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Univariate Time Series
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Example Signals:
• Number of ED visits today
• Number of ED visits this hour
• Number of Respiratory Cases Today
• School absenteeism today
• Nyquil Sales today
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(When) is there an anomaly?
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(When) is there an anomaly?
This is a time series of counts 
of primary-physician visits in 
data from Norfolk in December 
2001. I added a fake outbreak, 
starting at a certain date. Can 
you guess when?
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(When) is there an anomaly?

This is a time series of counts 
of primary-physician visits in 
data from Norfolk in December 
2001. I added a fake outbreak, 
starting at a certain date. Can 
you guess when?

Here (much 
too high for a 
Friday)

(Ramp outbreak)
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An easy case
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Dealt with by Statistical Quality Control

Record the mean and standard deviation up 
the the current time.

Signal an alarm if we go outside 3 sigmas
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An easy case: Control Charts
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Dealt with by Statistical Quality Control

Record the mean and standard deviation up 
the the current time.

Signal an alarm if we go outside 3 sigmas

Mean

Upper Safe Range
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Control Charts on the Norfolk Data

Alarm Level
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Control Charts on the Norfolk Data

Alarm Level
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Looking at changes from yesterday
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Looking at changes from yesterday

Alarm Level



12

Looking at changes from yesterday

Alarm Level
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We need a happy medium:
Control Chart:           
Too insensitive to recent 
changes

Change from yesterday: 
Too sensitive to recent 
changes
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Moving Average
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Moving Average
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Moving Average
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Moving Average

Looks better. But how can we 

be quantitative about this?
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Algorithm 
Performance

Fraction of 

spikes detected
Days to detect 

a ramp 

outbreak

Allowing one False Alarm 
per TWO weeks…

Fraction of 

spikes detected
Days to detect 

a ramp 

outbreak

Allowing one False Alarm 
per SIX weeks…

standard control chart 0.39 3.47 0.22 4.13
using yesterday 0.14 3.83 0.1 4.7
Moving Average 3 0.36 3.45 0.33 3.79
Moving Average 7 0.58 2.79 0.51 3.31
Moving Average 56 0.54 2.72 0.44 3.54
hours_of_daylight 0.58 2.73 0.43 3.9
hours_of_daylight is_mon 0.7 2.25 0.57 3.12
hours_of_daylight is_mon ... is_tue 0.72 1.83 0.57 3.16
hours_of_daylight is_mon ... is_sat 0.77 2.11 0.59 3.26
CUSUM 0.45 2.03 0.15 3.55
sa-mav-1 0.86 1.88 0.74 2.73
sa-mav-7 0.87 1.28 0.83 1.87
sa-mav-14 0.86 1.27 0.82 1.62
sa-regress 0.73 1.76 0.67 2.21
Cough with denominator 0.78 2.15 0.59 2.41
Cough with MA 0.65 2.78 0.57 3.24
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Semi-synthetic data: spike outbreaks
1. Take a real time series 2. Add a spike of random 

height on a random date

3. See what alarm levels your algorithm 
gives on every day of the data

4. On what fraction of non-spike days is 
there an equal or higher alarm

Only one

5. That’s an example of the false positive 
rate this algorithm would need if it was going 
to detect the actual spike.
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5. That’s an example of the false positive 
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3. See what alarm levels your algorithm 
gives on every day of the data

4. On what fraction of non-spike days is
there an equal or higher alarm

Only one

5. That’s an example of the false positive 
rate this algorithm would need if it was going 

2. Add a spike of random 
height on a random date

3. See what alarm levels your algorithm 
gives on every day of the data

4. On what fraction of non-spike days
there an equal or higher alarm

Only on

5. That’s an example of the false positive 
rate this algorithm would need if it was going

2. Add a spike of random 
height on a random date

3. See what alarm levels your algorithm 
gives on every day of the data

4. On what fraction of non-spike da
there an equal or higher alarm

Only 

5. That’s an example of the false positive 

2. Add a spike of random 
height on a random date

3. See what alarm levels your algorithm 
gives on every day of the data

4. On what fraction of non-spike d
there an equal or higher alarm

Do this 1000 times to 

get an average 

performance
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Semi-synthetic data: ramp outbreaks
1. Take a real time series 2. Add a ramp of random 

height on a random date

3. See what alarm levels your algorithm 
gives on every day of the data

4. If you allowed a specific false positive 
rate, how far into the ramp would you 
be before you signaled an alarm?
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Semi-synthetic data: ramp outbreaks
2. Add a ramp of random 
height on a random date

3. See what alarm levels your algorithm 
gives on every day of the data

4. If you allowed a specific false positive 
rate, how far into the ramp would you 
be before you signaled an alarm?

2. Add a ramp of random 
height on a random date

3. See what alarm levels your algorithm 
gives on every day of the data

4. If you allowed a specific false positive 
rate, how far into the ramp would you 
be before you signaled an alarm?

2. Add a ramp of random 
height on a random date

3. See what alarm levels your algorithm 
gives on every day of the data

4. If you allowed a specific false positive 
rate, how far into the ramp would you 
be before you signaled an alarm?

2. Add a ramp of random 
height on a random date

3. See what alarm levels your algorithm 
gives on every day of the data

4. If you allowed a specific false positive
rate, how far into the ramp would you
be before you signaled an alarm?

2. Add a ramp of random 
height on a random date

3. See what alarm levels your algorithm 
gives on every day of the data

4. If you allowed a specific false positi
rate, how far into the ramp would yo
be before you signaled an alarm?

2. Add a ramp of random 
height on a random date

3. See what alarm levels your algorithm 
gives on every day of the data

4. If you allowed a specific false pos
rate, how far into the ramp would
be before you signaled an alarm?

Do this 1000 times to 

get an average 

performance

1. Take a real time series
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Evaluation methods
All synthetic
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Evaluation methods
All synthetic

You can account for 
variation in the way 
the baseline will look.

You can publish 
evaluation data and 
share results without 
data agreement 
problems

You can easily 
generate large 
numbers of tests

You know where the 
outbreaks are
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Evaluation methods
All synthetic

You can account for 
variation in the way 
the baseline will look.

You can publish 
evaluation data and 
share results without 
data agreement 
problems

You can easily 
generate large 
numbers of tests
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Your baseline data 
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Semi-Synthetic
Can’t account for 
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You can easily 
generate large 
numbers of tests
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available data
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Your outbreak data 
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Is the test typical?

None of these options is satisfactory.

Evaluation of Biosurveillance algorithms is really 

hard. It has got to be. This is a real problem, and 

we must learn to live with it.
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Algorithm 
Performance

Fraction of 

spikes detected
Days to detect 

a ramp 

outbreak

Allowing one False Alarm 
per TWO weeks…

Fraction of 

spikes detected
Days to detect 

a ramp 

outbreak

Allowing one False Alarm 
per SIX weeks…

standard control chart 0.39 3.47 0.22 4.13
using yesterday 0.14 3.83 0.1 4.7
Moving Average 3 0.36 3.45 0.33 3.79
Moving Average 7 0.58 2.79 0.51 3.31
Moving Average 56 0.54 2.72 0.44 3.54
hours_of_daylight 0.58 2.73 0.43 3.9
hours_of_daylight is_mon 0.7 2.25 0.57 3.12
hours_of_daylight is_mon ... is_tue 0.72 1.83 0.57 3.16
hours_of_daylight is_mon ... is_sat 0.77 2.11 0.59 3.26
CUSUM 0.45 2.03 0.15 3.55
sa-mav-1 0.86 1.88 0.74 2.73
sa-mav-7 0.87 1.28 0.83 1.87
sa-mav-14 0.86 1.27 0.82 1.62
sa-regress 0.73 1.76 0.67 2.21
Cough with denominator 0.78 2.15 0.59 2.41
Cough with MA 0.65 2.78 0.57 3.24
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Seasonal Effects

Time

S
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Fit a periodic function (e.g. sine wave) to previous 
data. Predict today’s signal and 3-sigma 
confidence intervals. Signal an alarm if we’re off.

Reduces False alarms from Natural outbreaks.

Different times of year deserve different thresholds.
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Day-of-week effects

Fit a day-of-week component

E[Signal] = a + deltaday

E.G: deltamon= +5.42, deltatue= +2.20, deltawed= 
+3.33, deltathu= +3.10, deltafri= +4.02, 
deltasat= -12.2, deltasun= -23.42

A simple form 
of ANOVA
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Regression using Hours-in-day & IsMonday
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Regression using Hours-in-day & IsMonday
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Regression using Mon-Tue
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CUSUM
• CUmulative SUM Statistics

• Keep a running sum of “surprises”: a sum of 
excesses each day over the prediction

• When this sum exceeds threshold, signal 
alarm and reset sum
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CUSUM
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CUSUM
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The Sickness/Availability Model
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The Sickness/Availability Model
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Exploiting Denominator Data
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Exploiting Denominator Data
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hours_of_daylight is_mon ... is_sat 0.77 2.11 0.59 3.26
CUSUM 0.45 2.03 0.15 3.55
sa-mav-1 0.86 1.88 0.74 2.73
sa-mav-7 0.87 1.28 0.83 1.87
sa-mav-14 0.86 1.27 0.82 1.62
sa-regress 0.73 1.76 0.67 2.21
Cough with denominator 0.78 2.15 0.59 2.41
Cough with MA 0.65 2.78 0.57 3.24
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Show Walkerton Results
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Other state-of-the-art methods
• Wavelets
• Change-point detection
• Kalman filters
• Hidden Markov Models


