tion techniques [10] are employed to recover from these

8. Methodology and experimental design lost data.

8.1. Injection 8.3. Detection
Five different faults were used.  Each fault was injected The raw data are broken out into individual files contain-
into each network once an hour for twenty-four hours ing lists of anomalies for each different parameter.
over the course of a week.  Each network received in- Determination of anomalous points is achieved by the
jections for only one day each week, so that the network adaptive method described by Maxion [12]. Anomalies
could recover from the effects of the injections before a can take values from -2 to +2, including zero.  Zero
new fault would be injected.  Table 8-1 shows the means that no anomaly was detected. Positive values
schedule of faults injected into each different network. indicate that monitored conditions differed from ex-

pected conditions by a positive value; negative values
For each of five weeks a new fault was injected each indicate the converse.  The value itself indicates the
week. Conducting the experiment over the course of magnitude of the anomaly; a 1 or -1 depicts an event
five weeks allowed each network to take its evolutionary that is merely surprising, as opposed to a 2 or -2, which
course, and facilitated validation of analysis algorithms depict events that go beyond surprise; they are as-
for adapting to trend.  Using five different networks over tonishing. Quantitatively, these levels can be thought of
the course of a week permitted observation of be- as standard deviations, where 1 maps to 3 standard
havioral effects in five different network environments. deviations above expected behavior, and 2 maps to 4 or
Conducting the experiment over the course of a 24-hour more. "X" signifies "don’t care." A "don’t-care" value
day allowed faults to be injected across a range of con- would be appropriate for a parameter that is not affected
ditions for that day’s network. by a particular fault, nor does its value help discriminate

among different faults.
8.2. Data collection
Monitoring resolution is presently set at 200 ms.  Data Each type of data is regarded as a feature. Software is
are collapsed into one-minute epochs, thereby poten- used to coalesce the individual features from separate
tially producing 1440 feature vectors per day per net- databases into a database of feature vectors for each
work. Over the course of the entire experiment, which monitored time frame.  The feature vectors contain all
was monitored for five weeks plus the preceding eight 14 features, plus information strictly for experimental
weeks to permit the adaptive algorithms to stabilize, purposes, like fault type, network number and injection
468,000 primary observations were taken across the sequence number.  Table 8-2 shows some of the fea-
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ture vectors for fault 3 injected into network 2.  The own members than to the members of the other group.
columns follow the order of variables shown in Table All the possible cutpoints for maximizing the groups’ in-
6-1. Except for the first three columns, each number ternal homogeneity are evaluated.  The best one is
can be regarded as a measure of the extent of an chosen, the data are thereby split into two groups, and
anomaly on its respective parameter at a particular mo- the procedure repeats itself on each of the two new
ment in time. groups, making more splits and further re-examinations.

At each stage of the recursion, the category diversity
within groups is minimized.  When no further improve-

3 2 1 2 2 0 0 2 2 1 0 0 0 0 0 0 0 ment in homogeneity is possible, the algorithm stops.
3 2 2 2 2 0 0 2 2 0 0 0 0 0 0 0 0 Recursive partitioning regression is very good at finding
3 2 4 2 2 0 0 2 2 0 0 0 0 0 0 0 0 local, low-dimensional structure in functions that show
3 2 5 2 2 1 0 2 2 1 1 0 0 0 0 0 0

high-dimensional global dependence.  It also has a3 2 6 2 2 0 0 2 2 0 0 0 0 0 0 0 0
powerful graphic representation as a decision tree, the3 2 7 2 2 0 0 2 2 0 0 0 0 X 0 0 0

3 2 8 2 2 0 0 2 2 0 0 0 0 0 0 0 0 use of which is described in Section 9.2.
3 2 9 2 2 0 0 2 2 0 0 0 0 0 0 0 0
3 2 10 2 2 0 0 2 2 0 0 0 0 X 0 0 1 Once a decision rule has been generated, the rule’s
3 2 11 2 2 0 0 2 2 0 0 0 0 0 0 0 0 misclassification rates, or predictive accuracies, are es-
3 2 12 2 2 0 1 2 2 0 1 0 0 0 0 0 0

timated. A ten-fold cross-validation procedure is used to
determine the best decision rule possible. The proce-
dure works by randomly dividing the data into ten

Table 8-2: Feature vectors for fault 3, network 2. groups of equal size, and building a decision tree based
on 90% of the data.  The tree’s misclassification rate is
then assessed on the remaining 10% of the data. This is

8.4. Discrimination repeated for each of the ten groups, and the best deci-
Diagnosis means to identify a condition by its signs, sion tree is determined to be the one that produced the
symptoms or distinguishing characteristics; to dis- lowest misclassification rate. The process of cross
criminate among distinct features.  Put another way, cer- validation thereby uses each one-tenth of the data as a
tain features are diagnostic of particular conditions.  The test sample for the other nine tenths.
feature vectors obtained in the injection study are al-
ready known to be of five groups or classes -- one class

9. Resultsfor each fault -- but exactly what features may dis-
Six hundred faults were scheduled for automatic injec-criminate them from one another is unknown.  Each
tion into five different networks.  Of these, fourteen injec-feature vector was assigned a fault number from 1 to 5,
tions failed for technical reasons, leaving 586 successfulaccording to its associated injected fault.
injections. From these 586 were extracted 544 feature

What is needed is a decision rule, based on the vectors’ vectors. The missing 42 vectors were not extracted due
discriminating characteristics, for assigning feature vec- to unexpected (but reliably detectable and repairable)
tors of unknown origin to correct fault classes.  The synchronization problems in the software architecture
decision rule can then be used to discriminate one fea- for the feature vector extraction process.
ture vector, or fault, from another on the basis of the
features and values contained in the vector.  Such a 9.1. Detection
decision rule would permit automatic discrimination Overall detection coverage on any parameter was
among new occurrences of faults.  The rule should, for 90.6%. The greatest detection difficulty was found on
example, be able to discriminate among the three fol- network 2, which has a machine population of 150, con-
lowing feature vectors, assigning each to a fault cate- sisting of 76 low performance systems and 71 high per-
gory. (These three vectors were correctly classified by formance systems.  Of these, three are servers.  Net-
the decision rule automatically generated in the course work 3 experienced degraded detection coverage, too.
of this project.  Two of them represent the same fault, This network’s machine population is 40, consisting of
but on different networks; the other is a different fault on 11 low performance systems and 14 high performance
the same network as the first.) systems. Of these, 6 low performance systems and 9

high performance systems are servers.  Referring to1 1 0 1 1 1 0 1 0 1 0 1 0 0
1 1 0 1 2 2 0 1 0 0 0 1 0 0 Figure 4-1, it can be seen that these two networks are
1 1 0 1 1 1 0 1 1 1 0 0 0 1 the busiest of the five under test.  Network 2 has the

least stable traffic pattern; network 3 has a more stable
mean, helping to raise the probability of correct detec-The technique used here to do this is called recursive
tion, although its variance remains fairly large.partitioning regression [4], because the procedure forms

homogeneous groups (of vectors) by recursive partition- It is interesting to note the pattern of detections.  The
ing, or splitting, of the dataset.  For the classification first column in Table 9-1 shows the percent detections
problem, the procedure begins by searching each vari- for each of the five injected faults on network 1; total
able for the cutpoint that best separates the data into detection coverage was 93.4%.  The next two columns
two groups, each of which is internally more similar to its show that the same faults were detected less well on
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Network
True Class

1 2 3 4 5
P 1 2 3 4 5
r

F 1 1.00 1.00 1.00 1.00 1.00
e C  1 0.92 0.00 0.03 0.00 0.33

a 2 1.00 0.88 0.79 1.00 1.00
d l  2 0.01 0.89 0.07 0.01 0.00

u 3 0.67 0.21 0.13 1.00 1.00
i a  3 0.00 0.07 0.86 0.00 0.00

l 4 1.00 1.00 1.00 1.00 1.00
c s  4 0.00 0.01 0.01 0.98 0.00

t 5 1.00 0.96 1.00 1.00 1.00
t s  5 0.08 0.03 0.03 0.01 0.67
e
d

Table 9-1: Detection coverage (%) for all faults and
networks. Table 9-2: Cross validation classification probability

matrix: all faults.

networks 2 and 3.  This may be because these networks
carry substantially more traffic than networks 1, 4 and 5,
or because the variability in traffic conditions on these

True Classnetworks is fairly large.  Network 2 has the lowest detec-
tion coverage, and it also has the highest traffic and the

P 1 2 3 4highest variability (see Figure 4-1); it also has the r
greatest trend component (see Figure 4-3). Network 3, e C  1 0.99 0.03 0.03 0.00

d l  2 0.01 0.89 0.14 0.00whose detection coverage was 78.4%, carries a high
i a  3 0.00 0.07 0.81 0.01traffic load, but a fairly stable one, without substantial
c s  4 0.00 0.01 0.02 0.99variability or trend.  Networks 4 and 5, both quieter net-
t s

works, had a 100% detection coverage, even though the e
variability on network 5 was relatively higher than that d
on network 4.

The rows in Table 9-1 show the detection coverages for Table 9-3: Cross validation classification probability
each fault injected on all networks.  Fault 4 (jabber), with matrix: fault #5 excluded.
100% detection, seems to have been easiest to detect.
Fault 3 (bad frame-check sequence) was most difficult.
The relative ease and difficulty of detection has inter- Similarly, if fault 1 is excluded, the misclassification rate
acted in expected ways with network conditions. is 6.1%, or 93.9% correct classification.  The cross

validation classification matrix is shown in Table 9-4.
9.2. Discrimination
The overall misclassification rate across all faults and all
networks was 13.2%, or correct classification rate of True Class
86.8%, as calculated from the actual correct classifica-

P 2 3 4 5tions in the vector data. The cross validation classifica-
rtion probability matrix in Table 9-2 shows the percent of
e C  2 0.97 0.01 0.04 0.01correct classifications for all of the injected faults. For
d l  3 0.00 0.93 0.09 0.00

example, fault 4 was classified correctly 98% of the i a  4 0.03 0.05 0.87 0.00
time. c s  5 0.00 0.01 0.00 0.99

t s
eFrom the table it can be seen that most of the dis-
dcrimination error occurred on fault 5 (broadcast).  Fault 5

was misclassified as fault 1 (60-byte packet storm) 1/3
of the time.  This is not surprising, however, because

Table 9-4: Cross validation classification probabilityeven a human could easily make this mistake; the two
matrix: fault #1 excluded.faults are parametrically very similar and easily

1confused . Moreover, it was understood at the outset
that these two fault conditions were similar.  If fault 5 is

Decision rule. The particular decision rule generatedexcluded from the analysis, the misclassification rate
for the network fault data contains 18 clauses, and so isgoes down to 7.9%, or 92.1% successful classifications.
too long to reproduce here.  Instead, Table 9-5 shows aThis can be seen in the matrix in Table 9-3.
simpler decision rule generated for the same data, but
with less stringent accuracy requirements; it has only six

1 clauses. In reading the rule, the splitting strategy of theSometimes the cross-validation matrix is called a confusability
partitioning algorithm can be seen.  The overall clas-matrix, because it depicts elements in a manner that demonstrates the

extent to which one is confused with another.
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sification accuracy for this rule is 81.1% as opposed to
|the more complex rule for the same data that dis-

+----------------------- 1 -----------------------+criminates at the 86.8% level.  The decision rule in
| |

+-------------- 2 --------------+ |Table 9-5 can be interpreted as follows: first, obtain the
| | |values of the feature vector (e.g., as in Table 8-2); test +---- 3 ----+ +------------ 4 -----------+ |

| | | | |these values at node 1 of the decision rule; if the value
| | | +------- 5 -------+ |of the feature named PL0127 (code for packet lengths | | | | | |

| | | +---- 6 ----+ | |between 64 and 127 bytes) is greater than 5.00e-01,
| | | | | | |

then the fault is of type 4, and the decision process is | | | | | | |

complete; otherwise, go to node 2 and test on the value
F-3 F-2 F-5 F-1 F-5 F-5 F-4

of the feature named PL0063; this clause of the decision
rule will not select a fault type, but rather will determine
which clause of the decision rule to execute next; and so

Figure 9-1: Classification tree for network faults.on. Comparing with the classification tree in Figure 9-1,
if one begins at node 1 and takes the rightmost decision
path at the first opportunity, the fault will be classified as not anomalies had occurred was adaptive in that it ac-
type F-4, shown at the lower right of the tree.  The commodated for the behavioral changes of monitored
nodes in the tree represent the clauses (nodes) in the networks over time.
decision rule in Table 9-5.

The experiment was a modest success, achieving a
detection accuracy of 90.6% and an overall diagnostic

Read feature vector; then start at Node 1: classification accuracy of 86.8%. This seems accept-
able for a first attempt.  For selected cases the accuracy

Node 1: IF PL0127  .le.  5.00e-01 THEN GOTO Node 2 was much higher.  Where accuracy was impaired there
ELSE fault = type 4

appeared to be good reasons for it.  For example, someNode 2: IF PL0063  .le.  5.00e-01 THEN GOTO Node 3
networks are inherently more diverse in their behaviorsELSE GOTO Node 4

Node 3: IF DESADSU .le.  5.00e-01 THEN fault = type 3 than others are.  Such diverse behaviors are harder to
ELSE fault = type 2 learn than are more stable behaviors.  The same is true

Node 4: IF DESADSU .le.  5.00e-01 THEN fault = type 5 of any learning entity, even in the natural, biological
ELSE GOTO Node 5

world.Node 5: IF DESADIN .le.  1.50e+00 THEN GOTO Node 6
ELSE fault = type 5

The analyses performed here did not address someNode 6: IF SOUADIN .le.  1.50e+00 THEN fault = type 1
ELSE fault = type 5 issues that were raised during the course of the work.

For example, no results are presently available that
show exactly which individual faults were misclassified,Table 9-5: Decision rule for tree in Figure 9-1.
although these analyses are expected in the near future.PL0127 is the code for feature 16, packet length
With such results it may be possible to discover a way of64-127; other codes similar.
improving overall accuracy. One idea might be to use
different, weighted, measures in a voting regime of
some kind; another idea is to adjust the adaption rate forClassification tree. The simple classification tree
each network in accordance with that network’s rate ofshown in Figure 9-1 matches the decision rule shown in
change. (For the present study all adaption rates wereTable 9-5.  It is used as an illustration, because it is
identical.)simpler and easier to depict than the decision tree that

achieves 86.8%.  The tree shown has seven terminal
One advantage to the approach used here is that whennodes, labeled with their respective faults, while the
a novel fault is detected, its feature vector can be86.8% tree has 19 terminal nodes. Note that fault 5 is
matched against the existing set of known fault featurerepresented at three terminal nodes.  The decision rule
vectors. If the new vector is maximally similar to one offor the latter tree is considerably more complex, but also
the existing feature vectors, then the new detection canmore accurate and robust.  For example, the tree shown
be provisionally assigned to that category. Experiencewill correctly classify only 90% of true fault 4 as fault 4,
will then confirm whether or not the new fault is in fact inwhile the more complex tree achieves a 98% accuracy
that class; if not, then a new class can be formed.for the same fault.
Meanwhile, using the similarity test can provide a useful
early means of handling novel faults.

10. Discussion
Another idea is that adaptively generated features canThe objective of the work described here was to deter-
be transgenerated from general functions of the originalmine whether or not a uniform characterization of rela-
features. These new features can be used in thetively disparate behaviors in continuously changing en-
generation of classification rules if they are usefully dis-vironments could be used to detect and diagnose
criminatory; otherwise they can be ignored if they add(classify) fault conditions.  The uniform characterization
little discriminatory power to the generated decision rule.used was a vector of anomalies, or departures from nor-
Efficient synthesis of transgenerated features is an openmal behavior. The method for determining whether or
problem.
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[4] Breiman, Leo; Friedman, Jerome H.; Olshen, RichardAlthough the present work was conducted in the domain
A. and Stone, Charles J. Classification and Regressionof Ethernet networks, this domain was chosen more be-

Trees. Wadsworth International Group, Belmont, California,cause of its operational characteristics (continuous,
1984.dynamic, noisy, nonstationary data, punctuated by in-
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Computers 39(4):525-537, April, 1990.
It may seem unusual that no mention of false alarms

[7] Laprie, Jean-Claude.  Dependable Computing andhas been made.  This is because false alarms are not at
Fault Tolerance: Concepts and Terminology.  In 15th Inter-issue here.  All the vectors were derived from injected
national Symposium on Fault-Tolerant Computing (FTCS-15),faults, hence no vector could have represented a no-
pages 2-11.  1985.fault, or false-alarm, condition.  The only manner in

which false alarms could appear in this work is in [8] Lee, Inhwan; Iyer, Ravishankar K. and Tang, Dong.
misclassification, that is, calling a fault one thing when it Error/Failure Analysis Using Event Logs from Fault Tolerant
is actually something else.  In this work there is no fault Systems. In 21st International Symposium on Fault-Tolerant
class signifying the condition in which "nothing Computing, pages 10-17.  IEEE Computer Society Press, Los

Alamitos, California, June 25-27, 1991.  Montreal, Canada.happened." Classically, the matter of false alarms is a
detection issue, not a discrimination issue. [9] Lin, Ting-Ting Y. and Siewiorek, Daniel P.  Error Log
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puting (FTCS-20), pages 20-27.  IEEE Computer Society, Junethem. The procedures and algorithms used appear to
26-28, 1990.  Newcastle upon Tyne, England.be robust under a variety of environmental conditions.

[13] Maxion, Roy A. and Feather, Frank E.  A Case Study of
Ethernet Anomalies in a Distributed Computing Environment.12. Acknowledgements
IEEE Transactions on Reliability 39(4):433-443, October, 1990.

It is a pleasure to acknowledge the contributions and [14] Siewiorek, Daniel P. and Swarz, Robert S. The Theory
comments of Paul Parker, Dave Livingston, Frank Fea- and Practice of Reliable System Design. Digital Press, Bed-
ther and, especially, David Banks of the CMU Statistics ford, MA, 1982.
Department.

[15] Thearling, Kurt H. and Iyer, Ravishankar K.  Diagnostic
Reasoning in Digital Systems.  In 18th International Sym-

References posium on Fault-Tolerant Computing, pages 286-291.  IEEE
Computer Society Press, Washington, D. C., June 27-30, 1988.

[1] Avizienis, Algirdas.  Architecture of Fault-Tolerant Com-
Tokyo, Japan.

puting Systems.  In 5th International Symposium on Fault-
Tolerant Computing (FTCS-5), pages 3-16.  1975. [16] Tsao, M.M. Trend Analysis and Fault Prediction. PhD

thesis, Carnegie Mellon University, 1983.
[2] Bianchini, Ronald Jr. and Buskens, Richard.  An Adap-
tive Distributed System-Level Diagnosis Algorithm and its Im-
plementation. In Proceedings of the 21st International Sym-
posium on Fault-Tolerant Computing (FTCS-21), pages
222-229. IEEE Computer Society, Montreal, Canada, June
25-27, 1991.

[3] Bianchini, Ronald Jr.; Goodwin, Ken and Nydick, Daniel
S. Practical Application and Implementation of Distributed
System-Level Diagnosis Theory.  In 20th International Sym-
posium on Fault-Tolerant Computing (FTCS-20), pages
332-339. IEEE Computer Society, June 26-28, 1990.  New-
castle upon Tyne, England.

Maxion & Olszewski 10


