

Normal Form Representation of a Non-Zero-Sum Game with *n* players

Is a set of *n* strategy spaces S_1 , S_2 ... S_n where S_i = The set of strategies available to player *i*

And n payoff functions

u₁ , u₂ ... u_n

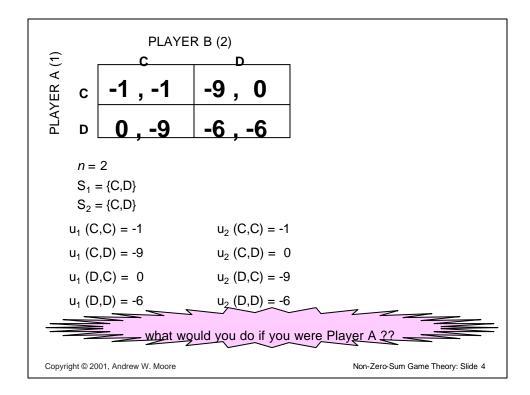
where

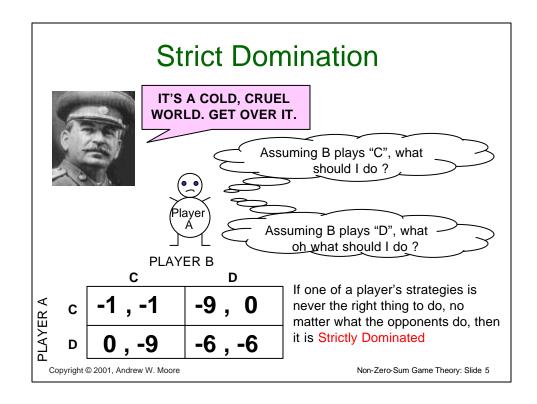
u_i : S₁ x S₂ x … S_n ? ℜ

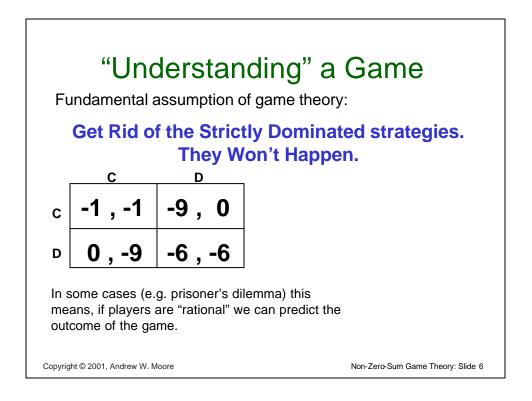
is a function that takes a combination of strategies (one for each player) and returns the payoff for player *i*

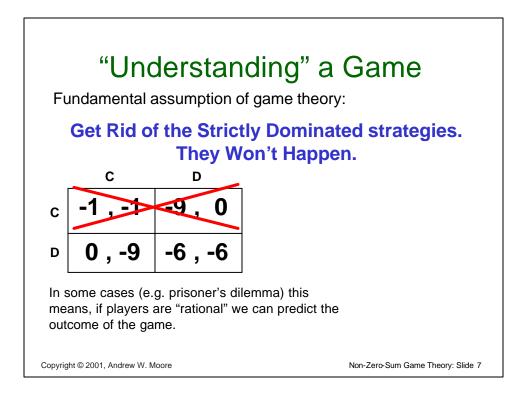
Copyright © 2001, Andrew W. Moore

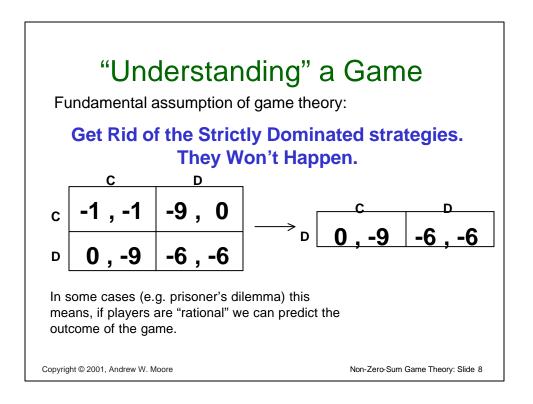
Non-Zero-Sum Game Theory: Slide 3

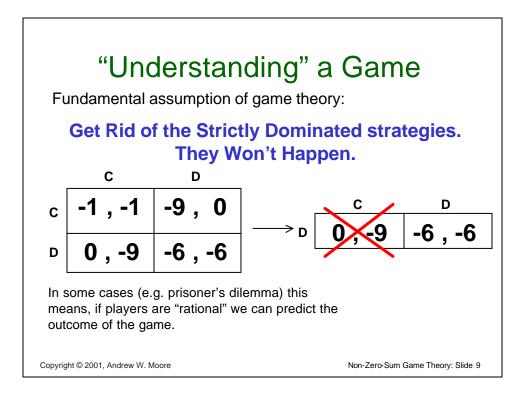


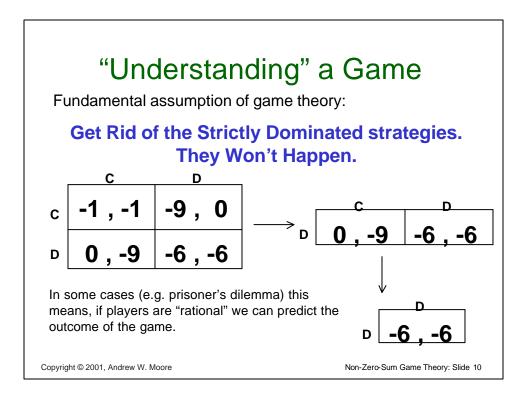


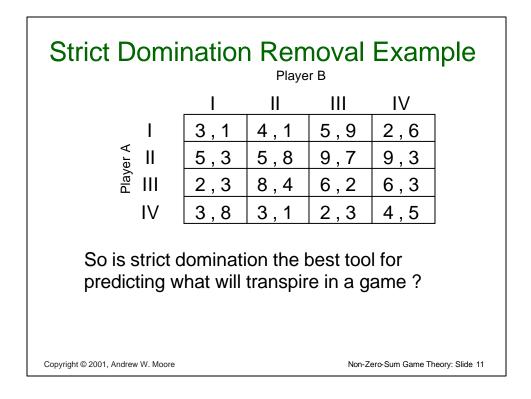


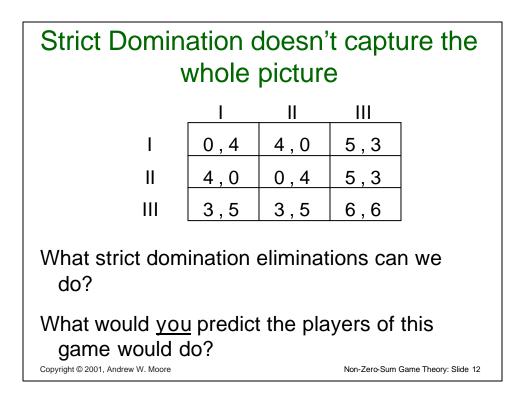


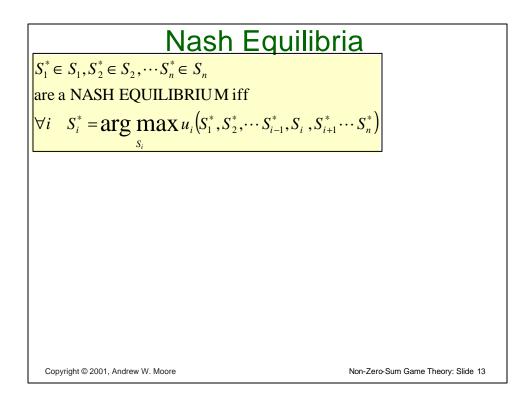


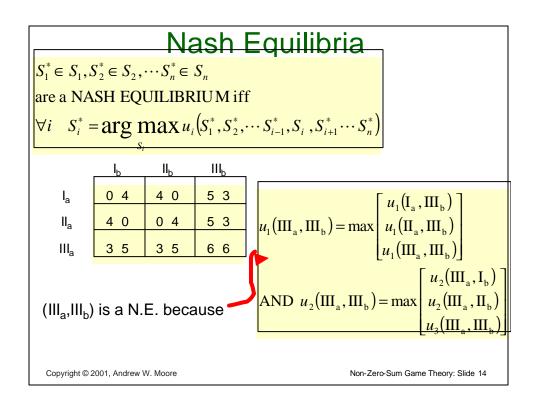












- If (S₁*, S₂*) is an N.E. then player 1 won't want to change their play given player 2 is doing S₂*
- If (S₁*, S₂*) is an N.E. then player 2 won't want to change their play given player 1 is doing S₁*

Find the NEs:

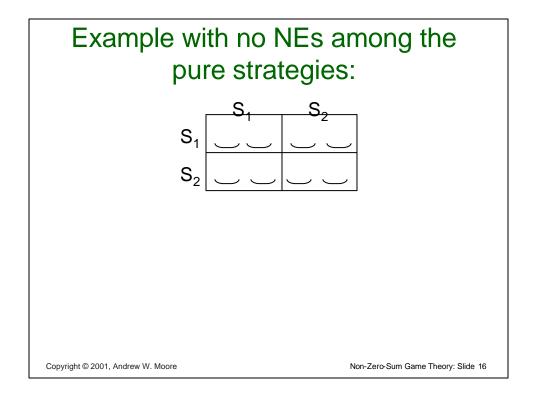
-1	-1	-9	0
0	-9	-6	-6

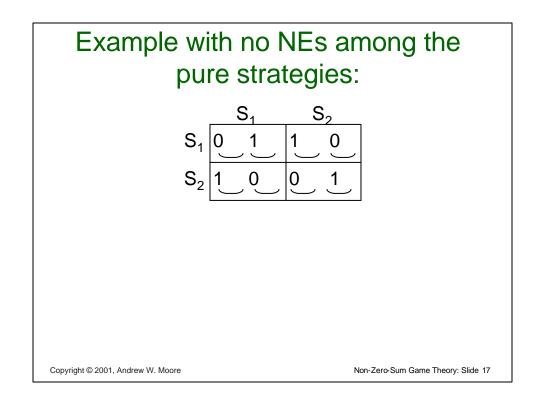
04	4 0	53
4 0	04	53
35	35	66

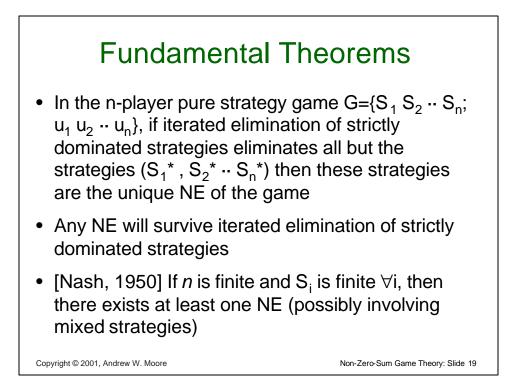
- Is there always at least one NE ?
- Can there be more than one NE ?

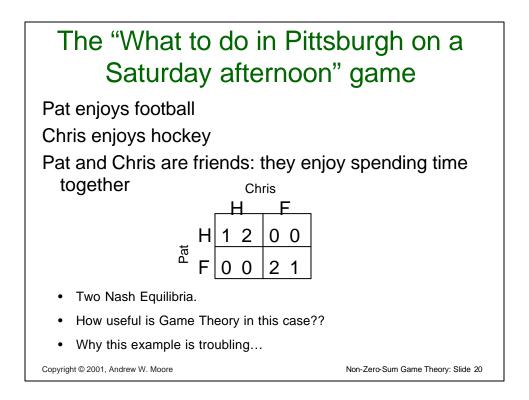
Copyright © 2001, Andrew W. Moore

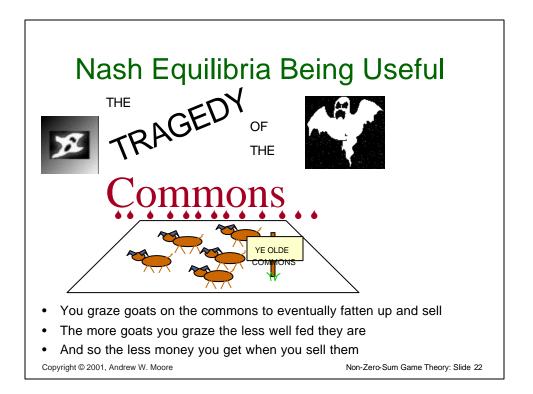
Non-Zero-Sum Game Theory: Slide 15

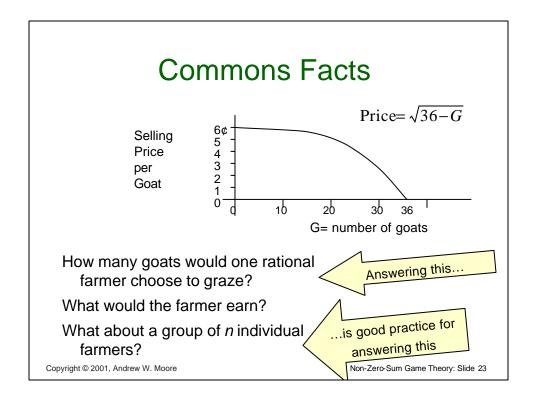


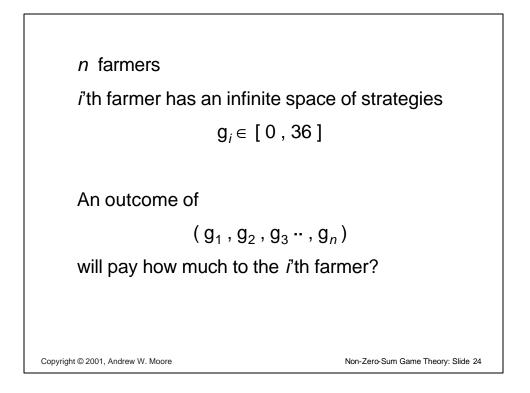


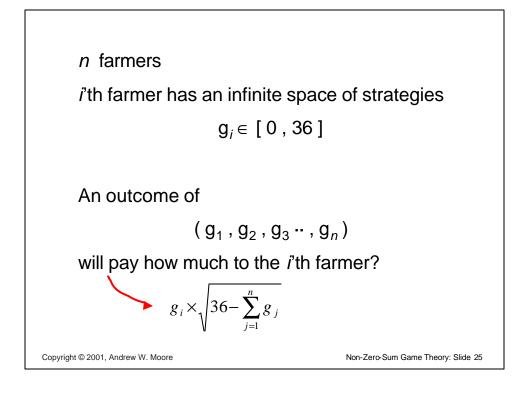


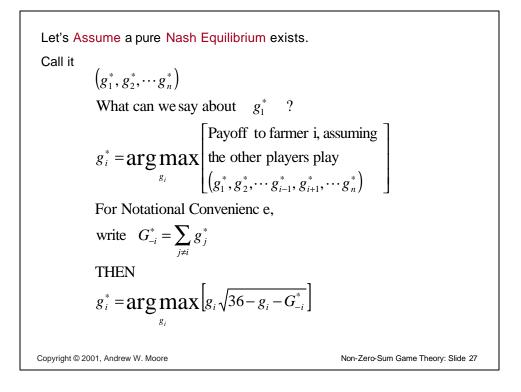


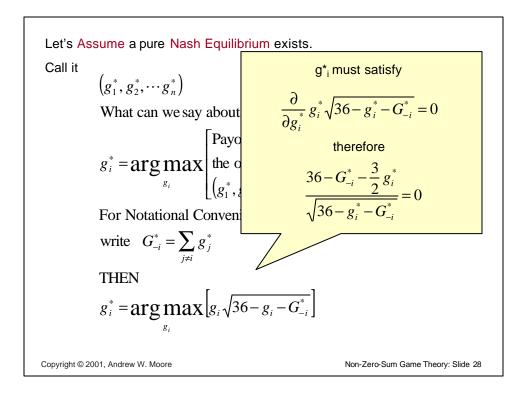


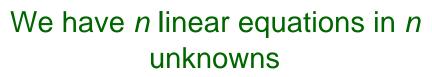


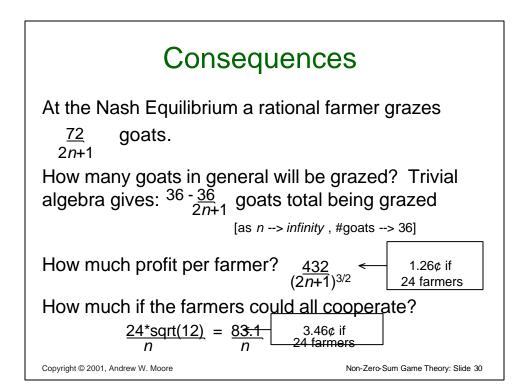


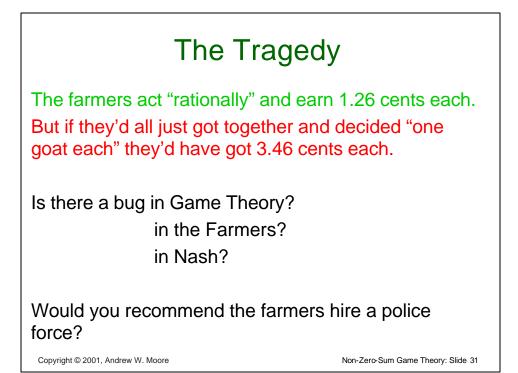


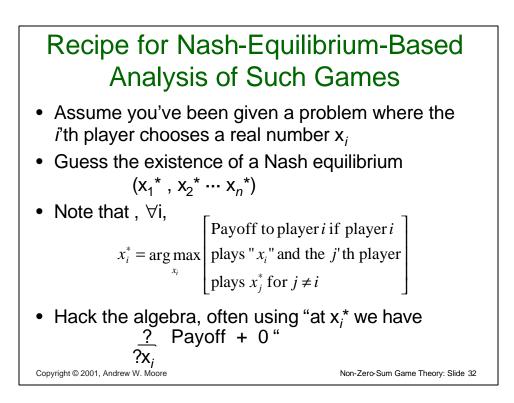


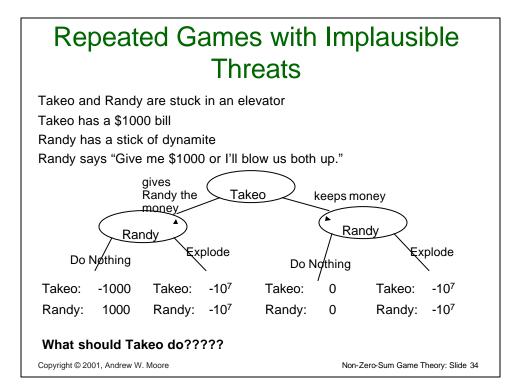


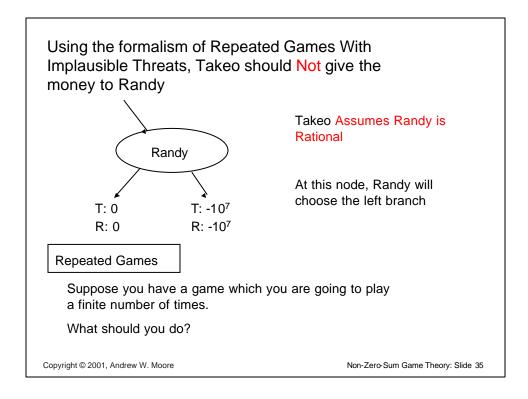




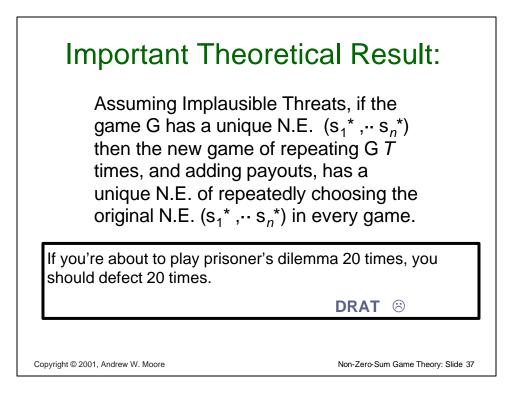


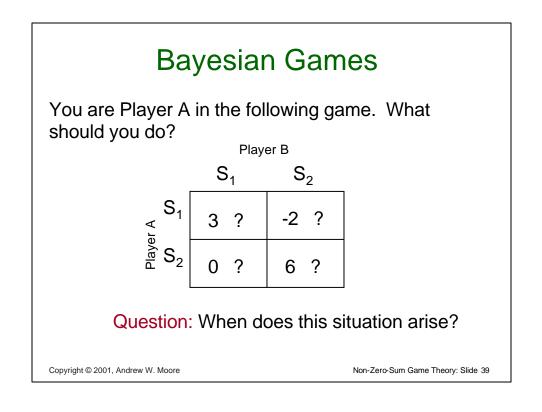


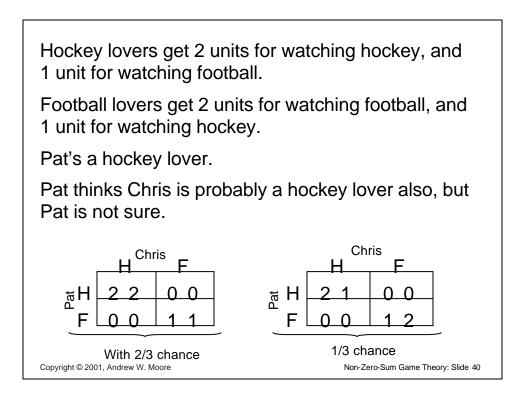


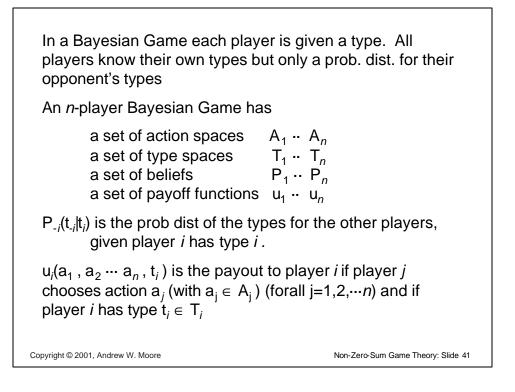


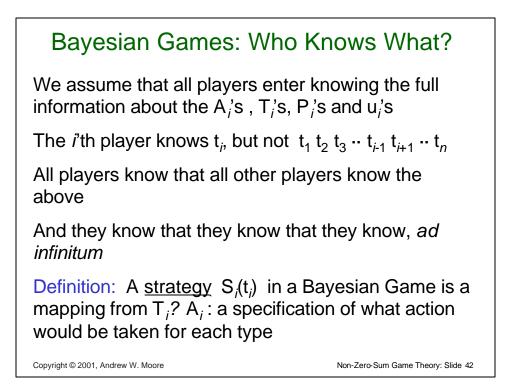




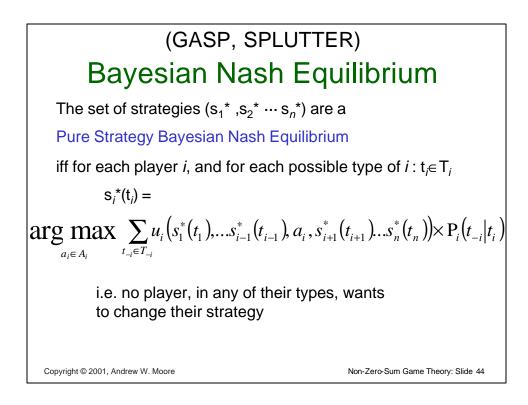






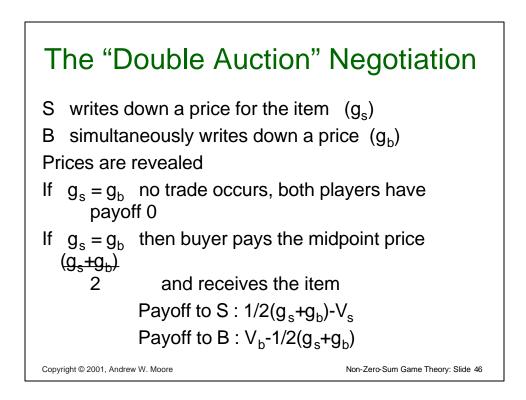


```
Example
     A_1 = \{H, F\}
                                      A_2 = \{H, F\}
 T_1 = \{H-love, Flove\}
                                      T_2 = \{Hlove, Flove\}
   P_1 (t<sub>2</sub> = Hlove | t<sub>1</sub> = Hlove) = 2/3
   P_1 (t<sub>2</sub> = Flove | t<sub>1</sub> = Hlove) = 1/3
   P_1 (t<sub>2</sub> = Hlove | t<sub>1</sub> = Flove) = 2/3
   P_1 (t<sub>2</sub> = Flove | t<sub>1</sub> = Hlove) = 1/3
   P_2 (t<sub>1</sub> = Hlove | t<sub>2</sub> = Hlove) = 1
   P_2 (t<sub>1</sub> = Flove | t<sub>2</sub> = Hlove) = 0
   P_2 (t<sub>1</sub> = Hlove | t<sub>2</sub> = Flove) = 1
   P_2 (t<sub>1</sub> = Flove | t<sub>2</sub> = Hlove) = 0
 u_1 (H,H,Hlove) = 2
                                       u_2 (H,H,Hlove) = 2
u_1 (H,H,Flove) = 1
                                      u_2 (H,H,Flove) = 1
 u_1 (H,F,Hlove) = 0
                                      u_2 (H,F,Hlove) = 0
u_1 (H,F,Flove) = 0
                                      u_2 (H,F,Flove) = 0
u_1 (F,H,Hlove) = 0
                                      u_2 (F,H,Hlove) = 0
u_1 (F,H,Flove) = 0
                                      u_2 (F,H,Flove) = 0
                                      u_2 (F,F,Hlove) = 1
u_1 (F,F,Hlove) = 1
 u_1 (F,F,Flove) = 2
                                      u_2 (F,F,Flove) = 2
Copyright © 2001, Andrew W. Moore
                                                                               Non-Zero-Sum Game Theory: Slide 43
```

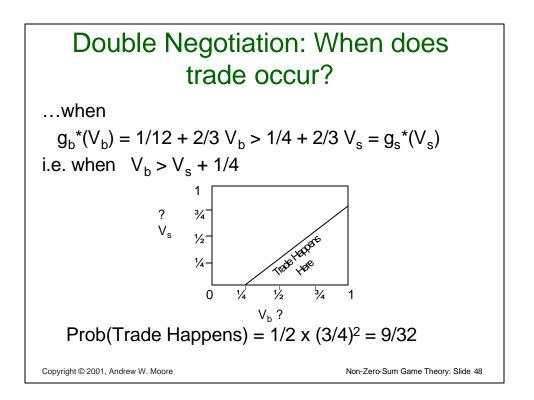


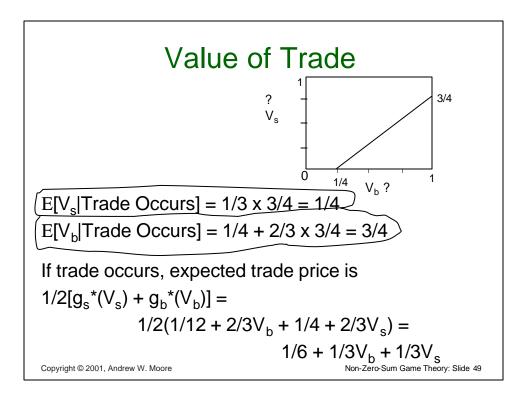
NEGOTIATION: A Bayesian Game

Two players:	S, (seller) and			
T _s = [0,1]	B, (buyer) the seller's type is a real and 1 specifying the valu them of the object they a	ue (in dollars) to		
$T_{b} = [0, 1]$	the buyer's type is also a real number. The value to the buyer.			
Assume that at the start $V_s \in T_s$ is chosen uniformly at random $V_b \in T_b$ is chosen uniformly at random				
Copyright © 2001, Andrew W.	Moore	Non-Zero-Sum Game Theory: Slide 45		

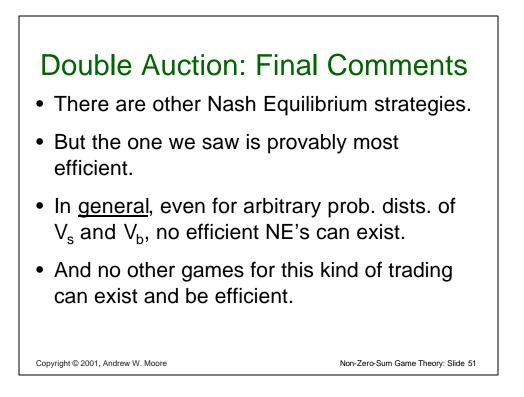


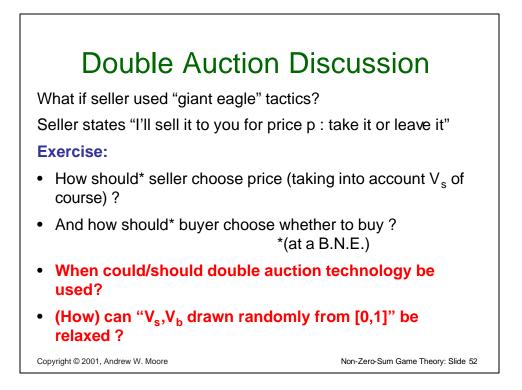
Negotiation in Bayesian Game Notation

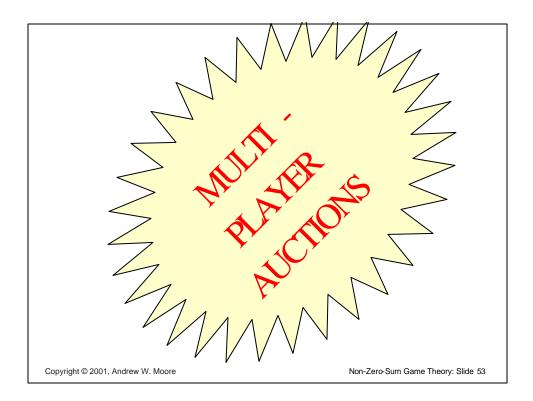


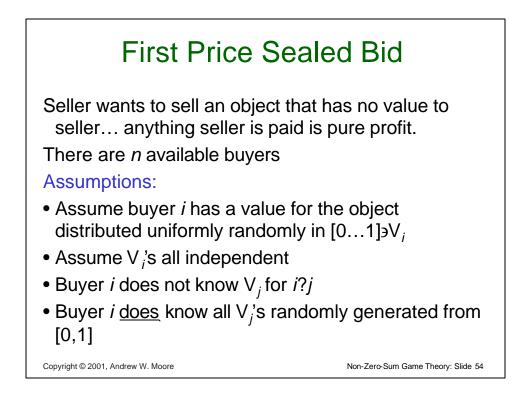


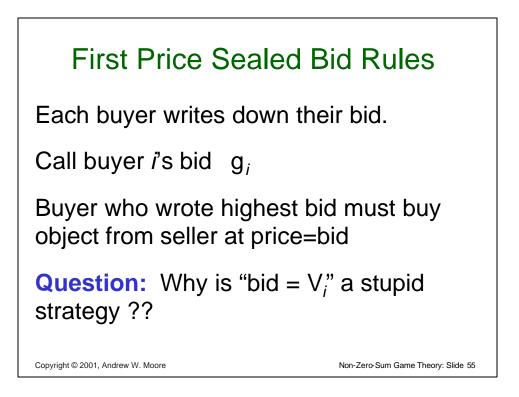
Value of Trade continued... E[profit to S | trade occurred] = $E[1/6 + 1/3V_b + 1/3V_s - V_s | trade occurred] =$ $1/6 + 1/3E[V_{b} | trade] - 2/3E[V_{s} | trade] =$ $1/6 + 1/3 \times 3/4 - 2/3 \times 1/4 = 1/4$ Similar Algebra Shows: E[profit to B | trade occurred] = 1/4 also If Both Were "Honest" **Using This Game** E[B's profit]= 1/4x9/32=0.07 E[B profit]=1/12=0.083 E[S's profit]= 0.07 E[S profit]=1/12=0.083 This Game seems Inefficient. What can be done??? Copyright © 2001, Andrew W. Moore Non-Zero-Sum Game Theory: Slide 50

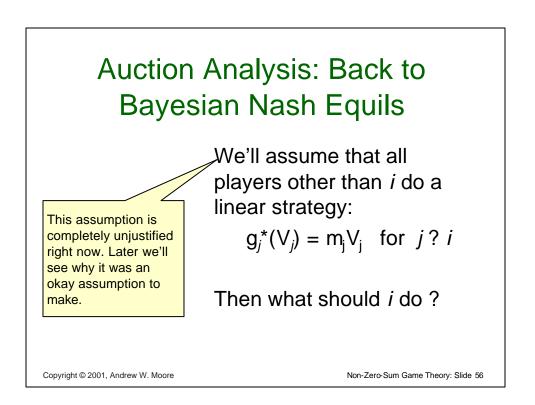


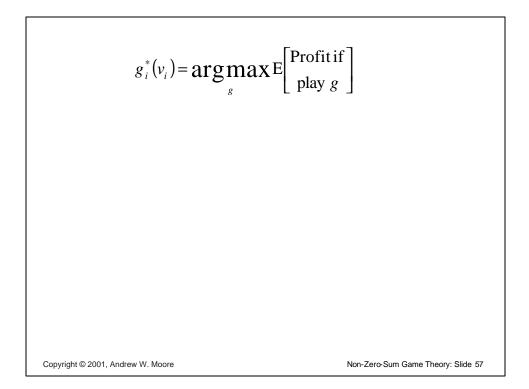


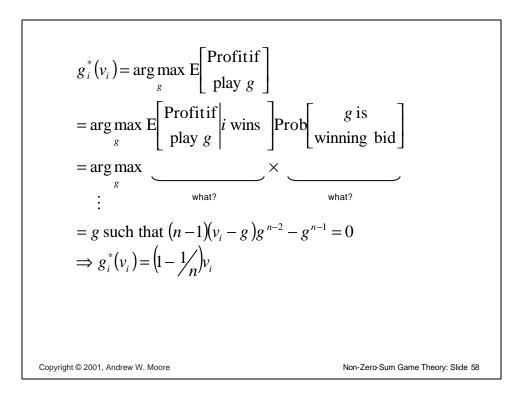


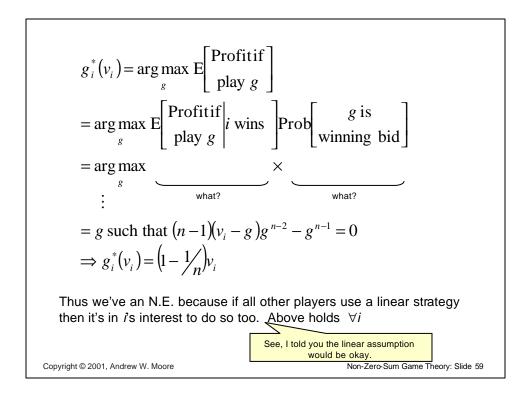


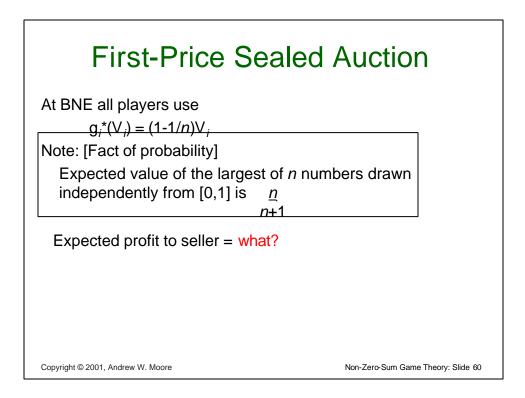


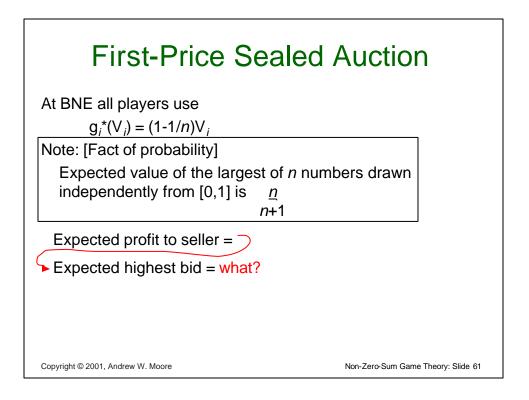


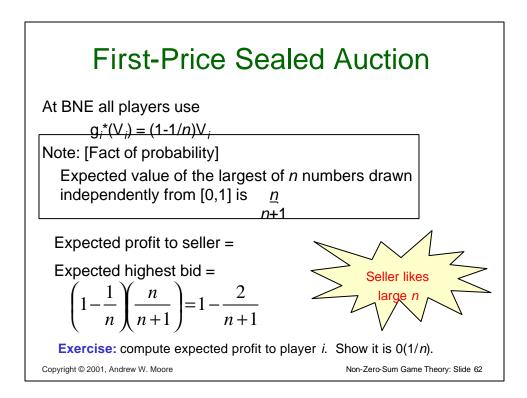


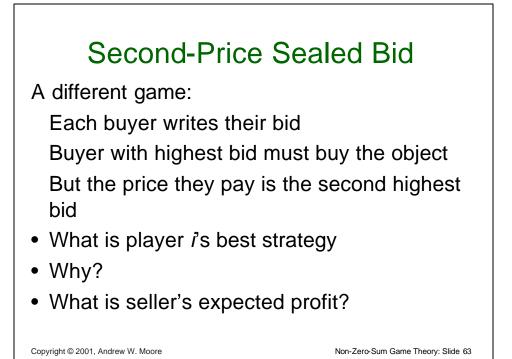












What You Should Know

Strict dominance Nash Equilibria Continuous games like Tragedy of the Commons Rough, vague, appreciation of threats Bayesian Game formulation Double Auction 1st/2nd Price auctions

Copyright © 2001, Andrew W. Moore

Non-Zero-Sum Game Theory: Slide 65

