PAC-learning

Andrew W. Moore
Associate Professor School of Computer Science Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu 412-268-7599

Probably Approximately Correct (PAC) Learning

- Imagine we're doing classification with categorical inputs.
- All inputs and outputs are binary.
- Data is noiseless.
- There's a machine $f(x, h)$ which has H possible settings (a.k.a. hypotheses), called $h_{1}, h_{2} . . h_{H}$.

Example of a machine

- $f(x, h)$ consists of all logical sentences about X1, X2 .. Xm that contain only logical ands.
- Example hypotheses:
- X1 ^ X3 ^ X19
- X3 ^ X18
- X7
- $\mathrm{X} 1^{\wedge} \mathrm{X} 2{ }^{\wedge} \mathrm{X} 2{ }^{\wedge} \mathrm{x} 4 \ldots$... Xm
- Question: if there are 3 attributes, what is the complete set of hypotheses in f ?

Example of a machine

- $f(x, h)$ consists of all logical sentences about X1, X2 .. Xm that contain only logical ands.
- Example hypotheses:
- X1 ^ X3 ^ X19
- X3 ^ X18
- X7
- X1 ^ X2 ^ X2 ^ x4 ... ^ Xm
- Question: if there are 3 attributes, what is the complete set of hypotheses in f ? $(H=8)$

True	X 2	X 3	$\mathrm{X} 2 \wedge \mathrm{X} 3$
X 1	$\mathrm{X} 1^{\wedge} \mathrm{X} 2$	$\mathrm{X} 1^{\wedge} \mathrm{X} 3$	$\mathrm{X} 1^{\wedge} \mathrm{X} 2 \wedge \mathrm{X} 3$

And-Positive-Literals Machine

- $f(x, h)$ consists of all logical sentences about X1, X2 .. Xm that contain only logical ands.
- Example hypotheses:
- X1 ^ X3 ^ X19
- X3 ^ X18
- X7
- $\mathrm{X} 1^{\wedge} \mathrm{X} 2{ }^{\wedge} \mathrm{X} 2{ }^{\wedge} \mathrm{x} 4 \ldots$... Xm
- Question: if there are m attributes, how many hypotheses in f ?

And-Positive-Literals Machine

- $f(x, h)$ consists of all logical sentences about X1, X2
.. Xm that contain only logical ands.
- Example hypotheses:
- X1 ^ X3 ^ X19
- X3 ^ X18
- X7
- X 1 ^ X 2 ^ X 2 ^ $\mathrm{x} 4 \ldots$... Xm
- Question: if there are m attributes, how many hypotheses in f ? $\left(H=2^{m}\right)$

And-Literals Machine

- $f(x, h)$ consists of all logical sentences about X1, X2 .. Xm or their negations that contain only logical ands.
- Example hypotheses:
- X1 ^ ~X3 ^ X19
- $\mathrm{X} 3{ }^{\wedge} \sim \mathrm{X} 18$
- ~X7
- X1 ^ X2 ^ ~X3 ^ ... ^ Xm
- Question: if there are 2 attributes, what is the complete set of hypotheses in f ?

And-Literals Machine

- $f(x, h)$ consists of all logical sentences about X1, X2 .. Xm or their negations that contain only logical ands.
- Example hypotheses:
- X1 ^ ~X3 ^ X19
- $\mathrm{X} 3^{\wedge} \sim \mathrm{X} 18$
- ~X7
- X1 ^ X2 ^ ~X3 ^ ... ^ Xm
- Question: if there are 2 attributes, what is the complete set of hypotheses in f? ($\mathrm{H}=9$)

And-Literals Machine

- $f(x, h)$ consists of all logical sentences about X1, X2 .. Xm or their negations that contain only logical ands.
- Example hypotheses:
- X1 ^ ~X3 ^ X19
- $\mathrm{X} 3{ }^{\wedge} \sim \mathrm{X} 18$
- ~X7
- $\mathrm{X1}$ ^ $\mathrm{X} 2{ }^{\wedge} \sim \mathrm{X} 3^{\wedge} \ldots{ }^{\wedge} \mathrm{Xm}$
- Question: if there are m attributes, what is the size of the complete set of hypotheses in f ?

True		True
True		X 2
True		$\sim \mathrm{X} 2$
X 1		True
X 1	\wedge	X 2
X 1	\wedge	$\sim \mathrm{X} 2$
$\sim \mathrm{X} 1$		True
$\sim \mathrm{X1}$	\wedge	X 2
$\sim \mathrm{X} 1$	\wedge	$\sim \mathrm{X} 2$

And-Literals Machine

- $f(x, h)$ consists of all logical sentences about X1, X2 .. Xm or their negations that contain only logical ands.
- Example hypotheses:
- X1 ^ ~X3 ^ X19
- $\mathrm{X} 3^{\wedge} \sim \mathrm{X} 18$
- ~X7
- X1 ^ X2 ^ ~X3 ^ ... ^ Xm
- Question: if there are m attributes, what is the size of the complete set of hypotheses in f? ($\mathrm{H}=3^{\mathrm{m}}$)

Lookup Table Machine

- $f(x, h)$ consists of all truth tables mapping combinations of input attributes to true and false
- Example hypothesis:
- Question: if there are m attributes, what is the size of the complete set of hypotheses in f ?

$X 1$	$X 2$	$X 3$	$X 4$	Y
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Lookup Table Machine

- $f(x, h)$ consists of all truth tables mapping combinations of input attributes to true and false
- Example hypothesis:

- Question: if there are m attributes, what is the size of the complete set of hypotheses in f ?

$$
H=2^{2^{m}}
$$

A Game

- We specify f, the machine
- Nature choose hidden random hypothesis h*
- Nature randomly generates R datapoints
- How is a datapoint generated?
1.Vector of inputs $\mathbf{x}_{k}=\left(x_{k 1}, x_{k 2}, x_{k m}\right)$ is
drawn from a fixed unknown distrib: D
2.The corresponding output $y_{k}=f\left(\mathbf{x}_{k}, h^{*}\right)$
- We learn an approximation of $h *$ by choosing some hest for which the training set error is 0

Test Frror Rate

- We specify f, the machine
- Nature choose hidden random hypothesis h^{*}
- Nature randomly generates R datapoints
- How is a datapoint generated?
1.Vector of inputs $\mathbf{x}_{k}=\left(x_{k 1}, x_{k 2}, x_{k m}\right)$ is drawn from a fixed unknown distrib: D
2.The corresponding output $y_{k}=f\left(\mathbf{x}_{k}, h^{*}\right)$
- We learn an approximation of $h *$ by choosing some hest for which the training set error is 0
- For each hypothesis h,
- Say h is Correctly Classified (CCd) if h has zero training set error
- Define TESTERR(h)
$=$ Fraction of test points that h will classify correctly
$=P(\mathrm{~h}$ classifies a random test point correctly)
- Say h is BAD if TESTERR $(h)>\varepsilon$

Test Error Rate	$P(h \text { is } \mathrm{CCd} \mid h \text { is bad })=$ $P\left(\forall k \in\right.$ Training Set, $f\left(x_{k}, h\right)=y_{k} \mid h$ is bad $)$
- We specify f, the machine - Nature choose hidden random hypothesis h* - Nature randomly generates R datapoints - How is a datapoint generated? 1.Vector of inputs $\mathbf{x}_{k}=\left(x_{k 1}, x_{k 2}, x_{k m}\right)$ is drawn from a fixed unknown distrib: D 2.The corresponding output $y_{k}=f\left(\mathbf{x}_{k}, h^{*}\right)$ - We learn an approximation of h^{*} by choosing some hest for which the training set error is 0 - For each hypothesis h, - Say h is Correctly Classified (CCd) if h has zero training set error - Define TESTERR(h) = Fraction of test points that i will classify correctly $=P(\mathrm{~h}$ classifies a random test point correctly) - Say h is BAD if TESTERR $(h)>\varepsilon$	$\leq(1-\varepsilon)^{R}$

Test Frror Rate

- We specify f, the machine
- Nature choose hidden random hypothesis h^{*}
- Nature randomly generates R datapoints
- How is a datapoint generated?
1.Vector of inputs $\mathbf{x}_{\mathrm{k}}=\left(\mathrm{x}_{\mathrm{k} 1}, \mathrm{x}_{\mathrm{k} 2}, \mathrm{x}_{\mathrm{km}}\right)$ is drawn from a fixed unknown distrib: D
2.The corresponding output $y_{k}=f\left(\mathbf{x}_{k}, h^{*}\right)$
- We learn an approximation of $h *$ by choosing some hest for which the training set error is 0
- For each hypothesis h,
- Say h is Correctly Classified (CCd) if h has zero training set error
- Define TESTERR(h)
$=$ Fraction of test points that i will classify correctly
$=P(\mathrm{~h}$ classifies a random test point correctly)
- Say h is BAD if TESTERR(h$)>\varepsilon$

$P(h$ is $\mathrm{CCd} \mid h$ is bad $)=$

$P\left(\forall k \in\right.$ Training Set, $f\left(x_{k}, h\right)=y_{k} \mid h$ is bad $)$

$$
\leq(1-\varepsilon)^{R}
$$

$P($ we learn a bad $h) \leq$ $P\binom{$ the set of $\mathrm{CCd} h ' \mathrm{~s}}{$ containsa bad $h}=$ $P\left(\exists h . h\right.$ is $\mathrm{CCd}{ }^{\wedge} h$ is bad $)=$
$P\left(\begin{array}{c}\left(h_{1} \text { is } \mathrm{CCd}^{\wedge} h_{1} \text { is bad }\right) \vee \\ \left(h_{2} \text { is } \mathrm{CCd}{ }^{\wedge} h_{2} \text { is bad }\right) \vee \\ : \\ \left(h_{H} \text { is } \mathrm{CCd}{ }^{\wedge} h_{H} \text { is bad }\right)\end{array}\right) \leq$ $\sum_{i=1}^{H} P\left(h_{i}\right.$ is $\mathrm{CCd}^{\wedge} h_{i}$ is bad$) \leq$ $\sum_{i=1}^{H} P\left(h_{i}\right.$ is $\mathrm{CCd} \mid h_{i}$ is bad $)=$ $H \times P\left(h_{i}\right.$ is $\mathrm{CCd} \mid h_{i}$ is bad $) \leq H(1-\varepsilon)^{R}$

PAC Learning

- Chose R such that with probability less than δ we'll select a bad hest (i.e. an hest which makes mistakes more than fraction ε of the time)

- Probably Approximately Correct

- As we just saw, this can be achieved by choosing R such that

$$
\delta=P(\text { we learn a bad } h) \leq H(1-\varepsilon)^{R}
$$

- i.e. R such that

$$
R \geq \frac{0.69}{\varepsilon}\left(\log _{2} H+\log _{2} \frac{1}{\delta}\right)
$$

PAC in action			
Machine	Example Hypothesis	H	R required to PAClearn
And-positiveliterals	X 3 ^ $\mathrm{X7}$ ^ $\mathrm{X8}$	2^{m}	$\frac{0.69}{\varepsilon}\left(m+\log _{2} \frac{1}{\delta}\right)$
And-literals	X3 ^ ~ $\mathrm{X7}$	3 m	$\left.\frac{0.69}{\varepsilon}\left(\log _{2} 3\right) m+\log _{2} \frac{1}{\delta}\right)$
Lookup Table		$2^{2^{m}}$	$\frac{0.69}{\varepsilon}\left(2^{m}+\log _{2} \frac{1}{\delta}\right)$
And-lits or And-lits	$\begin{aligned} & \left(X_{1} \wedge X_{5}\right) \vee \\ & \left(X_{2} \wedge \sim x_{7} \wedge x_{8}\right) \end{aligned}$	$\left(3^{m}\right)^{2}=3^{2 m}$	$\frac{0.69}{\varepsilon}\left(\left(2 \log _{2} 3\right) m+\log _{2} \frac{1}{\delta}\right)$
Copyrigt 0 2001, Andiew w. Moore PaC.ering: Slide 18			

PAC for decision trees of depth k

- Assume m attributes
- $H_{k}=$ Number of decision trees of depth k
- $\mathrm{H}_{0}=2$
- $\mathrm{H}_{\mathrm{k}+1}=($ \#choices of root attribute) $*$
(\# possible left subtrees) *
(\# possible right subtrees)
$=m * H_{k} * H_{k}$
- Write $L_{k}=\log _{2} H_{k}$
- $L_{0}=1$
- $L_{k+1}=\log _{2} m+2 L_{k}$
- So $L_{k}=\left(2{ }^{k}-1\right)\left(1+\log _{2} m\right)+1$
- So to PAC-learn, need

$$
R \geq \frac{0.69}{\varepsilon}\left(\left(2^{k}-1\right)\left(1+\log _{2} m\right)+1+\log _{2} \frac{1}{\delta}\right)
$$

What you should know

- Be able to understand every step in the math that gets you to

$$
\delta=P(\text { we learn a bad } h) \leq H(1-\varepsilon)^{R}
$$

- Understand that you thus need this many records to PAC-learn a machine with H hypotheses

$$
R \geq \frac{0.69}{\varepsilon}\left(\log _{2} H+\log _{2} \frac{1}{\delta}\right)
$$

- Understand examples of deducing H for various machines

