
Algorithms for
Playing and Solving

games*
Andrew W. Moore

Professor
School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu

412-268-7599

* Two Player Zero-sum

Discrete Finite

Deterministic Games of

Perfect Information

Small Print

Note to other teachers and users of these slides. Andrew would be delighted if you found this source
material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit
your own needs. PowerPoint originals are available. If you make use of a significant portion of these
slides in your own lecture, please include this message, or the following link to the source repository of
Andrew’s tutorials: http://www.cs.cmu.edu/~awm/tutorials . Comments and corrections gratefully received.

Slide 1

http://www.cs.cmu.edu/~awm/tutorials

Overview
• Definition of games and game terminology

• Game trees and game-theoretic values

• Computing game-theoretic values with recursive
minimax.

• Other ways to compute game-theoretic value: Dynamic
Programming copes with stalemates.

• Alpha-beta algorithm (good news.. it’s not really as fiddly
as is looks)

• Playing games in real-time

• Non-determinism

Slide 2

2-player zero-sum discrete finite
deterministic games of perfect information

What do these terms mean?

• Two player: Duh!

• Zero-sum: In any outcome of any game, Player A’s gains
equal player B’s losses. (Doesn’t mean fairness: “On average, two equal
players will win or lose equal amounts” not necessary for zero-sum.)

• Discrete: All game states and decisions are discrete values.

• Finite: Only a finite number of states and decisions.

• Deterministic: No chance (no die rolls).

• Games: See next page

• Perfect information: Both players can see the state, and
each decision is made sequentially (no simultaneous moves).

Slide 3

Slide 4

Which of these are: 2-player zero-sum discrete finite
deterministic games of perfect information

• Two player: Duh!

• Zero-sum: In any outcome of any
game, Player A’s gains equal player B’s
losses.

• Discrete: All game states and decisions
are discrete values.

• Finite: Only a finite number of states and
decisions.

• Deterministic: No chance (no die
rolls).

• Games: See next page

• Perfect information: Both players
can see the state, and each decision is
made sequentially (no simultaneous
moves).

Slide 5

Which of these are: 2-player zero-sum discrete finite
deterministic games of perfect information

• Two player: Duh!

• Zero-sum: In any outcome of any
game, Player A’s gains equal player B’s
losses.

• Discrete: All game states and decisions
are discrete values.

• Finite: Only a finite number of states and
decisions.

• Deterministic: No chance (no die
rolls).

• Games: See next page

• Perfect information: Both players
can see the state, and each decision is
made sequentially (no simultaneous
moves).

Not finite

Multiplayer
One player

Stochastic
Hidden

Information

Involves Improbable

Animal Behavior

Definition
A Two-player zero-sum discrete finite deterministic game of perfect information is a
quintuplet: (S , I , Succs , T , V) where

S = a finite set of states (note: state includes information
sufficient to deduce who is due to move)

I
Succs

T

V

= the initial state

= a function which takes a state as input and returns a set of
possible next states available to whoever is due to move

= a subset of S. It is the terminal states: the set of states at
which the game is over

= a mapping from terminal states to real numbers. It is the
amount that A wins from B. (If it’s negative A loses money
to B).

Convention: assume Player A moves first.
For convenience: assume turns alternate.

Slide 6

Nim: informal description
1. We begin with a number of piles of matches.
2. In one’s turn one may remove any number of matches from one pile.
3. The last person to remove a match loses.

In II-Nim, one begins with two piles, each with two matches…

(_ , _)-A (_ , i)-A (_ , ii)-A
(i , _)-A (i , i)-A (i , ii)-A
(ii , _)-A (ii , i)-A (ii , ii)-A

(_ , _)-B (_ , i)-B (_ , ii)-B
(i , _)-B (i , i)-B (i , ii)-B
(ii , _)-B (ii , i)-B (ii , ii)-B

S =

Slide 7

Nim: informal description

(_ , _)-A (_ , i)-A (_ , ii)-A
(i , i)-A (i , ii)-A

(ii , ii)-A

(_ , _)-B (_ , i)-B (_ , ii)-B
(i , i)-B (i , ii)-B

(ii , ii)-B

S =

1. We begin with a number of piles of matches.
2. In one’s turn one may remove any number of matches from the pile.
3. The last person to remove a match loses.

In II-Nim, one begins with two matches, each with two piles…
A common trick: By symmetry, some of the states are

trivially equivalent (e.g. (_,ii)-A and (ii,_)-A). Make them one

state by some canonical description (e.g. left pile never

larger than right).

Slide 8

II-Nim
(_ , _)-A (_ , i)-A (_ , ii)-A (i , i)-A (i , ii)-A (ii , ii)-A S = a finite set of states (note:

state includes information
sufficient to deduce who is
due to move) (_ , _)-B (_ , i)-B (_ , ii)-B (i , i)-B (i , ii)-B (ii , ii)-B

(ii , ii)-A
Succs(_,i)-A = { (_,_)-B }

Succs(_,ii)-A = { (_,_)-B , (_,i)-B } Succs(_,ii)-B = { (_,_)-A , (_,i)-A }

Succs(i,i)-A = { (_,i)-B } Succs(i,i)-B = { (_,i)-A }

Succs(i,ii)-A = { (_,i)-B (_,ii)-B (i,i)-B} Succs(i,ii)-B = { (_,i)-A , (_,ii)-A (i,i)-A }

Succs(ii,ii)-A = { (_,ii)-B , (i,ii)-B } Succs(ii,ii)-B = { (_,ii)-A , (i,ii)-A }

(_ , _)-A

I

V(_ , _)-A = +1

the initial state

a function which takes a
state as input and returns a
set of possible next states
available to whoever is due
to move

a subset of S. It is the
terminal states

Maps from terminal states
to real numbers. It is the
amount that A wins from B.

Succs

T
V

=

Succs(_,i)-B = { (_,_)-A }=

= (_ , _)-B
= V(_ , _)-B = -1

Slide 9

II-Nim Game
Tree

(_ , _)-A (_ , i)-A (_ , ii)-A (i , i)-A (i , ii)-A (ii , ii)-A S =

(_ , _)-B (_ , i)-B (_ , ii)-B (i , i)-B (i , ii)-B (ii , ii)-B

(ii , ii)-A
Succs(_,i)-A = { (_,_)-B }

Succs(_,ii)-A = { (_,_)-B , (_,i)-B } Succs(_,ii)-B = { (_,_)-A , (_,i)-A }

Succs(i,i)-A = { (_,i)-B } Succs(i,i)-B = { (_,i)-A }

Succs(i,ii)-A = { (_,i)-B (_,ii)-B (i,i)-B} Succs(i,ii)-B = { (_,i)-A , (_,ii)-A (i,i)-A }

Succs(ii,ii)-A = { (_,ii)-B , (i,ii)-B } Succs(ii,ii)-B = { (_,ii)-A , (i,ii)-A }

(_ , _)-A

V(_ , _)-A = +1

=I

Succs
=

T

V

Succs(_,i)-B = { (_,_)-A }

= (_ , _)-B

= V(_ , _)-B = -1(ii ii) A

(i ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1
Slide 10

II-Nim Game
Tree

(_ , _)-A (_ , i)-A (_ , ii)-A (i , i)-A (i , ii)-A (ii , ii)-A S =

(_ , _)-B (_ , i)-B (_ , ii)-B (i , i)-B (i , ii)-B (ii , ii)-B

(ii , ii)-A
Succs(_,i)-A = { (_,_)-B }

Succs(_,ii)-A = { (_,_)-B , (_,i)-B } Succs(_,ii)-B = { (_,_)-A , (_,i)-A }

Succs(i,i)-A = { (_,i)-B } Succs(i,i)-B = { (_,i)-A }

Succs(i,ii)-A = { (_,i)-B (_,ii)-B (i,i)-B} Succs(i,ii)-B = { (_,i)-A , (_,ii)-A (i,i)-A }

Succs(ii,ii)-A = { (_,ii)-B , (i,ii)-B } Succs(ii,ii)-B = { (_,ii)-A , (i,ii)-A }

(_ , _)-A

V(_ , _)-A = +1

=I

Succs
=

T

V

Succs(_,i)-B = { (_,_)-A }

= (_ , _)-B

= V(_ , _)-B = -1(ii ii) A

(i ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B +1 (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1
Slide 11

II-Nim Game
Tree

(_ , _)-A (_ , i)-A (_ , ii)-A (i , i)-A (i , ii)-A (ii , ii)-A S =

(_ , _)-B (_ , i)-B (_ , ii)-B (i , i)-B (i , ii)-B (ii , ii)-B

(ii , ii)-A
Succs(_,i)-A = { (_,_)-B }

Succs(_,ii)-A = { (_,_)-B , (_,i)-B } Succs(_,ii)-B = { (_,_)-A , (_,i)-A }

Succs(i,i)-A = { (_,i)-B } Succs(i,i)-B = { (_,i)-A }

Succs(i,ii)-A = { (_,i)-B (_,ii)-B (i,i)-B} Succs(i,ii)-B = { (_,i)-A , (_,ii)-A (i,i)-A }

Succs(ii,ii)-A = { (_,ii)-B , (i,ii)-B } Succs(ii,ii)-B = { (_,ii)-A , (i,ii)-A }

(_ , _)-A

V(_ , _)-A = +1

=I

Succs
=

T

V

Succs(_,i)-B = { (_,_)-A }

= (_ , _)-B

= V(_ , _)-B = -1(ii ii) A

(i ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1
Slide 12

II-Nim Game
Tree

(_ , _)-A (_ , i)-A (_ , ii)-A (i , i)-A (i , ii)-A (ii , ii)-A S =

(_ , _)-B (_ , i)-B (_ , ii)-B (i , i)-B (i , ii)-B (ii , ii)-B

(ii , ii)-A
Succs(_,i)-A = { (_,_)-B }

Succs(_,ii)-A = { (_,_)-B , (_,i)-B } Succs(_,ii)-B = { (_,_)-A , (_,i)-A }

Succs(i,i)-A = { (_,i)-B } Succs(i,i)-B = { (_,i)-A }

Succs(i,ii)-A = { (_,i)-B (_,ii)-B (i,i)-B} Succs(i,ii)-B = { (_,i)-A , (_,ii)-A (i,i)-A }

Succs(ii,ii)-A = { (_,ii)-B , (i,ii)-B } Succs(ii,ii)-B = { (_,ii)-A , (i,ii)-A }

(_ , _)-A

V(_ , _)-A = +1

=I

Succs
=

T

V

Succs(_,i)-B = { (_,_)-A }

= (_ , _)-B

= V(_ , _)-B = -1(ii ii) A

(i ii) B (- ii) B

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1
Slide 13

II-Nim Game
Tree

(_ , _)-A (_ , i)-A (_ , ii)-A (i , i)-A (i , ii)-A (ii , ii)-A S =

(_ , _)-B (_ , i)-B (_ , ii)-B (i , i)-B (i , ii)-B (ii , ii)-B

(ii , ii)-A
Succs(_,i)-A = { (_,_)-B }

Succs(_,ii)-A = { (_,_)-B , (_,i)-B } Succs(_,ii)-B = { (_,_)-A , (_,i)-A }

Succs(i,i)-A = { (_,i)-B } Succs(i,i)-B = { (_,i)-A }

Succs(i,ii)-A = { (_,i)-B (_,ii)-B (i,i)-B} Succs(i,ii)-B = { (_,i)-A , (_,ii)-A (i,i)-A }

Succs(ii,ii)-A = { (_,ii)-B , (i,ii)-B } Succs(ii,ii)-B = { (_,ii)-A , (i,ii)-A }

(_ , _)-A

V(_ , _)-A = +1

=I

Succs
=

T

V

Succs(_,i)-B = { (_,_)-A }

= (_ , _)-B

= V(_ , _)-B = -1(ii ii) A

(i ii) B -1 (- ii) B -1

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1
Slide 14

II-Nim Game
Tree

(_ , _)-A (_ , i)-A (_ , ii)-A (i , i)-A (i , ii)-A (ii , ii)-A S =

(_ , _)-B (_ , i)-B (_ , ii)-B (i , i)-B (i , ii)-B (ii , ii)-B

(ii , ii)-A
Succs(_,i)-A = { (_,_)-B }

Succs(_,ii)-A = { (_,_)-B , (_,i)-B } Succs(_,ii)-B = { (_,_)-A , (_,i)-A }

Succs(i,i)-A = { (_,i)-B } Succs(i,i)-B = { (_,i)-A }

Succs(i,ii)-A = { (_,i)-B (_,ii)-B (i,i)-B} Succs(i,ii)-B = { (_,i)-A , (_,ii)-A (i,i)-A }

Succs(ii,ii)-A = { (_,ii)-B , (i,ii)-B } Succs(ii,ii)-B = { (_,ii)-A , (i,ii)-A }

(_ , _)-A

V(_ , _)-A = +1

=I

Succs
=

T

V

Succs(_,i)-B = { (_,_)-A }

= (_ , _)-B

= V(_ , _)-B = -1(ii ii) A -1

(i ii) B -1 (- ii) B -1

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1
Slide 15

Game theoretic value
Game theoretic value (also know as the minimax value) of a state is:
“the value of a terminal that will be reached assuming both players use

their optimal strategy.”
Easy to fill in the tree bottom up to find minimax values of all states:

Let D = max depth of game tree
For i = D to 1

For each node n at depth i
If n is a terminal node

MMV(n) = V(n)
Else if Player A is due to move at node n

Else (Player B must be due to move and..)

= 1 + maximum number of
moves in any possible game

)'(MMVmax)(MMV
)(Succs'

nn
nn∈

=

)'(MMVmin)(MMV
)(Succs'

nn
nn∈

=

This must’ve been
defined because it is
at depth i+1

Ditto

Slide 16

Game theoretic value
Game theoretic value (also know as the minimax value) of a state is:
“the value of a terminal that will be reached assuming both players use

their optimal strategy.”
Easy to fill in the tree bottom up to find minimax values of all states:

Let D = max depth of game tree
For i = D to 1

For each node n at depth i
If n is a terminal node

MMV(n) = V(n)
Else if Player A is due to move at node n

Else (Player B must be due to move and..)

= 1 + maximum number of
moves in any possible game

)'(MMVmax)(MMV
)(Succs'

nn
nn∈

=

)'(MMVmin)(MMV
)(Succs'

nn
nn∈

=

This must’ve been
defined because its
at depth i+1

Ditto

With Branching factor b and D moves in the

game this takes time and space O(bD)

Can we do the same thing with less space?

Slide 17

Minimax Algorithm
Is it really necessary to explicitly store the whole tree in memory? Of
course not. We can do the same trick that Depth First Search and use
only O(D) space

MinimaxValue(S)=
If (S is a terminal)

return V(S)
Else

Let { S1, S2, … Sk } = Succs(S)
Let vi = MinimaxValue(Si) for each i
If Player-to-move(S) = A

return

else
return

iki
V

}2,1{
max

K∈

iki
V

}2,1{
min

K∈

Slide 18

Questions
• What if there are loops

possible in the game?MinimaxValue(S)=
If (S is a terminal)

return V(S)
Else

Let { S1, S2, … Sk } = Succs(S)
Let vi = MinimaxValue(Si) for each i
If Player-to-move(S) = A

return

else
return

iki
V

}2,1{
max

K∈

iki
V

}2,1{
min

K∈

• This is a depth-first search
algorithm. Would a breadth-
first version be possible?
How would it work?

Slide 19

Questions
• What if there are loops

possible in the game?
• Is our recursive-minimax

guaranteed to succeed?
• Is our recursive-minimax

guaranteed to fail?
• What problems do loops

cause for our definition
of minimax value (i.e.
game-theoretic value)?

• How could we fix our
recursive minimax
program?

MinimaxValue(S)=
If (S is a terminal)

return V(S)
Else

Let { S1, S2, … Sk } = Succs(S)
Let vi = MinimaxValue(Si) for each i
If Player-to-move(S) = A

return

else
return

iki
V

}2,1{
max

K∈

iki
V

}2,1{
min

K∈

• This is a depth-first search
algorithm. Would a breadth-
first version be possible?
How would it work?

Slide 20

Dynamic Programming
Say you have a game with N states. The length of the
game is usually l moves. There are b successors of each
state.
Minimax requires O(bl) states expanded.
This is best-case as well as worst-case (unlike DFS for
simple search problems, which in best-case could be O(l)).
What if the number of states is smaller than bl? e.g.. in
chess, bl=10120, but N= a mere 1040

Dynamic Programming is a better method in those cases, if
you can afford the memory.
DP costs only O(Nl)

Slide 21

DP for Chess Endgames
Suppose one has only, say, 4 pieces in total left on the board.
With enough compute power you can compute, for all such
positions, whether the position is a win for Black, White, or a
draw.

Assume N such positions.

1. With each state, associate an integer. A state code, so there’s a
1-1 mapping between board positions and integers from 0…N-1.

2. Make a big array (2 bits per array entry) of size N. Each element
in the array may have one of three values:

• ?: We don’t know who wins from this state
• W: We know white’s won from here
• B: We know black’s won from here

Slide 22

DP for Chess Endgames (ctd)
3. Mark all terminal states with their values (W or B)
4. Look through all states that remain marked with ?.

For states in which W is about to move:
• If all successor states are marked B, mark the current state as B.
• If any successor state is marked W, mark the current state as W.
• Else leave current state unchanged.

For states in which B is about to move:
• If all successor states are marked W, mark the current state as W.
• If any successor state is marked B, mark the current state as B.
• Else leave current state unchanged

5. Goto 4, but stop when one whole iteration of 4 produces no
changes.

6. Any state remaining at ? is a state from which no-one can force a
win.

Slide 23

Suppose you knew that the only possible outcomes of the
game were -1 and 1. What computation could be saved?

(ii ii) A

(i ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

Slide 24

Suppose you knew that the only possible outcomes of the
game were -1 and 1. What computation could be saved?

(ii ii) A

(i ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B (- -) B -1 (- i) B (- -) B (- -) B -1

(- -) A +1(- -) A +1

Slide 25

Answer: in general a lot (though not much here). If any successor is a forced
win for the current player, don’t bother with expanding further successors.

What if you didn’t know the range of possible outcome values? We’ll see
that this is an important question.

How can you cut-off
with arbitrary terminal

values?
(ii ii) A

(i ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +3.7

(- i) B (- -) B -1.9 (- i) B (- -) B -0.3 (- -) B -8.1

(- -) A +0.08(- -) A +2.4

Slide 26

Slide 27

Just do the depth first search as normal, but when you discover something that

means your parent would definitely not choose you, don’t bother with the rest of

your successors.

In fact, it’s not just your parent you should worry about, but any of your ancestors.

How can you cut-off
with arbitrary terminal

values?
(ii ii) A

(i ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +3.7

(- i) B (- -) B -1.9 (- i) B (- -) B -0.3 (- -) B -8.1

(- -) A +0.08(- -) A +2.4

An ancestor causing cut-off
()-a

()-b

()-a

()-b

()-a

()-b

()-a+2

()-b

(*)-a

+1

Suppose we’ve so far done a full depth first search, expanding left-most

successors first, and have arrived at the node marked * (and
discovered its value is +1).
What can we cut off in the rest of the search, and why?
General rule. We can be sure a node will not be visited if we’re sure
that either player has a better alternative at any ancestor of that node.

Slide 28

The general cutoff rule
In example: let α = max(v1, v3,
v5). If min(v6, v7)≤α, then we can
be certain that it is worthless
searching the tree from the
current node or the sibling on its
right.
In general: if at a B-move node,
let α = max of all A’s choices
expanded on current path. Let β
= min of B’s choices, including
those at current node. Cutoff is
β ≤ α.
In general: Converse rule at an
A-move node.

()-a

()-a

()-b

()-b

()-a

()-b

v1

v3

v4

v2

v5

v6

v7

?

??

?
?

?
Current
Node

Slide 29

alpha-beta pruning* (from Russell)
function Max-Value (s,α,β)
inputs:

s: current state in game, A about to play
α: best score (highest) for A along path to s
β: best score (lowest) for B along path to s

output: min(β , best-score (for A) available from s)
if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succ(s)

α := max(α , Min-value(s’,α,β))
if (α ≥ β) then return β

return α
function Min-Value(s’,α,β)
output: max(α , best-score (for B) available from s)

if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succs(s)

β := min(β , Max-value(s’,α,β))
if (β ≤ α) then return α

return β

Thanks to Ameya Gujar

for pointing out an earlier

typo here. The version

you now see is the

correct version.

*Assumes moves are alternate

Slide 30

How useful is alpha-beta?
What is the best possible case performance of alpha beta? Suppose
that you were very lucky in the order in which you tried all the node
successors. How much of the tree would you examine?

In the best case, the number of nodes you need to search in the tree is
O(bd/2)…the square root of the recursive minimax cost.

Questions:

Does alpha-beta behave sensibly with loops?

What can we do about large realsized games with huge numbers of
states (e.g. chess)?

Slide 31

Game-Playing and Game-Solving
Two very different activities.

So far, we have been solely concerned with finding the true game-
theoretic value of a state.

But what do real chess-playing programs do?

They have a couple of interesting features that the search and planning
problems we’ve discussed to date on this course don’t have:

⌂ They cannot possibly find guaranteed solution.

⌂ They must make their decisions quickly, in real time.

⌂ It is not possible to pre-compute a solution.

The overwhelmingly popular solution to these problems are the well-
known heuristic evaluation functions for games.

Slide 32

Eval. functions in games
An evaluation function maps states to a number. The larger the
number, the larger the true game-theoretic position is estimated to be.

Search a tree as deeply as affordable.
Leaves of the tree you search are not leaves of the game tree, but
are instead intermediate nodes.
The value assigned to the leaves are from the evaluation function.

Intuitions

Visibility: the evaluation function will be more accurate nearer the end
of the game, so worth using heuristic estimates from there.
Filtering: if we used the evaluation function without searching, we’d be
using a handful of inaccurate estimates. By searching we are
combining thousands of these estimates, & we hope, eliminating noise.
Dubious intuition. Counter-examples. But often works very well in real games.

Slide 33

Other important issues for real
game playing programs

• How to decide how far to search if you only have a fixed time to
make a decision. What’s the obvious sensible answer?

• Quiescence. What if you stop the search at a state where
subsequent moves dramatically change the evaluation?

• The solution to the quiescence problem is a sensible technique called
quiescence search.

• The horizon problem. What if s is a state which is clearly bad
because your opponent will inevitably be able to do something bad
to you? But you have some delaying tactics. The search algorithm
won’t recognize the state’s badness if the number of delaying moves
exceeds the search horizon.

• Endgames are easy to play well. How?
• Openings fairly easy to play well. How?

Slide 34

What if you think you’re certainly going to lose?
(ii ii) A

(i ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

Slide 35

What should A do in this situation?

What heuristics/assumptions could be used to cause A to
make that decision? Two common methods.

Solving Games
Solving a game means proving the game-theoretic value of the start
state.

Some games have been solved. Usually by brute force dynamic
programming. (e.g. Four-in-a-row, many chess endgames)

Or brute force dynamic programming back from end of game, to create
an end-game database, in combination with alpha-beta search from the
start of the game. (Nine men’s morris)

Or mostly brute force, with some game specific analysis (Connect-4)

Checkers may not be far from being solved.

Solving a game is often very different from playing well at the game.

Slide 36

2 player zero-sum finite NONdeterministic
games of perfect information

The search tree now includes states where neither player
makes a choice, but instead a random decision is made
according to a known set of outcome probabilities.

Nondeterministic
= stochastic

Game theory value of a state is the expected final value if both players
are optimal.
If no loops, computing this is almost as easy as recursive minimax. Is there alpha-beta
version?

()-a

()-chance

()-b ()-b

-20+4

()-b

()-chance

+3

()-a

+10

()-a

-5

()-a

p=0.5 p=0.2

p=0.5 p=0.5

Slide 37

What you should know
• What makes a game a Two Player Zero-Sum Discrete

Finite Deterministic Game of Perfect Information
• What is the formal definition of the above
• What is a Game Tree
• What is the minimax value of a game
• What assumptions minimax makes about the game
• Minimax Search
• Alpha Beta Search
• Use of Evaluation Functions for very big games
• Why it’s easy to extend this to Two Player Zero-Sum

Discrete Finite Stochastic Game of Perfect Information

Slide 38

What you should know

Slide 39

• What makes a game a Two Player Zero-Sum Discrete
Finite Deterministic Game of Perfect Information

• What is the formal definition of the above
• What is a Game Tree
• What is the minimax value of a game
• What assumptions minimax makes about the game
• Minimax Search
• Alpha Beta Search
• Use of Evaluation Functions for very big games
• Why it’s easy to extend this to Two Player Zero-Sum

Discrete Finite Stochastic Game of Perfect Information

Next Up:

Other classes of games, requiring bluffing, deception,

altruism and sneaky scheming and uncertainty about

what your so-called “friends” really want… everything

our AI systems need for taking part in the real world!

	Overview
	2-player zero-sum discrete finite deterministic games of perfect information
	Which of these are: 2-player zero-sum discrete finite deterministic games of perfect information
	Which of these are: 2-player zero-sum discrete finite deterministic games of perfect information
	Definition
	Nim: informal description
	Nim: informal description
	II-Nim
	II-Nim Game Tree
	II-Nim Game Tree
	II-Nim Game Tree
	II-Nim Game Tree
	II-Nim Game Tree
	II-Nim Game Tree
	Game theoretic value
	Game theoretic value
	Minimax Algorithm
	Questions
	Questions
	Dynamic Programming
	DP for Chess Endgames
	DP for Chess Endgames (ctd)
	How can you cut-off with arbitrary terminal values?
	How can you cut-off with arbitrary terminal values?
	An ancestor causing cut-off
	The general cutoff rule
	alpha-beta pruning* (from Russell)
	How useful is alpha-beta?
	Game-Playing and Game-Solving
	Eval. functions in games
	Other important issues for real game playing programs
	What if you think you’re certainly going to lose?
	Solving Games
	2 player zero-sum finite NONdeterministic games of perfect information
	What you should know
	What you should know

