
Learning Situation-Dependent Costs: ImprovingPlanning from Probabilistic Robot ExecutionKaren Zita Haighkhaigh@cs.cmu.eduhttp://www.cs.cmu.edu/~khaigh Manuela M. Velosommv@cs.cmu.eduhttp://www.cs.cmu.edu/~mmvComputer Science Department,Carnegie Mellon University,Pittsburgh, PA. 15213-3891AbstractPhysical domains are notoriously hard to model completely and correctly, especiallyto capture the dynamics of the environment. Moreover, since environments change, itis even more important for the system to learn from its own experiences. Our workfocusses on learning for the planning stages of a physical system, where our algorithmlearns the costs and probabilities of operating the environment.Since actions may have di�erent costs under di�erent conditions, we introduce theconcept of situation-dependent rules, in which situational features are attached to thecosts or probabilities, re
ecting patterns and dynamics encountered in the environment.In this article, we present Rogue, a robot that analyzes its execution experiencesto detect patterns in the environment. Rogue extracts learning opportunities frommassive, continual, probabilistic execution traces. It then correlates these learningopportunities with environmental features, creating situation-dependent costs for itsactions. We present the development and use of these rules for a robotic path plan-ner. We present empirical data to show the e�ectiveness of Rogue's novel learningapproach.Our learning approach is applicable for any planner operating in any physical do-main. Our empirical results show that situation-dependent rules e�ectively improvethe planner's model of the environment, thus allowing the planner to predict and avoidfailures, to create plans that are tailored to the real world, and to respond to a chang-ing environment. Physical systems should adapt to changing situations and absorbany information that will improve their performance.i

Contents1 Introduction 12 Implementation Domain 42.1 Situation-Dependent Learning Example : 52.2 Learning for the Path Planner : 72.2.1 The Path Planner : 82.2.2 Navigation : 93 Training Data 123.1 Events : 123.1.1 Identifying the Most Likely Traversed Markov Sequence : : : : : : : : 143.1.2 Identifying the Planner's Arcs : 203.1.3 Summary of Event Identi�cation : 233.2 Costs : 233.3 Features : 243.4 Events Matrix : 254 Learning Algorithm 275 Updating the Path Planner 286 Experimental Results 296.1 Simulated World: Learning Patterns : 296.1.1 Data and Rule Learning : 306.1.2 E�ect on Path Planner : 336.2 Real Robot : 366.2.1 31 July 1997 : 376.2.2 31 October 1997 : 377 Related Work 387.1 Learning Action Costs : 397.2 Learning Symbolic Descriptions of Actions : : : : : : : : : : : : : : : : : : : 397.3 Learning Plan Quality : 408 Conclusion 418.1 Other Applications : 428.2 Important Issues : 438.3 Future Research Directions : 45References 45ii

1 IntroductionA system operating in a physical world must learn from its experiences. Most physical worldsare hard to model completely and correctly, and hence, regardless of the skill and thought-fulness of its creator, the agent is bound to encounter situations that have not been speci�edin its design. The system should adapt to these situations and absorb any information thatwill improve its performance.The challenges for designing a learning for a physical system are often due to represen-tation di�erences between its planners and its executors. It is hard to extract informationfrom the execution data that will be relevant for planning, and hard to transform that datainto useful planning knowledge. Moreover, it is hard to design a learning mechanism thatwill be
exible enough to acquire initial information about the environment, and then tomodify that information to incorporate future changes in the domain.In this article, we present a learning mechanism for a real indoor mobile robot. Ourapproach learns the costs and probabilities of operating in an environment, and is able toidentify when the cost of an action depends on the current situation. Moreover, our approachis responsive to changes in the environment, and hence provides the robot with the abilityto adapt to changes and continuously improve its performance.Prior Learning E�orts for Robotics. Learning has been applied to robotics problemsin a variety of manners. Common applications include map learning and localization (e.g.[Koenig & Simmons, 1996; Kortenkamp &Weymouth, 1994; Thrun, 1996]), or learning oper-ational parameters for better actuator control (e.g. [Baroglio et al., 1996; Bennett & DeJong,1996; Grant & Feng, 1989; Pomerleau, 1993]). Instead of improving low-level actuator con-trol, our work focusses at the planning stages of the system.Arti�cial intelligence researchers have explored this area extensively, but have generallylimited their e�orts to simulated worlds with no noise or exogenous events. AI research thatmost closely resembles ours has explored how to learn and correct action models (e.g. [Gil,1992; Pearson, 1996; Wang, 1996]). These systems observe or experiment in the environmentto correct action descriptions, which are then directly used for planning.In the robotics community, closely related work comes from those who have exploredlearning costs and applicability of actions (e.g. [Lindner et al., 1994; Shen, 1994; Tan, 1991]).These systems learn improved domain models and this knowledge is then used by the system'splanner, as costs or control knowledge, so that the planner can then select more appropriateactions.Situation-dependent Learning Approach. Current systems learn that each action hasan associated average probability or cost. However, actions may have di�erent costs underdi�erent conditions. Instead of learning a global description, we would like the agent tolearn the pattern by which these situations can be identi�ed. The agent needs to learn thecorrelation between features of the environment and the situations, so that its planners can1

predict and plan for those situations. Hence we introduce the concept of situation-dependentrules that determine costs or probabilities of actions.We would like a path planner to learn, for example, that a particular highway is ex-tremely congested during rush hour tra�c. We would like a network routing planner tolearn, for example, that packets are more easily lost at a particular router when the networkis congested. We would like a task planner to learn, for example, that a particular secretarydoesn't arrive before 10am, and tasks involving him can not be completed before then. Wewould like a multi-agent planner to learn, for example, that every Monday heavy packagesarrive, requiring two agents to carry them. Once these patterns have been identi�ed andcorrelated to features of the environment, the planner can then predict and plan for themwhen similar conditions occur in the future.Learning consists of processing execution episodes situated in a particular task context,identifying successes and failures, and then interpreting this feedback into reusable knowl-edge. Our approach relies on examining the execution data to identify situations in whichthe planner's behaviour needs to change. Our approach requires that the execution agentde�nes the set of available situation features, F , while the planner de�nes a set of relevantlearning events, E, and a cost function, C, for evaluating those events.Events are learning opportunities in the environment for which additional knowledgewill cause the planner's behaviour to change. Features discriminate between those events,thereby creating the required additional knowledge. The cost function allows the learner toevaluate the event. We give some examples of events, costs and features in Table 1. Thelearner then creates a mapping from the execution features and the events to the costs:F � E ! C:For each event " 2 E, in a given situation described by features F , this learned mappingpredicts a cost c 2 C that is based on prior experience. We call this mapping a situation-dependent rule.Once the rules have been created, the learner then gives the information back to the plan-ners so that they will avoid re-encountering the problem events. When the current situationmatches the features of a given rule, the planners will avoid (or exploit) the correspondingevent as appropriate.These steps are summarized in Table 2. Learning occurs incrementally and o�-line; eachtime a plan is executed, new data is collected and added to previous data, and then all datais used for creating a new set of situation-dependent rules.In this incremental way, the planners can not only detect patterns in the environment,but also notice when the environment changes. For example, the bottleneck router may bereplaced by new hardware so that it can handle more packets. The secretary may changehis work hours. The incremental learner can notice these changes and incorporate them intothe rules, thereby responding to the changing environment.The approach is relevant for all planners that would bene�t from feedback about planexecution. Every planner can bene�t from understanding the patterns of the environmentthat a�ect task achievability. This situation-dependent knowledge can be incorporated into2

E F CPath PlannerA highway is congestedduring rush hour. driving a highway time-of-dayhighway numberday-of-week traversal timegas consumptionNetwork RouterPackets are lost at a par-ticular router when the net-work is congested. routing a packet tra�c volumerouter packet loss ratethroughputtime-to-destinationTask PlannerA particular secretarydoesn't arrive until 10am. achieving a task locationsecretarytime-of-day success rateMulti-Agent PlannerHeavy packages arrive onMondays, requiring twoagents. achieving a task number of agentspackage weightday-of-week success ratetime-to-completionTable 1: Examples of Events, E , Features, F , and Costs, C, for sample planners.1. Create plan.2. Execute; record the execution data and features F .3. Identify events E in the execution data.4. Learn mapping: F � E ! C.5. Create rules to update each planner.Table 2: General approach for learning situation-dependent costs.the planning e�ort so that tasks can be achieved with greater reliability and e�ciency.Situation-dependent features are an e�ective way to capture the changing nature of a real-world environment.The approach is also relevant for planners and executors whose data representations di�erwidely. Features are de�ned as by the executor and the task environment, while events andcosts are de�ned by the planner. These are mapped into an intermediate data representationthat is independent of both the executor and the planner. As a result, planners can bedesigned independently from their hardware, thereby allowing designers to select the bestplanner for a given task.To demonstrate the e�ectiveness of the approach, we have implemented it in two di�erentplanners for a real robot, a path planner and a task planner. This article describes theimplementation for the path planner. The implementation for the task planner can be foundelsewhere [Haigh, 1998]. Our situation-dependent learning approach processes execution3

data to create improved domain models for both of its planners, thereby allowing them tocreate better quality, more e�cient plans. Our approach e�ectively equips a real robot withthe ability to learn from its own execution experiences.Reader's Guide. We present our application domain in Section 2, along with the systemarchitecture and representations of the relevant software modules. In Section 3, we presentthe mechanismsRogue uses to create training data for the learning algorithm. We describehow Rogue extracts and evaluates learning events, E, from the execution trace. We alsodiscuss features, F , including the characteristics of a good feature.In Section 4, we present the learning mechanism we use to create the mapping fromsituation features, F , and arc traversals E, to arc costs, C.In Section 5, we brie
y describe how the path planner uses these situation-dependent arccosts to create e�cient paths. We present our experimental results in Section 6. Relatedwork can be found in Section 7. We present our conclusions and lessons learned in Section 8.2 Implementation DomainOur research explores the interaction of perception, cognition, action and learning in acomplete integrated autonomous agent. Towards this end, we have built a system calledRogue [Haigh & Veloso, 1997; Haigh & Veloso, 1998b; Haigh, 1998] that forms the taskplanning and learning layers for a real mobile robot, Xavier. One of the goals of the projectis to have the robot move autonomously in an o�ce building, reliably performing o�ce tasks,such as picking up and delivering mail and computer printouts, picking up and returninglibrary books, and carrying recycling cans to the appropriate containers. User requests are,for example, \Pickup a package from my o�ce and take it to the mailroom before 4pm today."In general, requests involve acquiring an item at some location, and then delivering it toanother.Xavier is a mobile robot being developed at Carnegie Mellon University [O'Sullivan et al.,1997; Simmons et al., 1997] (see Figure 1).It is built on an RWI B24 base and includes bump sensors, a laser range �nder, sonars, acolor camera and a speech board. The software controlling Xavier includes both reactive anddeliberative behaviours, integrated using the Task Control Architecture (TCA) [Simmons,1994]. Much of the software can be classi�ed into �ve layers, shown in Figure 2: ObstacleAvoidance, Navigation, Path Planning, Task Planning, and the User Interface.Users send task requests to the task planner, which generates plans and sends plan stepsto the robot for execution. The task planner combines plans for multiple interacting goals,reasons about task priority and compatibility, and interleaves planning with execution. Thepath planner calculates the path between two locations with the best expected travel time.The navigation module uses a Partially Observable Markov model to navigate the selectedpath. 4

Figure 1: Xavier the robot.
(Decision-Theoretic Planning)

(POMDP)

(CVM)

(Commercial)

an
d

Sy
nc

hr
on

iz
at

io
n

(T
C

A
)

Obstacle Avoidance

Navigation

Path Planning

Task Planning

Hardware / Servo-Control

User Interface

(WWW, Zephyr, Special Purpose)

(PRODIGY4.0)

In
te

rp
ro

ce
ss

 C
om

m
un

ic
at

io
n

Figure 2: Xavier's primary software layers. Re-produced from Simmons et al. [1997].Rogue adds to this architecture by providing a learning module. Rogue processesexecution experience to help the task planner and the path planner improve the quality oftheir generated plans. In this article we focus on Rogue's learning capabilities as appliedto the path planner.We incorporate our situation-dependent learning approach in the Xavier architecture tocapture patterns that a�ect costs of operating in the environment. For example, temporaryobstacles, including people and objects, may appear at any time. Permanent obstacles orchanges may also occur; for example the hallways in our building were recently carpeted andseveral doors added. These changes may lead to changes in navigation e�ciency, reliabilityor even achievability.2.1 Situation-Dependent Learning ExampleConsider the following example. For Xavier, the most challenging region of its environmentis the lobby of our building. Figure 3 shows the map of the main
oor, and Figure 4 showsa closeup of the lobby area, with typical obstacles added for the reader's bene�t (since theyoften change, the robot does not know where they are). The lobby contains two food carts,several tables, and is often full of people. The tables and chairs are extremely di�cult forthe robot's sonars to detect, and the people are (often malicious) moving obstacles. As aresult, navigating through the lobby is challenging and expensive for the robot. During peakhours (co�ee and lunch breaks), it is virtually impossible for the robot to e�ciently navigatethrough the lobby. 5

Figure 3: Robot's map (half of the 5th
oor of our building).
Figure 4: Closeup of map; typical obstacles added for the reader: small obstacles indicate people,while larger ones indicate tables and food carts.In this example, we would like Xavier to learn when to avoid the lobby completely. Adirect path from the 5200 corridor to room 5409 is very short through the lobby, but whenthe lobby is crowded, the robot takes a lot of time to arrive at its destination. When thelobby is empty, the robot rarely has problems. A rule modifying the cost of the arc, such asthe one shown in Figure 5, would force the planner to avoid the lobby during lunch break.Creating a pre-programmed model of these dynamics would be not only time-consuming,but very likely would not capture all relevant information, particularly in a changing envi-ronment. Rogue can reduce the burden on the programmer because its learning capabilities6

Elevators Lobby

 then high cost

else low cost

if (12pm < current-time < 1:30pm)

arc in topological map

5409

5201Figure 5: A high-level view of a sample learned rule for the path planner; Rogue learns actual traversalcosts.modify the existing domain model to re
ect real world experience. Rogue extracts relevantinformation from the execution data to learn patterns and identify changes in the environ-ment. Rogue then creates situation-dependent rules that the planners can use to improveplan quality.2.2 Learning for the Path PlannerWhen applying our situation-dependent learning algorithm to Xavier's path planner, ourconcern is to improve the reliability and e�ciency of selected paths. Figure 6 shows how ouralgorithm �ts into the framework of the Xavier architecture.The path planner uses a A* algorithm on a topological map that has additional metricinformation [Goodwin, 1996]. Knowledge in the path planner is represented as a topologicalmap of the robot's navigation environment. The map is a graph with nodes and arcs repre-senting o�ce rooms, corridors, doors and lobbies, and is augmented with metric information.The path planner uses an estimate of the arcs' traversal costs to create path plans with thebest expected travel time.
Path

Planner
Navigation
(POMDP)

Learning

Execution

Trace

Weighted Arcs

Path

Topological Map

(nodes, arcs and lengths)Figure 6: Learning for the path planner.7

By learning appropriate arc cost functions, Rogue helps the path planner to avoidtroublesome areas of the environment when appropriate. Therefore we identify events, E,for this planner as arc traversals, and costs, C, as travel time. Features, F , include both robotsensor data and high-level features such as date and goals. Rogue's situation-dependentlearning algorithm will then create a mapping from features and events to costs: F�E ! C:The path planner can then use these situation-dependent costs to create better estimates ofa path's expected execution time.Execution traces are provided by the navigation module. Navigation is done using Par-tially Observable Markov Decision Process Models (POMDPs) [Simmons & Koenig, 1995].The execution trace includes observed features of the environment as well as the probabil-ity distribution over the Markov states at each time step. Identifying the path planner'sevents from this trace is challenging because the execution traces contain a massive, contin-ual stream of probabilistic data. At no point in the robot's execution does the robot knowwhere it actually is. It maintains a probability distribution, making it more robust to sensorand actuator errors, but making the learning problem more complex because the trainingdata is not guaranteed to be correct.The primary challenge of our learning approach is to create arc costs that depend onhigh-level features of the environment. In the implementation for Xavier's path planner,an additional challenge is to process vast amounts of uncertain, continual navigation data.Note that our situation-dependent learning approach is valid for any path planner pairedwith any navigation module. If Xavier were to directly plan paths within the POMDP, thenRoguewould learn situation-dependent transition probabilities betweenMarkov states. Theimportant point is that Rogue processes execution data to improve plan quality.We now describe in detail the representations of the path planning and navigation mod-ules.2.2.1 The Path PlannerThe path planner determines how to travel e�ciently from one location to another. The en-vironment is modelled as a topological map with nodes and arcs. Nodes represent junctions,such as those between corridors or at doors. Arcs represent connections between junctions.Topological arcs are augmented with length estimates.Plans are generated using a decision-theoretic A* search strategy [Goodwin, 1996]. Thepath planner operates on the augmented topological map rather than using the POMDPmodel directly.1The path planner creates a path with the best expected travel time. The travel time ofa complete path is calculated as a function of four parameters: distance, traversal weight,blockage probability and recovery costs.1It is infeasible to determine optimal POMDP solutions given our real-time constraints and the size ofour state spaces (over 3000 states for the map shown in Figure 3, page 6) [Cassandra et al., 1994; Lovejoy,1991]. Reasoning about blockage probabilities and recovery costs is also notably easier in the topologicalmap. 8

� The distance is an estimate of the straight-line length of the arc. It is an estimatebecause topological maps are not necessarily generated from building blue-prints: theymay be hand sketched or learned.� The traversal weight describes the di�culty of the route (e.g. door arcs are more ex-pensive than corridor arcs).� Blockage probability indicates the probability a given arc cannot be traversed (e.g. aclosed door).� Recovery costs estimate the di�culty of recovering from a failure, such as missing aturn or discovering a closed door. These costs estimate local recovery costs, i.e. foreach missed turn.Xavier currently travels in a restricted environment, namely three of the
oors in ouro�ce building. The weights of the topological map of this environment have been hand-tunedand provide a good initial approximation of the unoccupied environment. However, thesedefault costs do not capture the variations created by human use. The patterns describingthese variations can be detected.Rogue learns traversal weights (or costs) that depend on high-level features of the sit-uation. These learned weights e�ectively modify the estimated traversal time to re
ectexperienced traversal time. Learning situation-dependent costs will allow the path plannerto respond to patterns and changes in the environment.2.2.2 NavigationNavigation on the robot is done using Partially Observable Markov Decision Process models(POMDPs) [Simmons & Koenig, 1995; Koenig, 1997]. The navigation module estimatesthe robot's current location, determines the direction the robot should be heading at thatlocation to follow the path, and then sets a directional heading.The navigation module estimates the robot's current location by maintaining a probabil-ity distribution over the robot's current pose (position and orientation). Given the currentpose distribution and new sensor information, the navigation module uses Bayes' rule toupdate the pose distribution. The updated probabilities are based on probabilistic mod-els of the actuators, sensors, and the environment. In Xavier, the primary actuators arethe wheels, for which the probabilistic models describe the robot's dead-reckoning skills.Xavier's primary sensors are its sonars, whose probabilistic models describe the likelihood ofobserving given features in the sonar data. The environment is the map, where the proba-bilistic models describe variance on its metric information. This information is automaticallycompiled into a POMDP model.Table 3 shows the Bayesian probability update calculation. Figure 7 shows an exampleof how Bayes' rule is used to update state probabilities (for a forward action, disregardingobservations). At time t, states s1; :::; s4 have the marked probabilities, and for a givenaction, the marked transition probabilities to s5; :::; s8. Denote �(si; t) to be the probabilityof state i at time t; denote Aa(si; sj) to be the transition probability between si and sj for9

De�ne S to be the set of all Markov states; Let s; s0 2 S.De�ne A to be the probability distribution over successor states; Aa(s; s0) is thetransition probability for an action a between state s and state s0.De�ne O to be the probability distribution over observations; O(s; o) is then theprobability of obverving o in state s; ot is the observation received at time t.De�ne � to be the probability distribution over S; �(s; t) is then the probability of therobot being in state s at time t. (Technically, �(s; t) is shorthand for�(s; t j o0; :::; ot; a0; :::; at�1; �(s; 0)) for the observation sequence o0; :::; otand the action sequence a0; :::; at�1.)At time t = 0:8s 2 S; let �(s; 0) = initial state distribution.For time t + 1 � 1, action a was selected, and then observation ot+1 was made:8s0 2 S; �(s0; t+ 1) =Ps2S �(s; t)� Aa(s; s0)�O(s0; ot+1).Table 3: Bayesian probability updates.
(time t)

Possible states Possible states
(time t+1)

s5

s6

s7

s8

, t) = 0.3

, t) = 0.4

, t) = 0.2

(s4

(π s3

(π s2

(s1π

π

(s5π , t+1) = 0.2*0.5+0.4*0.6 = 0.34

(s6π , t+1) = 0.3*0.8 = 0.24

(s7π , t+1) = 0.2*0.5 + 0.4*0.1 + 0.3*0.2 = 0.20

(s8π , t+1) = 0.1*1.0 + 0.4*0.3 = 0.22

Transitions

0.8

0.6

0.5

0.5

0.2

1.0

s3

s2

s1

s4

0.3

0.1

, t) = 0.1Figure 7: An example of POMDP transition calculations (for a forward action, disregarding observa-tions). �(si; t) indicates the probability of the state (circle size is proportional to probability). At timet + 1, POMDP state probabilities are calculated as the sum of all incoming transitions.a given action a; denote O(si; ot) to be the probability of observing ot in state si. At timet+ 1, for a given action a, the POMDP's Bayesian probabilities are calculated as:�(sj; t+ 1) =Xi �(si; t)�Aa(si; sj)�O(sj; ot+1): (1)10

Each of the states at time t+ 1 has updated probabilities that are calculated as the sum ofall incoming transitions.Observations of the world help prune unlikely states from the probability distribution.Observations can help prune unlikely states because a low probability observation will makea low probability state essentially impossible2, while a high probability observation willimprove con�dence in medium or high probability states.Regular observations can keep the robot fairly certain of its location. However, if therobot does not receive any observations for a long time (e.g. in a long featureless corridor),the probability distribution may spread over many states, making it impossible to determinewith any precision the robot's exact location.Note that a new observation may signi�cantly change the probability distribution. Forexample, when the robot observes the end of a corridor, that state is extremely likely. Atthe previous time step, however, the robot might have had a very poor estimate of itslocation, in which the probability distribution was very
at and centred some distance fromthe end of the corridor. Figure 8 demonstrates this change. Figure 8a shows the probabilitydistribution before the robot sees the wall at the end of the corridor, while Figure 8b showsthe distribution after.The metric variance (length uncertainty) of the map alters the structure of the Markovmodel. In our system, we use parallel Markov chains, where each corresponds to one of thepossible lengths of the edge. Figure 9 illustrates an example for a corridor that may be two,three or four metres long. This representation is an e�ective way to model worlds in whichlengths are not known with certainty.2In the implemented algorithm, all states with less than 10�9 probability are reset to zero.
(a) (b)Figure 8: Markov state probability distribution, (a) before and (b) after observing the wall at the endof the corridor. Circles indicate probability distribution; large circles have high probability. At each timestep, the most likely state is marked with a dot. 11

Markov node, including
 direction heading

A B Forward transition; each

Key

arc represents one metreFigure 9: Corridor representation which captures length uncertainty for the navigation module. Eachtransition corresponds to 1 metre, and hence this corridor is represented as being 2, 3 or 4 metres long.Only forward transitions are marked. Reproduced from Simmons & Koenig [1995].3 Training DataOur situation-dependent learning algorithm correlates situational features to learning op-portunities so that planners can predict and avoid similar situations in the future. Thealgorithm requires a list of the learning events, E, the evaluation of each of the events, C,and the values of each of the situational features during the event, F . Each event, its cost,and its feature values are then placed in an events matrix for use by the learning algorithm.3.1 EventsEvents (E) in any planner can be identi�ed by asking the question: \What will change theplanner's behaviour?" In Rogue, we would like the path planner to predict and avoid areasof the environment which are di�cult to navigate (and similarly, exploit areas that are easyto navigate). Improved cost estimates on arcs will cause the path planner to select moreappropriate plans. Learning events are therefore arc traversals that do not meet expectations.The available execution data is generated by the navigation module, and is thereforestored using the probability distribution over Markov states. Rogue examines the execu-tion trace, identi�es the most likely path that the robot traversed, and then identi�es thecorresponding path planner arcs. Rogue then maps situational features to the arc traversalsto create situation-dependent costs.An execution trace from the robot includes:� the features describing the situation,� the sequence of actions executed by the robot, and� the probability distribution over the Markov states at each time step.In particular, an execution trace does not include arc traversals. We therefore need to extractthe traversed arc sequence from the Markov state distributions. The steps in this processare: 12

1. Identify the robot's most likely traversed sequence through the Markov states.2. Calculate the most likely traversed sequence through the path planner's arcs.This process can be described pictorially as in Figure 10. As the robot wanders downthe corridor, it sees doors at time steps 6 and 8. The Markov state distribution changesas shown. In order to modify the arc cost estimates for the path planner, Rogue needs todetermine which arcs the robot travelled, and for how long.The POMDP navigation module keeps track of the most likely states but not the mostlikely sequence of states. The algorithm to calculate this sequence is known as Viterbi'salgorithm [Rabiner & Juang, 1986]. Viterbi's algorithm is guaranteed to �nd the single beststate sequence with the highest probability, given the actions, observations and initial statedistribution. However, Viterbi's algorithm was not designed for use in a Markov model thatrepresents uncertain length information. We extend Viterbi's algorithm to compensate forthis uncertainty, giving us a powerful way to identify likely paths through the environment.Once these likely state sequences have been identi�ed, we then need to identify the cor-responding arc sequences. The environment representations used by the navigation moduleand the path planner are di�erent enough that the mapping is not direct.Finally, once the arc sequences have been identi�ed, Rogue can calculate cost estimatesfor the arcs, and then correlate those costs with the available features, thereby creatingsituation-dependent arc costs.Below, we describe the workings of Viterbi's algorithm and our extension of it. We then
Time

M
ar

ko
v

St
at

es

1 2 3 4 5 6 7 8

Markov State; size
proportional to
probability

Most likely Markov
state

Corridor

Arc

Node

Navigation Output
Map

Representation

R
oom

 1
R

oom
 2

R
oom

 3
R

oom
 4Figure 10: Extracting arc traversals from Markov state distributions.13

present the techniques used to calculate the arc sequence so that arc traversal events can beidenti�ed.3.1.1 Identifying the Most Likely Traversed Markov SequenceSince the robot does not know where it is at any given moment, it consequently cannotidentify with certainty its path. In order to reconstruct the arc traversal sequence, we must�rst reconstruct the Markov state traversal sequence.The algorithm to calculate this sequence is known as Viterbi's algorithm [Rabiner &Juang, 1986]. The algorithm is reproduced in full in Table 4. In step 1, variables areinitialized. In step 2, Viterbi's algorithm maintains an estimate of which state the robot wasin at the previous time step, for each possible state. In step 3, the algorithm calculates thecomplete Viterbi sequence by recursing backwards through time.De�ne S to be the set of all markov states; s; s0 2 S.De�ne A to be the probability distribution over successor states; Aa(s; s0) is thetransition probability for an action a between state s and state s0.De�ne O to be the probability distribution over observations; O(s; o) is theprobability of obverving o in state s.De�ne � to be the POMDP probability distribuion over S; �(s; t) is theprobability of the robot being in state s at time t.De�ne � to be the Viterbi probability distribution over S; �(s; t) is theprobability of the sequence ending at s at time t.De�ne 	(s; t) to be the unique state from time t� 1 that most likely leads to state s.De�ne SeqT to be the most likely sequence generated from time T ; s = SeqT (t) isthe state at time t in SeqT .1. At time t = 0:8s 2 S; let �(s; 0) = initial state distribution = �(s; 0)let 	(s; 0) = NULL2. For time t + 1 � 1, action a was selected, and observation ot+1 was made:8s 2 S; 	(s; t+ 1) = s0 such that s0 gives MAX8s02S [�(s0; t)� Aa(s0; s)] :�(s; t+ 1) = 1k �((s; t+ 1); t)� Aa((s; t+ 1); s0)� O(s; ot+1):where k is a normalization factor.3. To calculate the most likely sequence at time T , SeqT :SeqT (T) = s such that s gives MAX8s2S [�(s; T)],i.e. the most likely Viterbi state at time T .8t; 0 � t < T SeqT (t) = 	(SeqT (t+ 1); t+ 1):Table 4: Viterbi's Algorithm, reproduced from Rabiner & Juang [1986].14

X

Y

1 2Figure 11: A map showing why the most likely state sequence may be di�erentfrom the most likely states.Viterbi's algorithm is a slight modi�cation to the standard POMDP algorithm used fornavigation. The primary di�erence is that:the POMDP algorithm calculates the most likely states, whileViterbi's algorithm calculates the most likely state sequence.The two may di�er, for example, when there are multiple parallel corridors that the robotmay have travelled down. Consider Figure 11, where the robot travelled from X to Y, alongeither path 1 or 2. When the robot nears Y, the most likely states re
ect the possibility ofhaving arrived along either route, while the most likely state sequence is only one of the tworoutes.The POMDP algorithm is well-suited to most robotics tasks because it is very importantfor the robot to have a good idea where it is. Viterbi's algorithm, on the other hand, ismore commonly used in applications where the whole sequence is needed. For example, itis widely used in speech recognition, where the most likely sentence is desired, rather thansimply the most likely last word.For our robot learning application, we need the complete path of the robot, and henceuse Viterbi's algorithm. Viterbi's algorithm, however, was not designed for use when thedesired trajectory is actually an abstraction of the Markov states. Our models representlength uncertainty, and hence we need an estimate of the trajectory that ignores lengthuncertainty. We extend Viterbi's algorithm to compensate for this representation di�erence.Mathematically, the POMDP algorithm calculates the transition probability as a sumof the probabilities on connecting states, that is, looking at all possible ways of arrivingat a particular state. Viterbi's algorithm, on the other hand, �nds the single most likelyprior state, so as to reconstruct a path. (Note that Viterbi's algorithm does not use �, thestandard POMDP state probability distribution, but instead uses �, the probability of thesequence.)Figure 12 illustrates the di�erence between the standard POMDP calculations and thecalculations in Viterbi's algorithm. In this �gure, the �(s; t = 0) probabilities equal the�(s; 0) probabilities of Figure 7, and the transition probabilities, A, are also the same.Recall that POMDP probabilities are calculated as shown in equation 1. Viterbi's algorithm,15

s5

s6

s7

s8

Transitions

0.8

0.6

0.5

0.5

0.2

1.0

s3

s2

s1

s4

0.3

0.1

(time t=0)
Possible states Possible states

(time t=1)

(Ψ s8

(, 1) = argmax[0.2*0.5 , 0.4*0.1 , 0.3*0.2] =Ψ s7

(, 1) = argmax[0.3*0.8] =Ψ s6

(, 1) = argmax[0.2*0.5 , 0.4*0.6] =s5Ψ
s5, 1) = 0.4*0.6 = 0.24(δ

s6, 1) = 0.3*0.8 = 0.24δ (

s7, 1) = 0.2*0.5 = 0.10δ (

, 1) = 0.4*0.3 = 0.12s8δ (
, 1) = argmax[] = s2

s1

s3

s2

, 0) = 0.1(s4

, 0) = 0.3(δ s3

δ , 0) = 0.4(s2

, 0) = 0.2(s1δ

δ 0.4*0.3 , 0.1*1.0

s2s1

s1 s2 s3

s2 s4Figure 12: Viterbi transition calculations (for a forward action, disregarding observations). �(si; t)indicates the Viterbi probability of the sequence ending in si at time t (circle size is proportional toprobability); 	(si; t) indicates the most likely prior state (thick line shows the selected transition). Attime t + 1, Viterbi sequence probabilities are calculated as the most likely prior sequence times thetransition probability (and then normalized).meanwhile, maintains the probability distribution of the sequence, �, calculated as:�(sj; t+ 1) = 1k�((sj; t+ 1); t)�Aa((sj; t+ 1); sj)�O(sj; ot+1); (2)where k is a normalization factor3 and 	(sj; t+1) is the most likely sequence at time t+ 1.	(sj; t + 1) is calculated from the transition probability and the probability of the mostlikely sequence at time t:	(sj; t+ 1) = si such that si gives MAX8si2S [�(si; t)�Aa(si; sj)]= ARGMAX8si2S [�(si; t)�Aa(si; sj)] : (3)Viterbi's algorithm �nds the sequence at time t that contributed the most probability tothe sequence at time t + 1. In Figure 12 for example, the most likely prior state for states7 is s1, because s1 contributed 0.10 (0.2 � 0.5) probability, while s2 contributed 0.04, ands3 contributed 0.06. Note that, in hind-sight, Viterbi's algorithm eliminates the possibilitythat the robot was in state s4 at time t, while the two paths it generates from states s5 ands8 converge, both passing through s2.3If k is not used, � re
ects the exact probability of the sequence; however, round-o� error causes seriousmiscalculations when these numbers become very small.16

Problems with the Viterbi SequenceViterbi's algorithm is guaranteed to �nd the most likely sequence of Markov states [Ra-biner & Juang, 1986]. However, the Markov models we use for robot navigation di�er fromstandard Markov models used by speech systems: we represent length uncertainty.In our models, Viterbi's algorithm �nds the most likely sequence that re
ects trajectoryand length; we would like an algorithm that �nds the most likely trajectory. In other words,we want the algorithm to identify the robot's trajectory in the topological map, which is anabstract representation of the Markov model.Essentially, the fact that a given node may \fan-out" leads to information loss and apoor estimate of the best path. The fan-in/fan-out representation of the model e�ectivelycaptures the length uncertainty of the environment, but Viterbi's algorithm is unable togenerate a good estimate of the abstracted trajectory.For example, consider Figure 13. Because node s1 splits into three parallel Markovchains, while the lower probability state, s2, splits into two, Viterbi's algorithm selects thesequence through s2 as the most likely sequence from s3. In a Markov model that doesnot represent length uncertainty, Viterbi's algorithm would correctly identify s1 as the morelikely previous state.Consider the reverse situation, shown in Figure 14, in which one outgoing arc has a greaterweight than other outgoing arcs, such as when a node is connected to a door. Although itis clear that the robot travelled to s2 rather than s3, Viterbi's algorithm selects s2 as the
0.33

0.33

0.33

s1
0.56

0.
5

0.5

s2
0.44

0.186

0.186

0.186

0.22

0.22

s3

= 1.0

= 0.22

π
δ0.186

0.186 0.186

0.22

Figure 13: Fan-in: Example of how the map representation a�ects Viterbi's algorithm. Although it ismore likely that the robot passed through s1, the Viterbi sequence generated from s3 passes throughs2 instead. 17

1.00.234 1.0

= 0.3
= 0.3

π
δ

s1
1.0

0.234

0.233

0.233

s3

1.0

1.0

1.01.0

0.234

0.233 0.233

0.3

0.233

0.233
s2

= 0.7π
δ= 0.234Figure 14: Fan-out: Example of how the map representation a�ects Viterbi's algorithm. Although s2has a greater � probability than s3, Viterbi's algorithm selects s3 as the sequence-generating state.most likely generating state. In this situation, since room states have high-probability self-transitions, Viterbi's algorithm will very often never correct itself, instead claiming that therobot's most likely path was only within the room.The problem continues to compound so that after a long execution run, Viterbi's al-gorithm selects sequences that are extremely unlikely according to the standard POMDPcalculations. In fact, in most cases, the �nal state in the most likely sequence did not evenappear in the list of possible POMDP states �, which prunes out extremely low probabilitystates, i.e. 6 9s 2 S such that �(s; T) > 0 and s = SeqT (T) = ARGMAX8s02S [�(s0; t)].Multi/Markov ViterbiIdeally, we would like Viterbi's algorithm to ignore length uncertainty and correctly iden-tify the robot's trajectory in the topological map, rather than directly in the Markov model.Essentially, Viterbi's algorithm would have to identify a fan-in situation, and correctly sumprobabilities over those edges. However, our Markov model representation does not lenditself to easy detection of these situations4, and so we instead use an approximate method.We modify Viterbi's algorithm in three ways:1. Rogue uses the most likely POMDP state as the sequence generator. We know thatthe � distribution is always a better estimate of the robot's current location than the �distribution, since these probabilities are based on all possible ways of reaching a givenstate. In other words, instead of using the default generating stateSeqT (T) = ARGMAX8s2S [�(s; T)](the most likely Viterbi state, �, at time T), Rogue usesSeqT (T) = ARGMAX8s2S [�(s; T)]4Note to the reviewers: We can provide a discussion paragraph or reference.18

Figure 15: Map used in the example of how multiple sequences are used.(the most likely POMDP state, �, at time T). E�ectively, this change forces Viterbi'salgorithm to use the standard POMDP position estimate as an \oracle" of the �nalstate. The intuitive justi�cation for this change is that if the �nal state selectedsequence has a high � probability, then the generated sequence is more likely to re
ectthe actual traversal sequence. In speech recognition, for example, this modi�cationwould be equivalent to having a good estimate of the last word of the sentence; insteadof calculating the most likely sentence, P (s), we calculate the most likely sentencegiven the most likely last word, P (sjw).2. Rogue sets a threshold for the minimum probability for the generating state. Thatis, Rogue selects t � T and a threshold � such that Seqt(t) > � . In this way, we canensure that we select high probability sequences and eliminate low probability ones.3. Rogue uses the Viterbi sequences generated frommany high probability states through-out the trace: 8t � T; Seqt(t) = ARGMAX8s2S [�(s; T)]^ Seqt(t) > �;By using many sequences, Rogue collects evidence for the most likely actual trajec-tory, and thereby compensates for the poor estimates made by Viterbi's algorithm.We call the modi�ed algorithmMulti/Markov Viterbi because we usemultiple trajectoriesgenerated from the most likely Markov state.Reconsider the probabilities and transitions shown in Figure 13. Unmodi�ed, Viterbi'salgorithm would generate a sequence passing from s3 through s2 to the initial state. Ourmodi�ed Viterbi's algorithm uses that path as well as the sequence generated from s1. Byusing both sequences, Rogue is more likely to capture the robot's actual traversal sequence.For a second example, consider the map shown in Figure 15. Imagine that the robottravels up one of the central corridors, and then turns right towards point C. Assume therobot initially believes it is heading towards point A, in the \300" corridor. Because ofposition uncertainty, it might be in the \400" corridor, heading towards point B. When the19

sonars detect a wall in front of the robot, the robot becomes very certain that it has arrivedat the end of the corridor. The probability masses around points A and B. Point A has ahigher probability, say 0.60, while point B is 0.30 and other places with the remaining 0.10.The sequence generated at this moment (from point A) is then used for learning. Later in theepisode, the robot arrives at point C with 0.90 probability. The Viterbi sequence generatedfrom here shows that it is more likely that the robot travelled up the \400" corridor, goingthrough point B. This second sequence is also used for learning. Neither of the two sequencesis necessarily correct: imagine that the robot had not reached point C, but instead that anobstacle had been placed in the corridor directly above room 435, which the robot believedto be the end of the corridor. If the trace had ended at this point, and Rogue only usedthe second sequence for learning, the system would learn incorrectly. Using both sequencesallows Rogue to cover both possibilities.By recording each of these multiple sequences as training data for the learner, Rogueis in some sense \hedging its bets." It knows that the robot traversed only one unique paththrough the environment, but it does not know which. By recording all possibilities, Roguegathers a body of evidence that collectively captures the robot's actual path.In the cases that a later sequence subsumes an earlier one, the later sequence providescorroborating evidence for the earlier one. Throughout an execution trace, an early sequencemay acquire a substantial amount of corroborating evidence. Moreover, since arc sequencesare generalizations of Markov sequences, minor variations in the Markov sequence will ap-pear as minor variations in time estimates of the arcs. It is then the responsibility of thelearning algorithm to generalize the data, by grouping similar data and eliminating noise.Enough evidence of the correct path will allow Rogue to learn situation-dependent rulesthat correctly re
ect the dynamics of the environment.To summarize, Viterbi's algorithm �nds the most likely sequence of Markov states thatthe robot traversed. However, we need the most likely trajectory in the topological map,rather than the most likely trajectory in the Markov model. Since our Markov modelsrepresent length uncertainty, Viterbi's algorithm can become misled by the fan-out/fan-innature of the representation. To get a good estimate of the robot's actual state sequence,we use the most likely � state as the sequence generator. We also utilize multiple sequences,thus eliminating ambiguity raised by the fan-out representation. Multi/Markov Viterbi issummarized in Table 5.3.1.2 Identifying the Planner's ArcsOnce the set of most-likely Markov sequences has been constructed, we need to identifywhich of the path planner's arcs the robot traversed. The representation of the path plannerand of the POMDP are signi�cantly di�erent and the mapping is not direct. Only the needto reverse-engineer the data for learning has identi�ed this representation gap. Although thedetails of this process are dependent on our particular implementation, the representationgap problem is a general one. Each module in a given architecture may require a special-purpose representation that is well suited for its task, and mapping the information between20

De�ne � to be the threshold for a high probability state.De�ne V to be the set of selected Viterbi sequences; Seqt 2 V is thenthe most likely sequence generated from the most likely � state attime t; s = Seqt(t0) is the state at time t0 in Seqt, for 0 � t0 � t.Calculate �, � and 	 as in Tables 3 and 4. Recall that 	 depends on �.Let V = ;.Foreach t, 0 < t � T :Let smax = ARGMAX8s2S�(s; t)if �(smax; t) > �Let Seqt(t) = smaxForeach t0, from t� 1 down to 0Seqt(t0) = 	(Seqt(t0 + 1); t0 + 1)Let V = V [SeqtTable 5: Multi/Markov Viterbi: Viterbi's algorithm for generating abstract trajectories in Markovmodels with a high degree of fan-in/fan-out. It takes into account the state probability distribution, �,and uses multiple sequences to eliminate ambiguities created by the data representation.layers may be non-trivial. Careful design of the architecture may reduce the representationgap, but it is extremely unlikely that the problem will be entirely eliminated.The POMDP represents the world in a set of discrete square blocks. In our environment,one metre squares have been found to be empirically reliable while remaining e�cientlycomputable. The path planner, on the other hand, represents the world in a set of arcs,where nodes correspond to topological junctions like doors and corridors.Although these representations clearly make sense for each module, there is no directcorrespondence between the Markov states and the arcs. The original Xavier system wasdesigned to create the Markov model from the topological map, not to extract the topologicalmap from the Markov model. Figure 16 demonstrates the di�erence for a lobby area. Thereis no clear mapping from the Markov nodes to the path planners' arcs. A similar problemexists at junctions in corridors.We have addressed these problems by calculating the path using a greedy heuristic basedon expected execution times. First we calculate all the arcs that could possibly correspondto a single Markov node. For example, each node at a corridor junction would correspond toall the path planner arcs that meet there. Hence, there are often Markov nodes associatedwith multiple arcs. This fact complicates the reconstruction of the arc sequence because asingle Markov sequence may map to multiple arc sequences.We then reduce the number of possible arc sequences by permitting only the arcs thatcorrespond to the transition between sequential Markov states in the Viterbi sequence. How-ever, for a single Viterbi sequence, we are still left with many possible arc sequences.21

a) Markov Representation b) Path Planner Arc RepresentationFigure 16: Di�erent representations of a foyer.
s1 si sj sn

arc1
arc2Figure 17: Multiple arcs corresponding to multiple Markov nodes. arc1corresponds to s1; :::; sj; and arc2 corresponds for si; :::; sn.The mapping function then assigns states to arcs in a greedy manner, based on expecta-tion times. Consider Figure 17, in which arc1 corresponds to s1; :::; sj, while arc2 correspondsto si; :::; sn. If we have an expected time e(arci) to traverse arci, and time-stamps on eachstate sk, t(sk), then we say that states s1 through sk correspond to arc1 for:k = 8><>: i� 1; if t(si�1)� t(s1) > e(arc1); orl; if, for some l such that i � l < j; t(sl) � t(s1) � e(arc1) < t(sl+1)� t(s1);j; if t(sj)� t(s1) � e(arc1):arc2 then corresponds to states sk+1 through sn. We greedily add states to arcs until theViterbi sequence is exhausted, thereby creating the complete arc sequence. We do thismapping for each of the Viterbi sequences returned by Multi/Markov Viterbi.Experiments show that selecting arc sequences in this greedy manner yields good results.There are occasions however when the heuristic may fail. For example, imagine that thecorridor intersection in Figure 18 contains many obstacles. If most of the execution tracescontained paths from arc1 to arc2, then ideally, the excess traversal weight of the intersectionshould be evenly distributed between them. Instead, the heuristic will make the weight ofarc1 smaller, closer to the default value of an empty corridor, while arc2 would be muchlarger, containing all the weight of the di�cult intersection.Any newly generated paths that pass through both arc1 and arc2 would have the correcttotal weight. However, any new paths passing through arc3 and only one of arc1 and arc2would have a poor estimate of the true traversal weight.Empirically, this problem has not occurred. In general, the paths used as training dataare a fair representation of the paths used at execution: if Rogue travels certain typical22

ar
c3

arc2
arc1Figure 18: An example of when the greedy heuristic may fail.routes, then it is likely that it will continue to do so. Moreover, the incremental nature ofthe learning algorithm means that Rogue will self-correct with additional experience: ifRogue starts travelling new routes, new data will be collected, and the combined body ofevidence will create more accurate estimates of costs.3.1.3 Summary of Event Identi�cationThe probabilistic representation of the navigation module creates signi�cant challenges inreconstructing the robot's path through the environment. Rogue needs to estimate the mostlikely sequence of Markov states that the robot passed through, which can be done through amerging of the Bayesian POMDP state probabilities and Viterbi's algorithm. Then Rogueneeds to reverse-engineer the path planner's arcs from the Markov states. Rogue collectseach of the possible sequences into one body of data that collectively describes the robot'strue path. The process for extracting arc traversal events can be summarized as follows:1. Apply Multi/Markov Viterbi; i.e. accumulate likely sequences of traversed Markovstates.2. Apply the heuristic to break the representation-gap; i.e. map the Markov state se-quences into topological arc sequences.These arc traversal events, E, become input for the learning algorithm after they have beenevaluated.3.2 CostsOnce arc traversal events have been identi�ed from the execution trace, updated costs needto be calculated. These costs become the value predicted by the learning algorithm as afunction of the situational features. The learned costs are used by the path planner astraversal weights.The cost evaluation function, C, for the path planner yields an updated arc traversalweight for each arc traversal event " 2 E. 23

In our current implementation, this weight is equal to the product of the desired velocityon that arc and the actual time spent traversing it, divided by the modelled length:C(") = vt=l:This cost represents the experienced di�culty of the arc traversal. When the robot travels ina straight line at the desired speed, the cost is 1.0, indicating that the default cost estimatewas correct.Weights may be greater than one for the following reasons:� The robot travels in a straight line more slowly than desired.� The robot travels along a sinuous path at the desired speed.� The modelled length of the arc is shorter than the actual length.Weights may be less than one for the following reasons:� The modelled length of the arc is longer than the actual length. (For the experimentsconducted in our environment, the modelled length is 10% longer than the actuallength.)� The heuristic incorrectly assigns traversal times to arcs.3.3 FeaturesFeatures, F , of the environment are used to discriminate between di�erent learning events.It is crucial to �nd a good set of relevant features, since the hypothesis space can only bedescribed in terms of the available features. If critical features are omitted, then the learnerwill be unable to converge on the correct target function. It is an important open problemto autonomously determine a good set of features.Features are de�ned by the robot architecture and the environment. Usually they are notdependent on the tasks. For this reason, the execution module de�nes and collects features.Features available in Xavier include speed, time of day, sonar observations (walls, open-ings), camera images (which could also be abstracted to indicate \empty," \crowded," \clut-tered," etc.), other goals, and the desired route. For example, travelling too fast past a par-ticular intersection might lead to missing a turn. Images with lots of people might indicatedi�cult navigation.Characteristics that make a good feature include:� it is easy to detect (in terms of accessibility and cost),� it is informative, and� it is projective.Easy detection is important because features are recorded frequently, usually once pertime step in the trace. The system cannot spend most of its time calculating and recordingfeature values, nor can it spend all its time gathering the information before making decisions.24

Informative features are ones that contain information relevant to learning. A goodlearning system will be able to prune out irrelevant features, but we do not want the systemexpending e�ort to collect data that will later be ignored.By a \projective" feature, we mean one for which the gathered information at one momentcan help the system make decisions about the future. Usually these features are \high-level,"that is, they do not depend exclusively on execution. For example, a feature like time canbe easily projected into the future. Similarly, a feature such as the goal location will notchange for the duration of the task. \Execution-level" features can be projective when wecan control them; for example, the robot's speed can a�ect the reliability of navigationbecause the robot misses fewer openings and travels more smoothly.Most execution-level features, such as sonar readings or images, are not usually projectivebecause what the system sees now may have little or no bearing on what it sees in the future.It is not often the case that current sonar readings relate to future sonar readings at a di�erentlocation.There are also features which may be projective with respect to execution, but not pro-jective with respect to planning, such as travel direction. Travel direction can have directimpact on the cost of an arc; for example, an arc near a corridor intersection may be veryexpensive when making a turn, but when travelling straight from within the corridor, maybe much cheaper. Travel direction, however, cannot be predicted before planning, and hencethe path planner needs to carefully consider each route.For the experiments in this article, we only use the high-level features such as time ofday, route and other goals, along with execution-level features we can control such as therobot's speed. We incorporate sonar readings as one of the features when learning for thetask planner [Haigh, 1998], where the current reading (whether or not a door is open) a�ectsthe next immediate decision.3.4 Events MatrixEach training event is stored in a matrix along with its cost evaluation and the environmentalfeatures observed when the event occurred. Those environmental features which changeduring the traversal are averaged. Table 6 shows a sampling from an events matrix generatedby Rogue.This collection of feature-value vectors is presented in a uniform format for use by anylearning mechanism. Additional features from the execution trace can be trivially added;this particular matrix was recorded for the experiments described in Section 6, while sonarreadings were added for the task planner experiments [Haigh, 1998].The events matrix is grown incrementally; most recent data is appended at the bottom.Each time the robot is idle, the execution trace is processed and new events are added to thematrix. The learning algorithm then processes the entire body of data, and creates a newset of situation-dependent rules by compressing the many examples. By using incrementallearning, Rogue can notice changes and respond to them on a continual basis.The complete process for identifying, evaluating and storing arc traversal events from25

ArcNo Weight CT Speed PriorArc Goal Year Month Date DayOfWeek233 0.348354 38108 34.998001 234 90 1997 06 30 1192 0.777130 37870 33.461002 191 90 1997 06 30 1196 3.762347 37816 34.998001 195 284 1997 06 30 1175 0.336681 37715 34.998001 174 405 1997 06 30 1168 1.002090 60151 34.998001 167 31 1997 07 07 1246 0.552367 60099 34.998001 247 253 1997 07 07 1201 1.002090 64282 34.998001 202 379 1997 07 07 1134 16.549173 61208 34.998001 234 262 1997 07 09 3238 0.640905 54 34.998001 130 379 1997 07 10 4169 0.429588 39477 27.998402 168 31 1997 07 13 0165 1.472222 8805 34.998001 164 379 1997 07 17 4196 5.823351 3983 34.608501 126 253 1997 07 18 5194 1.878457 85430 34.998001 193 262 1997 07 18 5Table 6: Events matrix; each feature-value vector (row of table) corresponds to an arc traversal event" 2 E . Weight is arc traversal cost, C("). The remaining columns contain environmental features, F ,valid at the time of the traversal: CT is CurrentTime (seconds since midnight), Speed is velocity, incm/sec, PriorArc is the previous arc traversed, Goal is the Markov state at the goal location, Year,Month, Date and DayOfWeek form the date of the traversal.Foreach time step t < T in the execution traceLet smax = ARGMAX8s2S�(s; t)If �(smax; t) > � , for some threshold �1. Let Seqt be the Viterbi sequence generated from smax:Seqt(t) = smaxForeach t0 from t� 1 down to 0Seqt(t0) = 	(Seqt(t0 + 1); t0 + 1)2. Calculate the arc sequence that corresponds to Seqt3. For each arc traversal event " 2 E in the arc sequenceEstimate the cost of " from C: C(") = vt=lStore the arc traversal event ", the features F , andthe weight C(") in the events matrixTable 7: Identifying arc traversal events E from the execution trace.the trace is summarized in Table 7. Step 1 corresponds to Section 3.1.1, step 2 correspondsto Section 3.1.2, and step 3 corresponds to Section 3.2. Each arc traversal event is stored inthe events matrix along with the relevant situational features and the cost evaluation. Thematrix is then used as input for the learning algorithm, described next.26

4 Learning AlgorithmWe now present the learning mechanism that creates the mapping from situation features,F , and events, E, to costs, C.The input to the algorithm is the events matrix described in Section 3.2. The desiredoutput is situation-dependent knowledge in a form that can be used by the planner.We selected regression trees [Breiman et al., 1984] as our learning mechanism because� the data often contains disjunctive descriptions,� the data may contain irrelevant features,� the data might be sparse, especially for certain features,� the learned costs are continuous values.Bayesian learning would not successfully handle disjunctive functions, k-Nearest Neighbouralgorithms would not handle irrelevant features well, neural networks would not generalizewell for sparse data, and standard decision trees do not handle continuous valued outputparticularly well [Mitchell, 1997; Quinlan, 1993]. Other learning mechanisms may be appro-priate in di�erent robot architectures with di�erent data representations.We selected an o�-the-shelf package, namely S-PLUS [Becker et al., 1988], as the regres-sion tree implementation. A regression tree is created for each event, in which features aresplits and costs are learned values.A regression tree is �tted for each arc using binary recursive partitioning, where the datais successively split until data is too sparse or nodes are pure. A pure node has a deviancebelow a preset threshold. Deviance of a node is calculated as D = P(yi��)2, for all examplesi and predicted values yi within the node.5Splits are selected to maximize the reduction in the deviance of the node. Chambers &Hastie [1992] discuss the method in more detail.We prune the tree using 10-fold random cross validation, in which a tree is built using90% of the data, and then the remaining 10% of the data is used to test the tree, resultingin the relationship between tree size and misclassi�cation rates. This calculation is done 10times, each time holding out a di�erent 10% of the data. The results are averaged, giving usthe best tree size so as not to over-�t the data. The least important splits are then prunedo� the tree until it reaches the desired size.Figure 19 shows a learned tree, before and after pruning. The pruned tree representsthe situation-dependent arc costs of arc 208.6 Each internal node in the tree represents onefeature comparison. The left subtree indicates data for which the feature was less than thecomparison value; the right subtree contains data for which the feature was greater than thecomparison value. Leaf nodes show the arc's learned costs.5The average deviance, 1nP(yi � �)2, is not used because we want a node to be split when su�cientevidence accumulates; there is more value in splitting leaves with large numbers of examples.6Arc 208 appears in corridor 2 of the Exposition world described in Section 6.1.27

|
PriorArc<208

Date<14.5

CT<54449.5

CT<52798

Date<13.5

CT<4202.5

Date<11.5

CT<50752.5

CT<50947.5

CT<57218.5

Date<11

1.3930

1.3930

1.7420 1.6260

1.7420

1.2770

1.0450 2.0900 1.9740

0.6967 0.6967 0.8128(a) Before pruning.
|

PriorArc<208

Date<14.5

CT<54449.5

CT<52798

1.5610 1.0450

2.0320

0.6967

0.7548(b) After pruning.Figure 19: A learned tree. Leaves represent learned costs (traversal weights); CT is current time, inseconds since midnight.When coming from the direction of arc 209, arc 208 has cost 0.7548. Otherwise, in thesecond half of the month, arc 208 has cost 0.6967. In the �rst half of the month, frommidnight to 14:39:58 the traversal weight is 1.5610. From 14:39:59 to 15:07:29, it costs1.0450 and for the rest of the day its traversal weight is 2.0320.Section 6 presents the results of using regression trees to learn situation-dependent costsfor path planner arcs. Our experiments show that regression trees adequately describe thesituations found in Xavier's environment, and that situation-dependent costs are a feasibleextension to the path planner, and signi�cantly enhance the system.5 Updating the Path PlannerOnce the regression trees have been created (one for each arc), they are ready for use by thepath planner. Each path from the root node of the tree to a leaf of the tree can be viewedas a situation-dependent rule.The path planner requests the new arc costs from the update module each time it ispreparing to generate a path. These costs are generated by matching the current situationagainst each arc's learned tree.The update module parses the learned tree, matching each feature against the calculatedor current value. When it reaches a leaf node, it updates the path planner with the learnedvalue.The mechanism for extracting the value of the feature from the current situation is pro-vided a priori. For robot-dependent situation data, such as speed and vision, the updatemodule monitors TCA messages from the other executing modules, and makes explicit in-formation requests when necessary.Using the A* algorithm described in Section 2.2.1, the path planner then uses the updatedcosts to calculate the best path. If the updated arc cost is high, then the path planner ismore likely to avoid using that arc in a route. In this way, the path planner can successfully28

predict and avoid areas of the environment that are di�cult to navigate.In the event of a failure during navigation, for example a closed door, the path planner isre-invoked, at which point it re-requests the learned arc costs. A particular set of arc costsis valid for the calculation of a single path; any replanning forces an update of the costs.6 Experimental ResultsWe will present two sets of experiments in this article. The �rst simulated-world set demon-strates that Rogue can learn patterns. The second was run on the real robot, validatingthe algorithm and the need for it. We have also performed experiments testing rule stability,data generalization, and learning rates [Haigh, 1998].Xavier's simulator is primarily used to test and debug code before running it on the realrobot. The simulator allows software to be developed, extensively tested and then debuggedo�-board before testing and running it on the real robot. The simulator closely approximatesthe real robot: it creates noisy sonar readings, it has poor dead-reckoning abilities, and itgets stuck going through doors. Most of these \problems" model the actual behaviour ofthe robot, allowing code developed on the simulator to run successfully on the robot with nomodi�cation [O'Sullivan et al., 1997]. The simulator allows the tight control of experiments,to ensure that the learning algorithm is indeed learning appropriate situation-dependentcosts.6.1 Simulated World: Learning PatternsThe �rst environment tests Rogue's ability to learn situation-dependent costs. Figure 20shows the Exposition World: an exposition of the variety one might see at a conference.Rooms are numbered; corridors are labelled for discussion purposes only. Figure 20a showsthe simulated world, complete with a set of possible obstacles. Figure 20b shows the topolog-ical map used by the path planning module; this map displays everything the robot \knows"about its environment.The simulator has limited capabilities for dynamism: currently doors can only be openedand closed only at the whim of the user, and obstacles are static. For our experimentalstage, we needed the robot to be operating in a dynamic world. We added dynamism byrunning each experiment in a variation of the map shown in Figure 20a. The position of theobstacles in the simulated world changes according to the following schedule:� corridor 2 always clear� corridor 3 with obstacles{ EITHER Monday, Wednesday, or Friday between (midnight and 3am) and be-tween (noon and 3pm){ OR one of the other days between (1 and 2am) and (1 and 2pm)� corridor 8 always with obstacles� remaining corridors with random obstacles (approximately 10 per map)29

(a) (b)Figure 20: Exposition world. (a) Simulator: operating environment. Obstacles marked with darkboxes. (b) Path Planner: topological map. Arcs shown in light grey, a sample path shown darker.In each map, we ran a �xed path through the environment: from corridor 1 to booth 303to 411 to 327 to 435 to 210, collecting the execution trace. (We ran actual user requests inSection 6.2.)This set of environments allowed us to test whether Rogue would successfully learn:� permanent phenomena (corridors 2 and 8),� temporary phenomena (random obstacles), and� patterns in the environment (corridor 3).The events matrix was generated as described in Sections 3.1 and 3.2, and then processedas described in Section 4.6.1.1 Data and Rule LearningOver a period of two weeks, 651 execution traces were collected. Almost 306,500 arc traver-sals were identi�ed, creating an events matrix of 15.3 MB. The average training value of thearc traversals was 1.65. Figure 21 shows the frequency of arcs for a given cost.The 17 arcs with fewer than 25 traversal events were discarded as insigni�cant, leaving100 arcs for which the system learned trees. (There are a total of 331 arcs in this environment,30

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

N
um

be
r

of
 a

rc
s

w
ith

 th
at

 v
al

ue

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

WeightFigure 21: Arc cost frequency: most arcs in the training set have a cost closeto 1.0, the default value.of which 116 are doors, and 32 are in the lobby.) Trees were generated with as few as 25events, and as many as 15,340 events, averaging 3060. A low number of traversals usuallyindicates that the robot strayed from the nominal path, while a large number indicates thatthe robot went over that arc more than one time. Generated trees had an average size of18.04 total nodes and 9.02 leaf nodes.Figure 22 shows a sampling of learned trees. All arcs shown are from corridor 3. BothDayOfWeek and CT are prevalent in all the trees. (CT is CurrentTime, in seconds sincemidnight.) In Arc 244, for example, before 02:08:57, DayOfWeek is the dominant feature.In Arc 240, between 02:57:36 and 12:10:26, there is one
at cost for the arc. After 12:10:26and before 15:00:48, DayOfWeek again determines costs.Figure 23 shows the cost, averaged over all the arcs in each corridor, as it changesthroughout the day. Rogue has correctly identi�ed that corridor 3 is di�cult to traversebetween midnight and 3am, and also noon and 3pm. During the rest of the day, it is closeto default cost of 1.0. This graph shows that Rogue is capable of learning patterns in theenvironment. Corridor 8, meanwhile, is always well above the default value, while corridor2 is slightly below default, demonstrating that Rogue can learn permanent phenomena.Minor variations in the value are a result of noise in the training data.Table 8 shows the overall average cost of each of the three types of corridor: one thatnever has obstacles, one that occasionally contains random obstacles, and one that alwayscontains obstacles. This data shows that Rogue successfully separates di�erent types ofphenomena.Figure 24 shows learned expensive arcs for Wednesday at 01:05am. As expected, corridor2 is considered inexpensive, while corridors 3 and 8 are considered expensive. As the costCorridor 2 Empty 0.73Corridor 4 Random Obstacles 1.13Corridor 8 Many Obstacles 3.28Table 8: The average cost of all the arcs in each type of corridor.31

(a) Arc 238 (b) Arc 240
(c) Arc 242 (d) Arc 244
(e) Arc 246 (f) Arc 248Figure 22: Learned trees for the six arcs in corridor 3.32

0.0

0.5

1.0

C
or

ri
do

r
C

os
t

0 3 6 8 11 14 17 19 22 25

Current Time

Costs for Corridor 2 (Wednesday) (dev=0.10)(a) Corridor 2 0.0

0.5

1.0

1.5

2.0

C
or

ri
do

r
C

os
t

0 3 6 8 11 14 17 19 22 25

Current Time

Costs for Corridor 3 (Wednesday) (dev=0.10)(b) Corridor 3 0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C
or

ri
do

r
C

os
t

0 3 6 8 11 14 17 19 22 25

Current Time

Costs for Corridor 8 (Wednesday) (dev=0.10)(c) Corridor 8Figure 23: Learned corridor cost (average over all arcs in that corridor) for Wednesdays.threshold increases, fewer arcs are considered expensive, and in particular all arcs containingrandom obstacles have been eliminated. Arcs near turns can be more expensive, because therobot may be recovering from the turn. Also, short arcs may be more a�ected by an errorin the heuristic mapping from the Multi/Markov Viterbi sequence.For comparison, Figure 25 shows learned costs for Tuesday at 09:45am. Note that corridor3 is not considered expensive at any time.The data collected for this experiment has shown that Rogue's learning algorithm suc-cessfully identi�ed patterns in the environment. Rogue also successfully identi�ed bothpermanent and temporary phenomena.6.1.2 E�ect on Path PlannerFigure 26 illustrates the e�ect of learning on the path planner. The goal is to have Roguelearn to avoid expensive arcs (those with many obstacles). Figure 26a shows the pathnormally generated. Figure 26b shows the path generated by the path planner after learning;note that the expensive arcs have been avoided.Table 9 shows a sample path calculation, for a path from room 231 to room 319. It showsthe default path, evaluating it with both the default cost values and the learned costs. Italso shows the new path, evaluated with the learned values. Assuming the learned costsclosely re
ect reality, the new path is 60% of the cost of the default path.Table 10 shows the total weight � length values for several routes, using the learned coststo evaluate both the default path and the new path. The new path is consistently better33

(a) Costs > 1.25 (b) Costs > 2.00 (c) Costs > 5.00Figure 24: Expensive arcs for situation: Wednesday, 01:05am. Note that corridors 3 and 8 areexpensive, along with arcs containing random obstacles and di�cult turns. (Dark, thick edges areexpensive.)
(a) Costs > 1.25 (b) Costs > 2.00 (c) Costs > 5.00Figure 25: Expensive arcs for situation: Tuesday, 09:45am. Note that corridor 3 is not consideredexpensive. 34

(a) Default Path (b) New Path
Expensive arcPathStart locationGoal locationFigure 26: Comparison of path planner's behaviour before and after learning. (a) Default path (whenall corridor arcs have default value). (b) New path (when corridor arcs have been learned) on Wednesday01:05am; note that the expensive arcs have been avoided (arcs with cost > 2.50 are denoted by verythick lines).Default PathDefault CostsArc W L W * L176 1.00 82.00 82.00175 1.00 189.00 189.00174 1.00 205.00 205.00173 1.00 69.00 69.00172 1.00 347.50 347.50171 1.00 82.50 82.50170 1.00 108.00 108.00169 1.00 355.50 355.50291 1.00 749.50 749.50201 1.00 190.50 190.50199 1.00 274.00 274.00Total: 2652.50

Default PathLearned CostsArc W L W * L176 1.14 82.00 93.32175 0.53 189.00 100.40174 0.44 205.00 89.52173 1.45 69.00 100.05172 1.69 347.50 585.88171 2.57 82.50 212.11170 3.53 108.00 381.35169 3.34 355.50 1185.95291 1.00 749.50 749.50201 1.00 190.50 190.88199 1.43 274.00 392.09Total: 4081.05
New PathLearned CostsArc W L W * L176 1.14 82.00 93.32175 0.53 189.00 100.40174 0.44 205.00 89.52173 1.45 69.00 100.05172 1.69 347.50 585.88265 0.61 796.50 483.63205 1.18 190.50 225.55203 0.84 272.00 227.23202 1.61 83.50 134.18201 1.00 190.50 190.88199 1.43 274.00 392.09Total: 2622.74Table 9: Path length calculation for a path between room 231 and room 319. W is weight and Lis length. The path chosen after learning is 60% the total learned cost of the default path, or a 40%improvement. 35

Start Goal Situation Default Path Default Path New Path PercentRoom Room Default Costs Learned Costs Learned Costs Improvement231 303 Mon, 15:40 4503.50 6481.96 5969.99 8%303 411 Mon, 15:40 2908.00 6753.12 3768.66 44%411 327 Mon, 15:40 3343.00 5438.67 5438.67 0%327 435 Mon, 15:40 2683.00 2759.07 1274.97 55%435 210 Mon, 15:40 4969.50 6502.58 5595.47 14%Total: 27423.43 22047.76 20%231 303 Wed, 01:00 4503.50 6433.49 5586.48 13%303 411 Wed, 01:00 2908.00 6250.80 3768.66 40%411 327 Wed, 01:00 3343.00 5002.09 5002.09 0%327 435 Wed, 01:00 2683.00 8902.85 1280.35 86%435 210 Wed, 01:00 4969.50 12351.17 5305.65 57%Total: 38940.40 20943.23 46%231 303 Thu, 01:00 4503.50 6432.49 5586.18 13%303 411 Thu, 01:00 2908.00 6090.72 3768.67 38%411 327 Thu, 01:00 3343.00 4842.02 4842.02 0%327 435 Thu, 01:00 2683.00 3447.87 1280.34 63%435 210 Thu, 01:00 4969.50 6896.18 5305.66 23%Total: 27709.28 20782.87 25%Table 10: Path length calculation for a variety of paths under three di�erent situations. We show thedefault estimate of path length, evaluate the default path with the learned costs, and the length of thepath that A* �nds with the learned costs. Finally, we show the percent improvement in path lengthbetween the default path and the new path.than the default path.The data we have presented here demonstrates that Rogue successfully learns situation-dependent arc costs. It correctly processes the execution traces to identify situation featuresand arc traversal events. It then creates an appropriate mapping between the features andevents to arc traversal weights. The path planner then correctly predicts the expensive arcsand creates plans that avoid di�cult areas of the environment.6.2 Real RobotThe second set of data was collected from real Xavier runs on the �fth
oor of our building(part of which was shown previously in Figure 3).Goal locations and tasks were selected by the general public through Xavier's web page,http://www.cs.cmu.edu/�Xavier. This data has allowed us to validate the need for thealgorithm in a real environment, as well as to test the predictive ability given substantialamounts of noise.We show the incremental nature of Rogue through an analysis of the data at twosnapshots in time. 36

6.2.1 31 July 1997Over a period of three months, 17 robot execution traces were collected. These traces wererun between 9:30 am and 3:40pm and varied from 10 minutes to 82 minutes.More than 15,000 arc traversal events were recorded. Trees were learned for 89 arcs froman average of 169 traversals per arc. The average tree size was 20.4 nodes (10.2 leaf nodes).Figure 27 shows the average learned costs for all the arcs in the lobby on a particularWednesday. Values di�erentiated by other features were averaged7. The histogram showsthe number of execution traces per time step. The system correctly identi�ed lunch-timeas a more expensive time to go through the lobby. The minimal morning data was notsigni�cant enough to a�ect costs, and so the system generalized, assuming that morningcosts were re
ected in the earliest lunch-time costs.
0.0

2.0

4.0

6.0

8.0

10.0

A
rc

 C
os

t

10 11 12 13 14 15 16 17 18 19 20

Current Time, 24 hour clock0
5

10Figure 27: Learned costs for Wean Hall lobby on Wednesday, August 6. (Data from April-July 1997.)The histogram below the graph indicates volume of training data, in terms of number of executiontraces; most data was collected between 1:30pm and 2:45pm.6.2.2 31 October 1997During the subsequent three months, an additional 42 traces were collected, yielding a totalof 59 execution traces, containing a total of 72,516 events. Trees were learned for 115 arcsfrom an average of 631 traversal events per arc (min 38, max 1229). Data from nine arcswere discarded because they had fewer than 25 traversal events. Average tree size was 23.1nodes (11.5 leaf nodes).Figure 28 shows the average learned costs for all the arcs in the lobby on a particularWednesday. Values di�erentiated by other features were averaged. The histogram shows thenumber of execution traces per time step.7Note that since the robot operates in a less controlled environment, many features may a�ect the costof an arc. In the exposition world, other features do not appear in the trees.37

0.0

2.0

A
rc

 C
os

t
10 11 12 13 14 15 16 17 18 19 20

Current Time, 24 hour clock

15

10

5

0Figure 28: Learned costs for Wean Hall lobby on Wednesday, November 11. (Data from April-October1997.) The histogram below the graph indicates volume of training data, in terms of number ofexecution traces; most data was collected between 1pm and 6pm.This graph shows that the system is still con�dent that the lobby is expensive to traverseduring the lunch hour. The greater volume of data reduced the cost estimate, but themorning data was still not su�cient to reduce the morning cost. To our surprise, the graphshows a slightly higher cost during the late afternoon8. Investigation reveals that it re
ectsa period when afternoon classes have let out, and students come to the area to study andhave a snack.This data shows Rogue's robustness to a changing world, even in an environment wheremany of the default costs were tediously hand tuned by the researchers. The added
exibilityof situation-dependent arc costs increases the reliability and e�ciency of the overall robotsystem.7 Related WorkThis section describes research closely related to that presented in this article. Our workcontributes to the machine learning community and the robotics community.Although there is extensive machine learning research in the arti�cial intelligence commu-nity, very little of it has been applied to real-world domains. Common applications includemap learning and localization (e.g. [Koenig & Simmons, 1996; Kortenkamp & Weymouth,1994; Thrun, 1996]), or learning operational parameters for better actuator control (e.g.[Baroglio et al., 1996; Bennett & DeJong, 1996; Pomerleau, 1993]). Instead of improvinglow-level actuator control, our work focusses instead at the planning stages of the system.In this section, we describe some of the work related to our learning approach. There arethree primary groups of related work:� learning action costs from a real-world environment,8Note that the April-July data did not contain many traces during this time period.38

� learning symbolic descriptions of actions, and� learning plan quality.7.1 Learning Action CostsThe situation-dependent rules that Rogue learns for the path planner determine arc traver-sal costs. Other researchers have also explored the area of learning action costs.CSL [Tan, 1991] and Clementine [Lindner et al., 1994] both learn sensor utilities, in-cluding which sensor to use for what information. CSL represents very early work in thearea, since its \sensors" were actually features of the object, e.g. the \height-sensor." Theapproach, however, is general, and it is clear that learning is a good method for predictingsensor reliability. Clementine explicitly uses utility theory to de�ne the tradeo� betweensensor cost and sensor reliability, and is applied to multiple sensors on a mobile robot. Eventhough they explicitly state \the ultrasonic sensors were reliable for other settings, they areless desirable for sensing [glass]," they do not incorporate situation-dependent features intheir utility estimates.Haigh et al. [1997a] used situational features in a case-based reasoning system to assigncosts to cases. Their route planning system used these costs to select a good set of casesfor planning under the given conditions. Our current approach essentially assigns costs at a�ner-grained level, that of the actions rather than of a set of consecutive actions.Reinforcement Learning (overviewed by Kaelbling et al. [1996]) learns the value of beingin a particular state, which is then used to select the optimal action. This approach canbe viewed as learning the integral of action costs. However, most Reinforcement Learningtechniques are unable to generalize learned information, and as a result, they have only beenused in small domains.Recently, several research have been exploring techniques for allowing generalization inReinforcement Learning [Baird, 1995; Boyan & Moore, 1995; McCallum, 1995]. Essentially,these systems replace Reinforcement Learning's standard table-lookup mechanism with al-ternative function approximation techniques, such as decision trees or neural networks. Ex-perimentally, these algorithms seem to produce reasonable policies. However, they may bevery computationally intense since a single generalization might require the entire space tobe recalculated.Moreover, Reinforcement Learning techniques typically learn a universal action modelfor a single goal. Our situation-dependent learning approach learns knowledge that will betransferrable to other similar tasks.7.2 Learning Symbolic Descriptions of ActionsSituation-dependent rules control the applicability of actions as a function of the currentfeatures of the environment. In the arti�cial intelligence community, several researchershave explored techniques for learning or changing action models. Most of these systems39

rely on complete and correct sensing, in simulated environments with no noise or exogenousevents.OBSERVER [Wang, 1996] and ARMS [Segre, 1991] learn action models by observinganother agent's solution; they rely on complete observation of the environment and externalagents or noise. Learning is assumed to be correct and irreversible. EXPO [Gil, 1992]learns operators by experimentation; it designs experiments, and explicitly monitors e�ectsin environment. It also assumes complete and immediate sensing with no external events ornoise.Learning in real world domains, however, cannot utilize techniques that rely on closed-world assumptions such as complete observation, single agents, or exogenous events.LIVE [Shen, 1994], like EXPO, also uses experimentation to learn a model of the envi-ronment. It extends EXPO's abilities by learning stochastic e�ects from incomplete sensing,but does not handle environments with noise or exogenous events.IMPROV [Pearson, 1996] also relaxes the assumption about complete and correct sensing,while still managing to learn operator descriptions. The planner learns through experimen-tation, by trying alternative operators until it achieves a success. It then compares thesuccessful episode with the failures, and modi�es operators to compensate for the errors.Performance in IMPROV degrades dramatically with the noise introduced from sensing,but remains better than the system without learning of any kind. Part of the reason forthis degradation is because the system uses only training data generated from the mostrecent version of the operator. Changing the operator means that old data is invalidated,and hence must be ignored. As a result, the system cannot explicitly identify and eliminatenoise through analysis of long term trends in the data. In Rogue, the operators remainconstant, while search control rules change. As a result, data remains valid over the lifetimeof the robot, and Rogue can statistically identify and eliminate noise from the large bodyof data.Although both IMPROV and LIVE aim at relaxing the closed-world assumptions madeby most arti�cial intelligence learning systems, neither has been applied to a real-worldrobotics domain. The di�culties posed by real-world domains have generally limited learningto action parameters, such as manipulator widths, joint angles or steering direction. Forexample, Grant & Feng [1993] built a system that also tunes parameters in for graspingactions; Zhao et al. [1994] use genetic algorithms to �nd an optimal sequence of basepositions and manipulator con�gurations to perform a series of di�erent manipulation taskson a mobile manipulator; Pomerleau [1993] uses neural networks to select good steeringdirections in an autonomous land vehicle. Bennett & DeJong's [1996] permissive planningparadigm tunes parameters in actions.7.3 Learning Plan QualityThe above-mentioned systems all learn action models, focussing on operator correctnessrather than planning e�ciency or plan quality. Rogue does not learn action models; itassumes that actions are correct, but that their costs or applicability may vary according to40

the task and the environment.Much of the research towards plan quality has focussed on learning search control rules.quality [P�erez, 1995] learns control rules to generate high quality plans, where qualitycan be de�ned in terms of execution cost, reliability or user satisfaction, and operators mayhave di�erent costs. It relies on a comparison of pairs of complex plans to learn control rulesthat bias the planner towards the higher quality plan. New learned knowledge overridesprevious knowledge, but noise is not accounted for.hamlet [Borrajo & Veloso, 1994] learns control rules that improve planning e�ciencyand the quality of plans generated. It assumes that all operators have equivalent cost. Itrelies on training the system with simple problems for which it can �nd optimal solution(s),and then uses bounded explanation and induction to learn control rules. Rules are incremen-tally re�ned and with more training examples will converge towards a possibly disjunctiveset of correct rules. Noise is also not accounted for in this system.CHEF [Hammond, 1987], prodigy/analogy [Veloso, 1994] and Haigh & Veloso [1997a]use analogical reasoning to create plans based on past successful experiences, where the beliefis that past success might help lead to future success. Only Haigh & Veloso's route planningsystem explicitly aims at creating better quality plans; it assigns situation-dependent coststo cases with the goal of selecting the best case for the given user under the given tra�cconditions. Noise and exogenous events are not handled in any of these systems; all successfulcases are stored.Most of the remaining research towards learning search control rules has focussed onmaking planning more e�cient, rather than on making better quality plans. In the robotcontrol domain, execution e�ciency is extremely important, while planning e�ciency is muchless so. As pointed out by Kibler [1993], the major concern for real-world problems is thequality of the solution and not the speed at which the solution is reached.Rogue's situation-dependent costs guide the path planner towards more e�cient plansin which failures can be predicted and avoided. Statistical analysis and incremental learningallow Rogue to explicitly account for noise in both its sensors and its actuators. Exogenousevents that a�ect planning are explicitly identi�ed and incorporated into the search controlrules.8 ConclusionWe have presented a general framework for learning situation-dependent rules. These rulesare extracted from execution data, and then used by a planner to improve the quality ofgenerated plans. The planner-independent approach relies on extracting learning opportu-nities from the execution traces, evaluating them according to a pre-de�ned cost function,and then correlating them with features of the environment. Planners can then use thesesituation-dependent rules to make better decisions.We instantiated this framework with Xavier's path planner, creating a learning robotwith the ability to learn from its own execution experience. Rogue uses predictive features41

of the environment to create situation-dependent costs for the arcs that the path planner usesto create routes for the robot. Rogue e�ectively identi�es relevant training data, i.e. arctraversal events, E, in the execution trace. Rogue then correlates the events with situationalfeatures, F , to create updated costs, C. These costs, represented as learned regression trees,re
ect the patterns detected in the environment, and the path planner will know whichareas of the world to avoid (or exploit), and therefore �nd the most e�cient path for eachparticular situation.Rogue processes the execution trace generated by the navigation module to extractevents relevant for learning. The execution trace contains a massive, continual stream ofprobabilistic, low-level data. To identify which arcs the robot traversed in the topologicalmap, wemodi�ed Viterbi's algorithm to operate directly in the Markovmodel; Multi/MarkovViterbi e�ectively generates abstract trajectories in Markov models with a high degree offan-in/fan-out. In this manner,Rogue e�ectively abstracts the information in the executiontrace to identify arc traversals. Each of these arc traversals is then evaluated, and the costrecorded along with the situational features existing at the time of the traversal event.This data is then correlated by a regression tree algorithm to create situation-dependentarc costs for each of the traversed arcs. Finally, the path planner uses the updated costs tocreate e�cient, situation-dependent routes for the robot. The algorithmworks incrementally,improving the situation-dependent rules after each run of the robot.We presented empirical data from both a controlled, simulated environment as well asfrom the real robot. Our data demonstrates the e�ectiveness and utility of our approach.8.1 Other ApplicationsSituation-dependent rules are useful in any domain where actions have speci�c costs, proba-bilities, or achievability criteria that depend on a complex de�nition of the state.The approach is generally applicable in domains where:� the environment changes according to some predictable pattern,� action costs or probabilities change as function of world state,� it is hard to pre-specify costs or probabilities, and� a planner will bene�t from increased knowledge of the environment.Methods that learn an average cost or probability for an action will improve a system'sbehavior on average. If there are many patterns in the domain, however, there may betimes when the system's default behaviour is actually better than the learned behaviour.Situation-dependent rules will change the cost or probability of an action according to thecurrent environment. The system will not only be able to respond e�ectively to changes inthe environment, but also behave in a manner that is directly tailored to their environment.We have applied our approach to Xavier's symbolic task planner, successfully learningaction probabilities and creating control knowledge to guide the planner's decisions [Haigh,1998]. Other possible applications include: 42

Learning operator or action costs for planners that try to optimize total plan executioncost. (Rogue learns action costs for the route planner.) A Martian path planner mightdecide on one route when there is a dust storm and di�erent route otherwise. A networkrouting planner may select one route when congestion is high, and another otherwise.Learning operator probabilities for probabilistic or conditional planners, such as forWeaver [Blythe, 1994] or U-PLAN [Mansell, 1993], or Xavier's navigation module. InXavier's navigation module, the transitions between Markov states are currently as-signed default probabilities; situation-dependent probabilities would probably improveperformance of the system. (Rogue's control rule learning for the task planner canbe viewed as a form of learning operator probabilities.)Learning sensor probabilities or reliabilities, in any system (planner or otherwise) thatrelies on sensor information. For example, Xavier's navigation module uses a defaultvalue for P (observationjstate), where state is a very simple state description.Learning sensor costs and utilities, in any system (planner or otherwise) that relies onsensor information. For example, under certain conditions some sensors may be easieror better to use than others. Medical domains are a good example of when the utilityof di�erent tests may change according to each patient's symptoms.Learning case costs in case-based reasoning systems for which quality of the �nal solutiondepends on the current environment. In such systems, di�erent cases may be moreappropriate than others. For example, Haigh et al.'s route planner [1997a] selectedcases depending on likely tra�c congestion.Since the learning approach is planner-independent, it is usable from any execution mod-ule to any planner, regardless of data representations. The important point is that thesystem must process the execution data to extract information relevant for planning, andthen correlate that information with features of the domain. The designer must specifyhow to extract relevant learning opportunities from the execution data, and how to use thelearned information within the planner.8.2 Important IssuesSeveral important issues need to be considered when incorporating situation-dependent costsinto a system.How to extract learning opportunities, and how to design the system to exploitthem. Learning opportunities for any planner can be identi�ed by asking the question:\What will change the planner's behaviour?"The path planner makes decisions based on estimates of the arc's length, blockage prob-ability and traversal weight. Therefore improved estimates of these factors would improvethe planner's performance. The task planner, meanwhile, makes decisions based on opera-tor descriptions and control rules that a�ect goal and action selection. Therefore improved43

descriptions { correctness, costs, or probabilities { about tasks and actions would aid theplanner in improving plans.It is important to design the planner so that learned information can be seamlesslyincorporated. Adding control rules to prodigy4.0, required no changes to the internalalgorithm. When we added learned arc costs to the path planner, however, we had tomodify some of its internal structures (data and control) to support the changes. Addinglearned sensor reliabilities to the POMDP navigation module would require a massive e�ortto change the way these probabilities are stored and used in the code. It is important tomake the critical components accessible to external modules.How to identify and add features for learning. Features of the environment are usedto discriminate between di�erent learning events. It is crucial to �nd a good set of relevantfeatures, since the hypothesis space can only be described in terms of the available features.A good feature will have the following characteristics: it is easy to detect, in terms ofaccessibility and cost; it is informative, so that the system doesn't waste time gatheringinformation about irrelevant features; and it is projective, in that gathered information atone moment can help the system make decisions about the future.If critical features are omitted, then the learner will not converge on the correct targetfunction. It is an important open problem to autonomously extract relevant features fromthe data.It is also important to design the system so that new features can be added at anytime. In Rogue there are several missing features, including the distance travelled sincethe last turn, the length of time since the battery was last recharged, and the length oftime since the batteries (or other equipment) were last replaced. As we identify additionalrelevant features, the learner should seamlessly incorporate them into the data and learnedinformation. This design consideration will be more important when systems are capable ofautonomously identifying relevant features.Forgetting data. The massive amount of data that can be collected in a system thatinteracts with a real environment could lead to a lot of wasted e�ort when old, irrelevantdata is processed. For this reason, it has been argued that the system will need to have somescheme for \forgetting" data.However, our experiments show that the system should use as large a history as physicallyand computationally possible [Haigh, 1998]. Any data that is explicitly forgotten will neveragain in
uence learned rules, and hence a short history means that long-term patterns willnever be detected. Unless the system maintains data over a span of several years, it willnever detect annual patterns such as New Year's Day; instead such patterns will be treatedas noise. Moreover, any situation that lasts longer than the history length will be consideredpermanent.A longer history improves con�dence in the validity of the environmental knowledgecaptured. Our situation-dependent learning approach learns rules that separate old data44

from recent data, thereby successfully identifying temporary phenomena, and it can do soin a fairly small number of execution traces.8.3 Future Research DirectionsThis work has opened up several areas for future research.One area of possible research involves extending the cost evaluation function for events.In particular, the cost function for arc traversals currently involves velocity, time and length.It would be interesting to extend this function to incorporate position con�dence and othermetrics, because they would aid in showing the applicability of the approach.Another valuable research direction would be to explore methods to have Viterbi's al-gorithm correctly sum probabilities over fan-out edges. Our approximate algorithm givesgood results, but an exact algorithm would likely do better. We discuss possible approacheselsewhere [Haigh, 1998].It would also be interesting to see our learning approach implemented with anotherlearning algorithm. Regression trees were well-adapted to our domain and our data; neuralnetworks or Bayesian learning might be more suited to other other domains.Learned environment costs would also be useful for customizing the environment. Hu-mans already customize environments greatly for children and the handicapped. It seemsonly appropriate to also consider customizing the environment for our future co-workers:robots. Areas of the environment that the learning system identi�es as being di�cult orexpensive to achieve tasks could be modi�ed to improve system performance.Another area of possible research is to have the system identify what areas of the envi-ronment need to be explored. Currently, Rogue will only un-learn information when it isforced to re-execute an action it would otherwise avoid. For example, if Rogue learns thata particular corridor is extremely expensive, Rogue will only go into that corridor when atask demands that it must. It would also be useful for Rogue to explore the environmentwhere data is particularly sparse.A last area of possible research, and perhaps with the greatest potential for improvingthe performance of learning systems, is to automatically decide what features to add to thedata set. Klingspor et al. [1996] have already designed techniques for learning high-levelfeature concepts from low-level data. It remains an open research problem to automaticallyincorporate those features into learning.References[Baird, 1995] Leemon C. Baird (1995). Residual algorithms: Reinforcement learning withfunction approximation. In A. Prieditis and S. Russell, editors, Machine Learning: Pro-ceedings of the Twelfth International Conference (ICML95), pages 30{37, Tahoe City, CA.(San Mateo, CA: Morgan Kaufmann). 45

[Baroglio et al., 1996] C. Baroglio, A. Giordana, M. Kaiser, M. Nuttin, and R. Piola (1996).Learning controllers for industrial robots. Machine Learning, 23:221{249.[Becker et al., 1988] Richard A. Becker, John M. Chambers, and Allan R. Wilks (1988). TheNew S Language. (Paci�c Grove, CA: Wadsworth & Brooks/Cole). Code available fromhttp://www.mathsoft.com/splus/.[Bennett & DeJong, 1996] Scott W. Bennett and Gerald F. DeJong (1996). Real-worldrobotics: Learning to plan for robust execution. Machine Learning, 23:121{161.[Blythe, 1994] Jim Blythe (1994). Planning with external events. In Proceedings of theTenth Conference on Uncertainty in Arti�cial Intelligence, pages 94{101, Seattle, WA.(San Mateo, CA: Morgan Kaufmann).[Borrajo & Veloso, 1994] Daniel Borrajo and Manuela Veloso (1994). Incremental learningof control knowledge for improvement of planning e�ciency and plan quality. In Workingnotes from the AAAI Fall Symposium \Planning and Learning: On to Real Applications",pages 5{9, New Orleans, LA.[Boyan & Moore, 1995] Justin A. Boyan and Andrew W. Moore (1995). Generalization inreinforcement learning: Safely approximating the value function. In G. Tesauro, D. S.Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems,volume 7, pages 369{76, Cambridge, MA. The MIT Press.[Breiman et al., 1984] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone (1984).Classi�cation and Regression Trees. (Paci�c Grove, CA: Wadsworth & Brooks/Cole).[Cassandra et al., 1994] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L.Littman (1994). Acting optimally in partially observable stochastic domains. In Pro-ceedings of the Twelfth National Conference on Arti�cial Intelligence (AAAI-94), pages1023{1028, Seattle, WA. (Menlo Park, CA: AAAI Press).[Chambers & Hastie, 1992] John M. Chambers and Trevor Hastie (1992). Statistical modelsin S. (Paci�c Grove, CA: Wadsworth & Brooks/Cole).[Gil, 1992] Yolanda Gil (1992). Acquiring domain knowledge for planning by experimenta-tion. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,PA. Also available as Technical Report CMU-CS-92-175.[Goodwin, 1996] Richard Goodwin (1996). Meta-Level Control for Decision-Theoretic Plan-ners. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,PA. Available as Technical Report CMU-CS-96-186.[Grant & Feng, 1989] E. Grant and Cao Feng (1989). Experiments in robot learning. InProceedings of IEEE International Symposium on Intelligent Control 1989, pages 561{5,Albany, NY. 46

[Haigh, 1998] Karen Zita Haigh, Situation-dependent Learning for Interleaved Planning andExecution. PhD thesis, School of Computer Science, Carnegie Mellon University, Pitts-burgh, PA. Available as Technical Report CMU-CS-98-108.[Haigh et al., 1997a] Karen Zita Haigh, Jonathan Richard Shewchuk, and Manuela M.Veloso (1997a). Exploiting domain geometry in analogical route planning. Journal ofExperimental and Theoretical Arti�cial Intelligence, 9:509{541.[Haigh et al., 1997b] Karen Zita Haigh, Peter Stone, and Manuela M. Veloso (1997b). Exe-cution in prodigy4.0: The user's manual. Technical Report CMU-CS-97-187, ComputerScience Department, Carnegie Mellon University, Pittsburgh, PA.[Haigh & Veloso, 1997] Karen Zita Haigh and Manuela M. Veloso (1997). Interleaving plan-ning and robot execution for asynchronous user requests. Autonomous Robots. In press.[Haigh & Veloso, 1998b] Karen Zita Haigh and Manuela M. Veloso (1998b). Planning, exe-cution and learning in a robotic agent. In R. Simmons, M. Veloso, and S. Smith, editors,Arti�cial Intelligence Planning Systems: Proceedings of the Fourth International Confer-ence (AIPS-98), Pittsburgh, PA. (Menlo Park, CA: AAAI Press). Submission.[Hammond, 1987] Kristian J. Hammond (1987). Learning and reusing explanations. InProceedings of the Fourth International Workshop on Machine Learning, pages 141{147,Irvine, CA.[Kaelbling et al., 1996] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore(1996). Reinforcement learning: A survey. Journal of Arti�cial Intelligence Research,4:237{285.[Kibler, 1993] Dennis Kibler (1993). Some real-world domains for learning problem solvers.In Proceedings of KCSL93, 3rd International Workshop on Knowledge Compilation andSpeedup Learning (in ICML93), Amherst, MA.[Klingspor et al., 1996] Volker Klingspor, Katharina J. Morik, and Anke D. Rieger (1996).Learning concepts from sensor data of a mobile robot. Machine Learning, 23:305{332.[Koenig, 1997] Sven Koenig (1997). Goal-Directed Acting with Incomplete Information. PhDthesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA. Availableas Technical Report CMU-CS-97-199.[Koenig & Simmons, 1996] Sven Koenig and Reid G. Simmons (1996). Passive distancelearning for robot navigation. In Lorenza Saitta, editor, Machine Learning: Proceedingsof the Thirteenth International Conference (ICML96), pages 266{274, Bari, Italy. (SanMateo, CA: Morgan Kaufmann). 47

[Kortenkamp & Weymouth, 1994] David Kortenkamp and Terry Weymouth (1994). Topo-logical mapping for mobile robots using a combination of sonar and vision sensing. In Pro-ceedings of the Twelfth National Conference on Arti�cial Intelligence (AAAI-94), pages979{984, Seattle, WA. (Menlo Park, CA: AAAI Press).[Lindner et al., 1994] John Lindner, Robin R. Murphy, and Elizabeth Nitz (1994). Learningthe expected utility of sensors and algorithms. In IEEE International Conference onMultisensor Fusion and Integration for Intelligent Systems, pages 583{590. (New York,NY: IEEE Press).[Lovejoy, 1991] W. Lovejoy (1991). A survey of algorithmic methods for partially observedMarkov decision processes. Annals of Operations Research, 28(1):47{65.[Mansell, 1993] Todd Michael Mansell (1993). A method for planning given uncertain andincomplete information. In Proceedings of the Ninth Conference on Uncertainty in Arti�-cial Intelligence, pages 250{358, Washington, DC. (San Mateo, CA: Morgan Kaufmann).[McCallum, 1995] Andrew Kachites McCallum (1995). Reinforcement Learning with Selec-tive Perception and Hidden State. PhD thesis, Department of Computer Science, Univer-sity of Rochester, Rochester, NY.[Mitchell, 1997] Tom M. Mitchell (1997). Machine Learning. (New York, NY: McGraw Hill).[Mitchell et al., 1994] Tom M. Mitchell, Rich Caruana, Dayne Freitag, John P. McDermott,and David Zabowski (1994). Experience with a learning personal assistant. CACM,37(7):80{91.[O'Sullivan et al., 1997] Joseph O'Sullivan, Karen Zita Haigh, and G. D. Armstrong (1997).Xavier. Carnegie Mellon University, Pittsburgh, PA. Manual, Version 0.3, unpublishedinternal report. Available via http://www.cs.cmu.edu/�Xavier/.[Pearson, 1996] Douglas John Pearson (1996). Learning Procedural Planning Knowledge inComplex Environments. PhD thesis, Department of Electrical Engineering and ComputerScience, University of Michigan, Ann Arbor, MI. Available as Technical Report CSE-TR-309-96.[P�erez, 1995] M. Alicia P�erez (1995). Learning Search Control Knowledge to Improve PlanQuality. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,PA. Available as Technical Report CMU-CS-95-175.[Pomerleau, 1993] Dean A. Pomerleau (1993). Neural network perception for mobile robotguidance. (Dordrecht, Netherlands: Kluwer Academic).[Quinlan, 1993] J. Ross Quinlan (1993). C4.5: Programs for Machine Learning. (San Mateo,CA: Morgan Kaufmann). 48

[Rabiner & Juang, 1986] L. R. Rabiner and B. H. Juang (1986). An introduction to hiddenMarkov models. IEEE ASSP Magazine, 6(3):4{16.[Segre, 1991] Alberto Segre (1991). Learning how to plan. Robotics and Autonomous Sys-tems, 8(1-2):93{111.[Shen, 1994] Wei-Min Shen (1994). Autonomous Learning from the Environment. (NewYork, NY: Computer Science Press).[Simmons, 1994] Reid Simmons (1994). Structured control for autonomous robots. IEEETransactions on Robotics and Automation, 10(1):34{43.[Simmons et al., 1997] Reid Simmons, Rich Goodwin, Karen Zita Haigh, Sven Koenig, andJoseph O'Sullivan (1997). A layered architecture for o�ce delivery robots. In W. LewisJohnson, editor, Proceedings of the First International Conference on Autonomous Agents,pages 245{252, Marina del Rey, CA. (New York, NY: ACM Press).[Simmons & Koenig, 1995] Reid Simmons and Sven Koenig (1995). Probabilistic robot nav-igation in partially observable environments. In Proceedings of the Fourteenth Interna-tional Joint Conference on Arti�cial Intelligence (IJCAI-95), pages 1080{1087, Montr�eal,Qu�ebec, Canada. (San Mateo, CA: Morgan Kaufmann).[Tan, 1991] Ming Tan (1991). Cost-sensitive robot learning. PhD thesis, School of ComputerScience, Carnegie Mellon University, Pittsburgh, PA. Available as Technical Report CMU-CS-91-134.[Thrun, 1996] Sebastian Thrun (1996). A Bayesian approach to landmark discovery in mo-bile robot navigation. Technical Report CMU-CS-96-122, School of Computer Science,Carnegie Mellon University, Pittsburgh, PA.[Veloso, 1994] Manuela M. Veloso (1994). Planning and Learning by Analogical Reasoning.Springer Verlag, Berlin, Germany. PhD Thesis, also available as Technical Report CMU-CS-92-174, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.[Wang, 1996] Xuemei Wang (1996). Leaning Planning Operators by Observation and Prac-tice. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,PA. Available as Technical Report CMU-CS-96-154.[Zhao et al., 1994] Min Zhao, Nirwan Ansari, and Edwin S. H. Hou (1994). Mobile manip-ulator path planning by a genetic algorithm. Journal of Robotic Systems, 11(3):153{153.49

