Learning Situation-Dependent Costs: Improving
Planning from Probabilistic Robot Execution

Karen Zita Haigh Manuela M. Veloso
khaigh@cs.cmu.edu mmv@cs.cmu.edu
http://www.cs.cmu.edu/ "khaigh http://www.cs.cmu.edu/ mmv

Computer Science Department,
Carnegie Mellon University,

Pittsburgh, PA. 15213-3891

Abstract

Physical domains are notoriously hard to model completely and correctly, especially
to capture the dynamics of the environment. Moreover, since environments change, it
is even more important for the system to learn from its own experiences. Our work
focusses on learning for the planning stages of a physical system, where our algorithm
learns the costs and probabilities of operating the environment

Since actions may have different costs under different conditions, we introduce the
concept of situation-dependent rules, in which situational features are attached to the
costs or probabilities, reflecting patterns and dynamics encountered in the environment.

In this article, we present ROGUE, a robot that analyzes its execution experiences
to detect patterns in the environment. ROGUE extracts learning opportunities from
massive, continual, probabilistic execution traces. It then correlates these learning
opportunities with environmental features, creating situation-dependent costs for its
actions. We present the development and use of these rules for a robotic path plan-
ner. We present empirical data to show the effectiveness of ROGUE’s novel learning
approach.

Our learning approach is applicable for any planner operating in any physical do-
main. QOur empirical results show that situation-dependent rules effectively improve
the planner’s model of the environment, thus allowing the planner to predict and avoid
failures, to create plans that are tailored to the real world, and to respond to a chang-
ing environment. Physical systems should adapt to changing situations and absorb
any information that will improve their performance.

Contents
1 Introduction

2 Implementation Domain

2.1 Situation-Dependent Learning Example 0oL
2.2 Learning for the Path Planner
2.2.1 The Path Planner oL
2.2.2 Navigation L e
3 Training Data
3.1 Events . . . L oo e
3.1.1 Identifying the Most Likely Traversed Markov Sequence
3.1.2 Identifying the Planner’s Arcs L oL
3.1.3 Summary of Event Identification
3.2 Costs . . . o o e
3.3 Features L
3.4 FEvents Matrix oo L L

4 Learning Algorithm
5 Updating the Path Planner

6 Experimental Results

6.1 Simulated World: Learning Patterns
6.1.1 Data and Rule Learning o,
6.1.2 Effect on Path Planner 0oL
6.2 Real Robot
6.2.1 31 July 1997o
6.2.2 31 October 1997
7 Related Work
7.1 Learning Action Costs L L
7.2 Learning Symbolic Descriptions of Actions
7.3 Learning Plan Quality o
8 Conclusion
8.1 Other Applications L
8.2 Important Issues Lo
8.3 Future Research Directions oL
References

i

NoRNesIEN SN SN

12
14
20
23
23
24
25

27
28

29
29
30
33
36
37
37

38
39
39
40

41
42
43
45

45

1 Introduction

A system operating in a physical world must learn from its experiences. Most physical worlds
are hard to model completely and correctly, and hence, regardless of the skill and thought-
fulness of its creator, the agent is bound to encounter situations that have not been specified
in its design. The system should adapt to these situations and absorb any information that
will improve its performance.

The challenges for designing a learning for a physical system are often due to represen-
tation differences between its planners and its executors. It is hard to extract information
from the execution data that will be relevant for planning, and hard to transform that data
into useful planning knowledge. Moreover, it is hard to design a learning mechanism that
will be flexible enough to acquire initial information about the environment, and then to
modify that information to incorporate future changes in the domain.

In this article, we present a learning mechanism for a real indoor mobile robot. Our
approach learns the costs and probabilities of operating in an environment, and is able to
identify when the cost of an action depends on the current situation. Moreover, our approach
is responsive to changes in the environment, and hence provides the robot with the ability
to adapt to changes and continuously improve its performance.

Prior Learning Efforts for Robotics. Learning has been applied to robotics problems
in a variety of manners. Common applications include map learning and localization (e.g.
[Koenig & Simmons, 1996; Kortenkamp & Weymouth, 1994; Thrun, 1996]), or learning oper-
ational parameters for better actuator control (e.g. [Baroglio et al., 1996; Bennett & DeJong,
1996; Grant & Feng, 1989; Pomerleau, 1993]). Instead of improving low-level actuator con-
trol, our work focusses at the planning stages of the system.

Artificial intelligence researchers have explored this area extensively, but have generally
limited their efforts to simulated worlds with no noise or exogenous events. Al research that
most closely resembles ours has explored how to learn and correct action models (e.g. [Gil,
1992; Pearson, 1996; Wang, 1996]). These systems observe or experiment in the environment
to correct action descriptions, which are then directly used for planning.

In the robotics community, closely related work comes from those who have explored
learning costs and applicability of actions (e.g. [Lindner et al., 1994; Shen, 1994; Tan, 1991]).
These systems learn improved domain models and this knowledge is then used by the system’s
planner, as costs or control knowledge, so that the planner can then select more appropriate
actions.

Situation-dependent Learning Approach. Current systems learn that each action has
an associated average probability or cost. However, actions may have different costs under
different conditions. Instead of learning a global description, we would like the agent to
learn the pattern by which these situations can be identified. The agent needs to learn the
correlation between features of the environment and the situations, so that its planners can

predict and plan for those situations. Hence we introduce the concept of situation-dependent
rules that determine costs or probabilities of actions.

We would like a path planner to learn, for example, that a particular highway is ex-
tremely congested during rush hour traffic. We would like a network routing planner to
learn, for example, that packets are more easily lost at a particular router when the network
is congested. We would like a task planner to learn, for example, that a particular secretary
doesn’t arrive before 10am, and tasks involving him can not be completed before then. We
would like a multi-agent planner to learn, for example, that every Monday heavy packages
arrive, requiring two agents to carry them. Once these patterns have been identified and
correlated to features of the environment, the planner can then predict and plan for them
when similar conditions occur in the future.

Learning consists of processing execution episodes situated in a particular task context,
identifying successes and failures, and then interpreting this feedback into reusable knowl-
edge. Our approach relies on examining the execution data to identify situations in which
the planner’s behaviour needs to change. Our approach requires that the execution agent
defines the set of available situation features, F, while the planner defines a set of relevant
learning events, £, and a cost function, C, for evaluating those events.

Fuvents are learning opportunities in the environment for which additional knowledge
will cause the planner’s behaviour to change. Features discriminate between those events,
thereby creating the required additional knowledge. The cost function allows the learner to
evaluate the event. We give some examples of events, costs and features in Table 1. The
learner then creates a mapping from the execution features and the events to the costs:

Fx&—C.

For each event ¢ € &£, in a given situation described by features F, this learned mapping
predicts a cost ¢ € C that is based on prior experience. We call this mapping a situation-
dependent rule.

Once the rules have been created, the learner then gives the information back to the plan-
ners so that they will avoid re-encountering the problem events. When the current situation
matches the features of a given rule, the planners will avoid (or exploit) the corresponding
event as appropriate.

These steps are summarized in Table 2. Learning occurs incrementally and off-line; each
time a plan is executed, new data is collected and added to previous data, and then all data
is used for creating a new set of situation-dependent rules.

In this incremental way, the planners can not only detect patterns in the environment,
but also notice when the environment changes. For example, the bottleneck router may be
replaced by new hardware so that it can handle more packets. The secretary may change
his work hours. The incremental learner can notice these changes and incorporate them into
the rules, thereby responding to the changing environment.

The approach is relevant for all planners that would benefit from feedback about plan
execution. Every planner can benefit from understanding the patterns of the environment
that affect task achievability. This situation-dependent knowledge can be incorporated into

2

& F C
Path Planner o ‘ tl‘me—of—day traversal time
A highway is congested driving a highway highway number sas consumption
during rush hour. day-of-week

Network Router
Packets are lost at a par-

routing a packet

traffic volume

packet loss rate
throughput

ticular router when the net- router i ..

, time-to-destination
work is congested.

Task Planner o location
A particular secretary achieving a task secretary success rate
doesn’t arrive until 10am. time-of-day

Multi-Agent Planner
Heavy packages arrive on

Mondays, requiring two

achieving a task

number of agents
package weight
day-of-week

success rate
time-to-completion

agents.

Table 1: Examples of Events, &, Features, F, and Costs, C, for sample planners.

Create plan.

Execute; record the execution data and features F.
Identify events £ in the execution data.

Learn mapping: F x & — C.

Create rules to update each planner.

A

Table 2: General approach for learning situation-dependent costs.

the planning effort so that tasks can be achieved with greater reliability and efficiency.
Situation-dependent features are an effective way to capture the changing nature of a real-
world environment.

The approach is also relevant for planners and executors whose data representations differ
widely. Features are defined as by the executor and the task environment, while events and
costs are defined by the planner. These are mapped into an intermediate data representation
that is independent of both the executor and the planner. As a result, planners can be
designed independently from their hardware, thereby allowing designers to select the best
planner for a given task.

To demonstrate the effectiveness of the approach, we have implemented it in two different
planners for a real robot, a path planner and a task planner. This article describes the
implementation for the path planner. The implementation for the task planner can be found
elsewhere [Haigh, 1998]. Our situation-dependent learning approach processes execution

3

data to create improved domain models for both of its planners, thereby allowing them to
create better quality, more efficient plans. Our approach effectively equips a real robot with
the ability to learn from its own execution experiences.

Reader’s Guide. We present our application domain in Section 2, along with the system
architecture and representations of the relevant software modules. In Section 3, we present
the mechanisms ROGUE uses to create training data for the learning algorithm. We describe
how ROGUE extracts and evaluates learning events, £, from the execution trace. We also
discuss features, F, including the characteristics of a good feature.

In Section 4, we present the learning mechanism we use to create the mapping from
situation features, F, and arc traversals &, to arc costs, C.

In Section 5, we briefly describe how the path planner uses these situation-dependent arc
costs to create efficient paths. We present our experimental results in Section 6. Related
work can be found in Section 7. We present our conclusions and lessons learned in Section 8.

2 Implementation Domain

Our research explores the interaction of perception, cognition, action and learning in a
complete integrated autonomous agent. Towards this end, we have built a system called
RoOGUE [Haigh & Veloso, 1997; Haigh & Veloso, 1998b; Haigh, 1998] that forms the task
planning and learning layers for a real mobile robot, Xavier. One of the goals of the project
is to have the robot move autonomously in an office building, reliably performing office tasks,
such as picking up and delivering mail and computer printouts, picking up and returning
library books, and carrying recycling cans to the appropriate containers. User requests are,
for example, “Pickup a package from my office and take it to the mailroom before {pm today.”
In general, requests involve acquiring an item at some location, and then delivering it to
another.

Xavier is a mobile robot being developed at Carnegie Mellon University [O’Sullivan et al.,
1997; Simmons et al., 1997] (see Figure 1).

It is built on an RWI B24 base and includes bump sensors, a laser range finder, sonars, a
color camera and a speech board. The software controlling Xavier includes both reactive and
deliberative behaviours, integrated using the Task Control Architecture (TCA) [Simmons,
1994]. Much of the software can be classified into five layers, shown in Figure 2: Obstacle
Avoidance, Navigation, Path Planning, Task Planning, and the User Interface.

Users send task requests to the task planner, which generates plans and sends plan steps
to the robot for execution. The task planner combines plans for multiple interacting goals,
reasons about task priority and compatibility, and interleaves planning with execution. The
path planner calculates the path between two locations with the best expected travel time.
The navigation module uses a Partially Observable Markov model to navigate the selected
path.

User Interface
(WWW, Zephyr, Specia Purpose)

Task Planning
(PRODIGY 4.0)

Path Planning
(Decision-Theoretic Planning)

Navigation
(POMDP)

Interprocess Communication
and Synchronization (TCA)

Obstacle Avoidance
(CVM)

Hardware / Servo-Control
(Commercial)

o Figure 2: Xavier's primary software layers. Re-

. _ produced from Simmons et al. [1997].
Figure 1: Xavier the robot.

ROGUE adds to this architecture by providing a learning module. ROGUE processes
execution experience to help the task planner and the path planner improve the quality of
their generated plans. In this article we focus on ROGUE’s learning capabilities as applied
to the path planner.

We incorporate our situation-dependent learning approach in the Xavier architecture to
capture patterns that affect costs of operating in the environment. For example, temporary
obstacles, including people and objects, may appear at any time. Permanent obstacles or
changes may also occur; for example the hallways in our building were recently carpeted and
several doors added. These changes may lead to changes in navigation efficiency, reliability
or even achievability.

2.1 Situation-Dependent Learning Example

Consider the following example. For Xavier, the most challenging region of its environment
is the lobby of our building. Figure 3 shows the map of the main floor, and Figure 4 shows
a closeup of the lobby area, with typical obstacles added for the reader’s benefit (since they
often change, the robot does not know where they are). The lobby contains two food carts,
several tables, and is often full of people. The tables and chairs are extremely difficult for
the robot’s sonars to detect, and the people are (often malicious) moving obstacles. As a
result, navigating through the lobby is challenging and expensive for the robot. During peak
hours (coffee and lunch breaks), it is virtually impossible for the robot to efficiently navigate

through the lobby.

5427
5427
5419

ShlehDoh

w0 o I =1)

il o &l w0 < = o o

[t ol [l = I 17 o [}

10 i 10 19 iy 10 ! iy}

I iy} Iy}
—-3 — — — - — — — —
T ;u_'l (=] T
=
— (=] -

o) iz :

z - o - oM A m I] -
i o - o] ~ H| 4| - o o [o
o ra &] 2] mal |l M 2] o]] 2]
= i B iy] Io] Lyl IRy o] Io] iy} iy] Io]

Figure 4: Closeup of map; typical obstacles added for the reader: small obstacles indicate people,
while larger ones indicate tables and food carts.

In this example, we would like Xavier to learn when to avoid the lobby completely. A
direct path from the 5200 corridor to room 5409 is very short through the lobby, but when
the lobby is crowded, the robot takes a lot of time to arrive at its destination. When the
lobby is empty, the robot rarely has problems. A rule modifying the cost of the arc, such as
the one shown in Figure 5, would force the planner to avoid the lobby during lunch break.

Creating a pre-programmed model of these dynamics would be not only time-consuming,
but very likely would not capture all relevant information, particularly in a changing envi-
ronment. ROGUE can reduce the burden on the programmer because its learning capabilities

6

arcin topological map
5409
RS
Elevators L obby
\j\
if (12pm < current-time < 1:30pm)
5201 then high cost
elselow cost

Figure 5: A high-level view of a sample learned rule for the path planner; ROGUE learns actual traversal
costs.

modify the existing domain model to reflect real world experience. ROGUE extracts relevant
information from the execution data to learn patterns and identify changes in the environ-
ment. ROGUE then creates situation-dependent rules that the planners can use to improve
plan quality.

2.2 Learning for the Path Planner

When applying our situation-dependent learning algorithm to Xavier’s path planner, our
concern is to improve the reliability and efficiency of selected paths. Figure 6 shows how our
algorithm fits into the framework of the Xavier architecture.

The path planner uses a A* algorithm on a topological map that has additional metric
information [Goodwin, 1996]. Knowledge in the path planner is represented as a topological
map of the robot’s navigation environment. The map is a graph with nodes and arcs repre-
senting office rooms, corridors, doors and lobbies, and is augmented with metric information.
The path planner uses an estimate of the arcs’ traversal costs to create path plans with the
best expected travel time.

Topological Map Execution
(nodes, arcs and lengths) - Path Path »| Navigation Trace - L earning
A Planner (POMDP)
Weighted Arcs ‘

Figure 6: Learning for the path planner.

By learning appropriate arc cost functions, ROGUE helps the path planner to avoid
troublesome areas of the environment when appropriate. Therefore we identify events, &,
for this planner as arc traversals, and costs, C, as travel time. Features, F, include both robot
sensor data and high-level features such as date and goals. ROGUE’s situation-dependent
learning algorithm will then create a mapping from features and events to costs: F x & — C.
The path planner can then use these situation-dependent costs to create better estimates of
a path’s expected execution time.

Execution traces are provided by the navigation module. Navigation is done using Par-
tially Observable Markov Decision Process Models (POMDPs) [Simmons & Koenig, 1995].
The execution trace includes observed features of the environment as well as the probabil-
ity distribution over the Markov states at each time step. Identifying the path planner’s
events from this trace is challenging because the execution traces contain a massive, contin-
ual stream of probabilistic data. At no point in the robot’s execution does the robot know
where it actually is. 1t maintains a probability distribution, making it more robust to sensor
and actuator errors, but making the learning problem more complex because the training
data is not guaranteed to be correct.

The primary challenge of our learning approach is to create arc costs that depend on
high-level features of the environment. In the implementation for Xavier’s path planner,
an additional challenge is to process vast amounts of uncertain, continual navigation data.
Note that our situation-dependent learning approach is valid for any path planner paired
with any navigation module. If Xavier were to directly plan paths within the POMDP, then
ROGUE would learn situation-dependent transition probabilities between Markov states. The
important point is that ROGUE processes execution data to improve plan quality.

We now describe in detail the representations of the path planning and navigation mod-
ules.

2.2.1 The Path Planner

The path planner determines how to travel efficiently from one location to another. The en-
vironment is modelled as a topological map with nodes and arcs. Nodes represent junctions,
such as those between corridors or at doors. Arcs represent connections between junctions.
Topological arcs are augmented with length estimates.

Plans are generated using a decision-theoretic A* search strategy [Goodwin, 1996]. The
path planner operates on the augmented topological map rather than using the POMDP
model directly.

The path planner creates a path with the best expected travel time. The travel time of
a complete path is calculated as a function of four parameters: distance, traversal weight,
blockage probability and recovery costs.

Tt is infeasible to determine optimal POMDP solutions given our real-time constraints and the size of
our state spaces (over 3000 states for the map shown in Figure 3, page 6) [Cassandra et al., 1994; Lovejoy,
1991]. Reasoning about blockage probabilities and recovery costs is also notably easier in the topological
map.

o The distance is an estimate of the straight-line length of the arc. It is an estimate
because topological maps are not necessarily generated from building blue-prints: they
may be hand sketched or learned.

e The traversal weight describes the difficulty of the route (e.g. door arcs are more ex-
pensive than corridor arcs).

e Blockage probability indicates the probability a given arc cannot be traversed (e.g. a
closed door).

o Recovery costs estimate the difficulty of recovering from a failure, such as missing a
turn or discovering a closed door. These costs estimate local recovery costs, i.e. for
each missed turn.

Xavier currently travels in a restricted environment, namely three of the floors in our
office building. The weights of the topological map of this environment have been hand-tuned
and provide a good initial approximation of the unoccupied environment. However, these
default costs do not capture the variations created by human use. The patterns describing
these variations can be detected.

ROGUE learns traversal weights (or costs) that depend on high-level features of the sit-
uation. These learned weights effectively modify the estimated traversal time to reflect
experienced traversal time. Learning situation-dependent costs will allow the path planner
to respond to patterns and changes in the environment.

2.2.2 Navigation

Navigation on the robot is done using Partially Observable Markov Decision Process models
(POMDPs) [Simmons & Koenig, 1995; Koenig, 1997]. The navigation module estimates
the robot’s current location, determines the direction the robot should be heading at that
location to follow the path, and then sets a directional heading.

The navigation module estimates the robot’s current location by maintaining a probabil-
ity distribution over the robot’s current pose (position and orientation). Given the current
pose distribution and new sensor information, the navigation module uses Bayes’ rule to
update the pose distribution. The updated probabilities are based on probabilistic mod-
els of the actuators, sensors, and the environment. In Xavier, the primary actuators are
the wheels, for which the probabilistic models describe the robot’s dead-reckoning skills.
Xavier’s primary sensors are its sonars, whose probabilistic models describe the likelihood of
observing given features in the sonar data. The environment is the map, where the proba-
bilistic models describe variance on its metric information. This information is automatically
compiled into a POMDP model.

Table 3 shows the Bayesian probability update calculation. Figure 7 shows an example
of how Bayes’ rule is used to update state probabilities (for a forward action, disregarding
observations). At time ¢, states si,...,s4 have the marked probabilities, and for a given
action, the marked transition probabilities to ss, ..., ss. Denote m(s;,t) to be the probability
of state ¢ at time ¢; denote A,(s;,s;) to be the transition probability between s; and s; for

Define S to be the set of all Markov states; Let s,s’ € S.

Define A to be the probability distribution over successor states; A,(s,s’) is the
transition probability for an action a between state s and state s'.

Define O to be the probability distribution over observations; O(s, o) is then the
probability of obverving o in state s; o; is the observation received at time ¢.

Define 7 to be the probability distribution over S; 7 (s,) is then the probability of the
robot being in state s at time ¢. (Technically, 7(s,¢) is shorthand for

7(s,t | og,...,04 ag, ..., a4—1,7(s,0)) for the observation sequence og, ..., 0
and the action sequence ag, ..., @;—1.)
At time ¢t = 0:

Vs € 5, let m(s,0) = initial state distribution.

For time t + 1 > 1, action a was selected, and then observation 0,41 was made:

Vs'e S, m(s't+1) =3 ,csm(s,t) X Aa(s,s") X O(5', 0441).

Table 3: Bayesian probability updates.

Possible states Possible states
(timet) Transitions (timet+l)

@ n(s5, t+1) = 0.2*0.5+0.4*0.6 = 0.34
(s, t+1) = 0.3*0.8 = 0.24

n(s7, t+1) =0.2¥0.5 + 0.4*0.1 + 0.3*0.2 = 0.20

m(sl,t) =0.2(sl

m(s2,t) =04

m(s3,t)=0.3(s3

n(s4,t)=010—10 »(s8) (8, t+1) = 0.11.0 + 0.4*0.3 = 0.22
A

Figure 7: An example of POMDP transition calculations (for a forward action, disregarding observa-
tions). 7(s;,) indicates the probability of the state (circle size is proportional to probability). At time
t + 1, POMDP state probabilities are calculated as the sum of all incoming transitions.

a given action a; denote O(s;,0;) to be the probability of observing o; in state s;. At time
t + 1, for a given action a, the POMDP’s Bayesian probabilities are calculated as:

(s, t+1)= Z?T(Si,t) X Ag(si,85) X O(8,0041)- (1)

7

10

Each of the states at time ¢ + 1 has updated probabilities that are calculated as the sum of
all incoming transitions.

Observations of the world help prune unlikely states from the probability distribution.
Observations can help prune unlikely states because a low probability observation will make
a low probability state essentially impossible?, while a high probability observation will
improve confidence in medium or high probability states.

Regular observations can keep the robot fairly certain of its location. However, if the
robot does not receive any observations for a long time (e.g. in a long featureless corridor),
the probability distribution may spread over many states, making it impossible to determine
with any precision the robot’s exact location.

Note that a new observation may significantly change the probability distribution. For
example, when the robot observes the end of a corridor, that state is extremely likely. At
the previous time step, however, the robot might have had a very poor estimate of its
location, in which the probability distribution was very flat and centred some distance from
the end of the corridor. Figure 8 demonstrates this change. Figure 8a shows the probability
distribution before the robot sees the wall at the end of the corridor, while Figure 8b shows
the distribution after.

The metric variance (length uncertainty) of the map alters the structure of the Markov
model. In our system, we use parallel Markov chains, where each corresponds to one of the
possible lengths of the edge. Figure 9 illustrates an example for a corridor that may be two,
three or four metres long. This representation is an effective way to model worlds in which
lengths are not known with certainty.

?In the implemented algorithm, all states with less than 10~ probability are reset to zero.

]

O
(a) (b)

Figure 8: Markov state probability distribution, (a) before and (b) after observing the wall at the end
of the corridor. Circles indicate probability distribution; large circles have high probability. At each time
step, the most likely state is marked with a dot.

11

emo)

- Kéy

Markov node, including :
direction heading

O (4

&
[€2e0)
€D
&
WEOE0

Forward transition; each :

g @ : arc represents one metre :
o @ W

Figure 9: Corridor representation which captures length uncertainty for the navigation module. Each
transition corresponds to 1 metre, and hence this corridor is represented as being 2, 3 or 4 metres long.
Only forward transitions are marked. Reproduced from Simmons & Koenig [1995].

>
w

3 Training Data

Our situation-dependent learning algorithm correlates situational features to learning op-
portunities so that planners can predict and avoid similar situations in the future. The
algorithm requires a list of the learning events, &£, the evaluation of each of the events, C,
and the values of each of the situational features during the event, F. Each event, its cost,
and its feature values are then placed in an events matriz for use by the learning algorithm.

3.1 Events

Events (€) in any planner can be identified by asking the question: “What will change the
planner’s behaviour?” In ROGUE, we would like the path planner to predict and avoid areas
of the environment which are difficult to navigate (and similarly, exploit areas that are easy
to navigate). Improved cost estimates on arcs will cause the path planner to select more
appropriate plans. Learning events are therefore arc traversals that do not meet expectations.

The available execution data is generated by the navigation module, and is therefore
stored using the probability distribution over Markov states. ROGUE examines the execu-
tion trace, identifies the most likely path that the robot traversed, and then identifies the
corresponding path planner arcs. ROGUE then maps situational features to the arc traversals
to create situation-dependent costs.

An ezxecution trace from the robot includes:

o the features describing the situation,
e the sequence of actions executed by the robot, and
e the probability distribution over the Markov states at each time step.

In particular, an execution trace does not include arc traversals. We therefore need to extract
the traversed arc sequence from the Markov state distributions. The steps in this process
are:

12

1. Identify the robot’s most likely traversed sequence through the Markov states.
2. Calculate the most likely traversed sequence through the path planner’s arcs.

This process can be described pictorially as in Figure 10. As the robot wanders down
the corridor, it sees doors at time steps 6 and 8. The Markov state distribution changes
as shown. In order to modify the arc cost estimates for the path planner, ROGUE needs to
determine which arcs the robot travelled, and for how long.

The POMDP navigation module keeps track of the most likely states but not the most
likely sequence of states. The algorithm to calculate this sequence is known as Viterbi’s
algorithm [Rabiner & Juang, 1986]. Viterbi’s algorithm is guaranteed to find the single best
state sequence with the highest probability, given the actions, observations and initial state
distribution. However, Viterbi’s algorithm was not designed for use in a Markov model that
represents uncertain length information. We extend Viterbi’s algorithm to compensate for
this uncertainty, giving us a powerful way to identify likely paths through the environment.

Once these likely state sequences have been identified, we then need to identify the cor-
responding arc sequences. The environment representations used by the navigation module
and the path planner are different enough that the mapping is not direct.

Finally, once the arc sequences have been identified, ROGUE can calculate cost estimates
for the arcs, and then correlate those costs with the available features, thereby creating
situation-dependent arc costs.

Below, we describe the workings of Viterbi’s algorithm and our extension of it. We then

Map

Navigation Output Representation

oo :
B — 2 Markov State; size
O @ O o - ° O proportional to
" O (o O o z probability
L . gg(%*(%@@ ffffffff — > (0 Zt/lact):tlikelyMarkov
3 -0 O o (o —
- — RSO Lm .
= o O @ O) | |Corr|dor
O o
° Py — Arc
E
,,,,,,,,,,,,,,,,,,,,,,,,, o _____ 1B = ® Node
| | | | | | | l » T_I

Figure 10: Extracting arc traversals from Markov state distributions.

13

present the techniques used to calculate the arc sequence so that arc traversal events can be

identified.

3.1.1 Identifying the Most Likely Traversed Markov Sequence

Since the robot does not know where it is at any given moment, it consequently cannot
identify with certainty its path. In order to reconstruct the arc traversal sequence, we must
first reconstruct the Markov state traversal sequence.

The algorithm to calculate this sequence is known as Viterbi’s algorithm [Rabiner &
Juang, 1986]. The algorithm is reproduced in full in Table 4. In step 1, variables are
initialized. In step 2, Viterbi’s algorithm maintains an estimate of which state the robot was
in at the previous time step, for each possible state. In step 3, the algorithm calculates the
complete Viterbi sequence by recursing backwards through time.

Define S to be the set of all markov states; s, s’ € S.

Define A to be the probability distribution over successor states; A, (s, s’) is the
transition probability for an action a between state s and state s'.

Define O to be the probability distribution over observations; O(s, o) is the
probability of obverving o in state s.

Define 7 to be the POMDP probability distribuion over S; 7(s,) is the
probability of the robot being in state s at time ¢.

Define § to be the Viterbi probability distribution over S; (s,) is the
probability of the sequence ending at s at time ¢.

Define W(s,t) to be the unique state from time ¢ — 1 that most likely leads to state s.

Define Seq, to be the most likely sequence generated from time 7'; s = Seq_ (1) is
the state at time ¢ in Seq,.

1. At time ¢t = 0:
Vs € S, let 6(s,0) = initial state distribution = = (s, 0)
let W(s,0) = NULL

2. For time t 4+ 1 > 1, action a was selected, and observation 0,11 was made:
Vs €S, U(s,t+1) =5 such that s’ gives MAXyes[6(s',t) x Ag(s,5)].
§(syt+1) = F6(U(s,t+1),1) X Ag(U(s,t+1),5") x O(s, 0041).

where k is a normalization factor.

3. To calculate the most likely sequence at time T, Seq.:
Seq,. (T) = s such that s gives MAXv;es[6(s, T)],
i.e. the most likely Viterbi state at time 7.
Vt,0 <t <T Seq,(t) = W(Seq.(t +1),t+1).

Table 4: Viterbi's Algorithm, reproduced from Rabiner & Juang [1986].

14

Figure 11: A map showing why the most likely state sequence may be different
from the most likely states.

Viterbi’s algorithm is a slight modification to the standard POMDP algorithm used for
navigation. The primary difference is that:

the POMDP algorithm calculates the most likely states, while
Viterbi’s algorithm calculates the most likely state sequence.

The two may differ, for example, when there are multiple parallel corridors that the robot
may have travelled down. Consider Figure 11, where the robot travelled from X to Y, along
either path 1 or 2. When the robot nears Y, the most likely states reflect the possibility of
having arrived along either route, while the most likely state sequence is only one of the two
routes.

The POMDP algorithm is well-suited to most robotics tasks because it is very important
for the robot to have a good idea where it is. Viterbi’s algorithm, on the other hand, is
more commonly used in applications where the whole sequence is needed. For example, it
is widely used in speech recognition, where the most likely sentence is desired, rather than
simply the most likely last word.

For our robot learning application, we need the complete path of the robot, and hence
use Viterbi’s algorithm. Viterbi’s algorithm, however, was not designed for use when the
desired trajectory is actually an abstraction of the Markov states. Our models represent
length uncertainty, and hence we need an estimate of the trajectory that ignores length
uncertainty. We extend Viterbi’s algorithm to compensate for this representation difference.

Mathematically, the POMDP algorithm calculates the transition probability as a sum
of the probabilities on connecting states, that is, looking at all possible ways of arriving
at a particular state. Viterbi’s algorithm, on the other hand, finds the single most likely
prior state, so as to reconstruct a path. (Note that Viterbi’s algorithm does not use 7, the
standard POMDP state probability distribution, but instead uses 4, the probability of the
sequence.)

Figure 12 illustrates the difference between the standard POMDP calculations and the
calculations in Viterbi’s algorithm. In this figure, the §(s,t = 0) probabilities equal the
7(s,0) probabilities of Figure 7, and the transition probabilities, A, are also the same.
Recall that POMDP probabilities are calculated as shown in equation 1. Viterbi’s algorithm,

15

Possible states Possible states

(time t=0) Transitions (timet=1) N 1 9 1

5)WH(s5, 1) = argmax[0.20.5, 0.4*0.6] = 2
0(s5,1)=04*0.6=0.24

5(s1,0)=0.2(sl

5(s2,0)=0.4

lJJ(s;es, 1) = argmax[0.3°0.8] = 3

o) (86, 1)=0.3*0.8=0.24

N 1 g 1 %’51
U(s7, 1) = argmax] 0.205, 0.4+0.1, 0.3*0.2] = sl
5(s7,1) =0.2¢0.5= 0.10

5'7/1 Ea w
5(s4,0)=010—20 >@ U(s8, 1) = argmax] 0.4*0.3,0.1*1.0] = s2
4 O(s8,1)=04*0.3=0.12

5(s3,0)=0.3(s3

Figure 12: Viterbi transition calculations (for a forward action, disregarding observations). d(s;,?)
indicates the Viterbi probability of the sequence ending in s; at time ¢ (circle size is proportional to
probability); W(s;,?) indicates the most likely prior state (thick line shows the selected transition). At
time t + 1, Viterbi sequence probabilities are calculated as the most likely prior sequence times the
transition probability (and then normalized).

meanwhile, maintains the probability distribution of the sequence, §, calculated as:
1
5(Sj7t + 1) = E(S(\I}(Sjvt + 1)7t) X Aa(q}(sjvt + 1)7 Sj) X O(Sjv Ot-l-l)v (2)

where k is a normalization factor® and W(s;,¢ + 1) is the most likely sequence at time ¢ + 1.
U(s;,t + 1) is calculated from the transition probability and the probability of the most
likely sequence at time ¢:

U(s;,t+1) = s;such that s; gives MAXy, c5[0(si,1) X Aa(si,55)]
= ARGMAXVSieS [(S(SZ’, t) X Aa(SZ’, S]‘)] . (3)

Viterbi’s algorithm finds the sequence at time ¢ that contributed the most probability to
the sequence at time ¢t + 1. In Figure 12 for example, the most likely prior state for state
s7 is s1, because s; contributed 0.10 (0.2 x 0.5) probability, while sy contributed 0.04, and
s3 contributed 0.06. Note that, in hind-sight, Viterbi’s algorithm eliminates the possibility
that the robot was in state s4 at time ¢, while the two paths it generates from states s5 and
sg converge, both passing through ss.

31f k is not used, & reflects the exact probability of the sequence; however, round-off error causes serious
miscalculations when these numbers become very small.

16

Problems with the Viterbi Sequence

Viterbi’s algorithm is guaranteed to find the most likely sequence of Markov states [Ra-
biner & Juang, 1986]. However, the Markov models we use for robot navigation differ from
standard Markov models used by speech systems: we represent length uncertainty.

In our models, Viterbi’s algorithm finds the most likely sequence that reflects trajectory
and length; we would like an algorithm that finds the most likely trajectory. In other words,
we want the algorithm to identify the robot’s trajectory in the topological map, which is an
abstract representation of the Markov model.

Essentially, the fact that a given node may “fan-out” leads to information loss and a
poor estimate of the best path. The fan-in/fan-out representation of the model effectively
captures the length uncertainty of the environment, but Viterbi’s algorithm is unable to
generate a good estimate of the abstracted trajectory.

For example, consider Figure 13. Because node sl splits into three parallel Markov
chains, while the lower probability state, s2, splits into two, Viterbi’s algorithm selects the
sequence through s2 as the most likely sequence from s3. In a Markov model that does
not represent length uncertainty, Viterbi’s algorithm would correctly identify s1 as the more
likely previous state.

Consider the reverse situation, shown in Figure 14, in which one outgoing arc has a greater
weight than other outgoing arcs, such as when a node is connected to a door. Although it
is clear that the robot travelled to s2 rather than s3, Viterbi’s algorithm selects s2 as the

5=0.22
=10

Q

0.186
/
< 0.186 0.186
0.186 0.186 0.186

Figure 13: Fan-in: Example of how the map representation affects Viterbi's algorithm. Although it is
more likely that the robot passed through sl1, the Viterbi sequence generated from s3 passes through
52 instead.

17

@5:0.3

Figure 14: Fan-out: Example of how the map representation affects Viterbi's algorithm. Although s2
has a greater 7 probability than s3, Viterbi's algorithm selects s3 as the sequence-generating state.

most likely generating state. In this situation, since room states have high-probability self-
transitions, Viterbi’s algorithm will very often never correct itself, instead claiming that the
robot’s most likely path was only within the room.

The problem continues to compound so that after a long execution run, Viterbi’s al-
gorithm selects sequences that are extremely unlikely according to the standard POMDP
calculations. In fact, in most cases, the final state in the most likely sequence did not even
appear in the list of possible POMDP states m, which prunes out extremely low probability
states, i.e. As € S such that m(s,7) > 0 and s = Seq (T) = ARGMAXyges [0(s',1)].

Multi/Markov Viterbi
Ideally, we would like Viterbi’s algorithm to ignore length uncertainty and correctly iden-
tify the robot’s trajectory in the topological map, rather than directly in the Markov model.
Essentially, Viterbi’s algorithm would have to identify a fan-in situation, and correctly sum
probabilities over those edges. However, our Markov model representation does not lend
itself to easy detection of these situations®, and so we instead use an approximate method.
We modify Viterbi’s algorithm in three ways:

1. ROGUE uses the most likely POMDP state as the sequence generator. We know that
the 7 distribution is always a better estimate of the robot’s current location than the ¢
distribution, since these probabilities are based on all possible ways of reaching a given
state. In other words, instead of using the default generating state

Seq (T) = ARGMAXy,es [6(s, T')]
(the most likely Viterbi state, 4, at time 7'), ROGUE uses

Seq.(T) = ARGMAXy,es [7(s, T)]

*Note to the reviewers: We can provide a discussion paragraph or reference.

18

iy EXL

K KX

L 51550

poofazs
e

Figure 15: Map used in the example of how multiple sequences are used.

(the most likely POMDP state, m, at time T'). Effectively, this change forces Viterbi’s
algorithm to use the standard POMDP position estimate as an “oracle” of the final
state. The intuitive justification for this change is that if the final state selected
sequence has a high 7 probability, then the generated sequence is more likely to reflect
the actual traversal sequence. In speech recognition, for example, this modification
would be equivalent to having a good estimate of the last word of the sentence; instead
of calculating the most likely sentence, P(s), we calculate the most likely sentence
given the most likely last word, P(s|w).

. ROGUE sets a threshold for the minimum probability for the generating state. That
is, ROGUE selects ¢ < T and a threshold 7 such that Seq () > 7. In this way, we can
ensure that we select high probability sequences and eliminate low probability ones.

. ROGUE uses the Viterbi sequences generated from many high probability states through-
out the trace:

Vi< T, Seq,(t) = ARGMAXyses [7(s,T)]
N Seq(t) > T,

By using many sequences, ROGUE collects evidence for the most likely actual trajec-
tory, and thereby compensates for the poor estimates made by Viterbi’s algorithm.

We call the modified algorithm Multi/Markov Viterbi because we use multiple trajectories

generated from the most likely Markouv state.

Reconsider the probabilities and transitions shown in Figure 13. Unmodified, Viterbi’s

algorithm would generate a sequence passing from s3 through s2 to the initial state. Our
modified Viterbi’s algorithm uses that path as well as the sequence generated from s1. By

using both sequences, ROGUE is more likely to capture the robot’s actual traversal sequence.

For a second example, consider the map shown in Figure 15. Imagine that the robot

travels up one of the central corridors, and then turns right towards point C. Assume the

robot initially believes it is heading towards point A, in the “300” corridor. Because of
position uncertainty, it might be in the “400” corridor, heading towards point B. When the

19

sonars detect a wall in front of the robot, the robot becomes very certain that it has arrived
at the end of the corridor. The probability masses around points A and B. Point A has a
higher probability, say 0.60, while point B is 0.30 and other places with the remaining 0.10.
The sequence generated at this moment (from point A) is then used for learning. Later in the
episode, the robot arrives at point C with 0.90 probability. The Viterbi sequence generated
from here shows that it is more likely that the robot travelled up the “400” corridor, going
through point B. This second sequence is also used for learning. Neither of the two sequences
is necessarily correct: imagine that the robot had not reached point C, but instead that an
obstacle had been placed in the corridor directly above room 435, which the robot believed
to be the end of the corridor. If the trace had ended at this point, and ROGUE only used
the second sequence for learning, the system would learn incorrectly. Using both sequences
allows ROGUE to cover both possibilities.

By recording each of these multiple sequences as training data for the learner, ROGUE
is in some sense “hedging its bets.” It knows that the robot traversed only one unique path
through the environment, but it does not know which. By recording all possibilities, ROGUE
gathers a body of evidence that collectively captures the robot’s actual path.

In the cases that a later sequence subsumes an earlier one, the later sequence provides
corroborating evidence for the earlier one. Throughout an execution trace, an early sequence
may acquire a substantial amount of corroborating evidence. Moreover, since arc sequences
are generalizations of Markov sequences, minor variations in the Markov sequence will ap-
pear as minor variations in time estimates of the arcs. It is then the responsibility of the
learning algorithm to generalize the data, by grouping similar data and eliminating noise.
Enough evidence of the correct path will allow ROGUE to learn situation-dependent rules
that correctly reflect the dynamics of the environment.

To summarize, Viterbi’s algorithm finds the most likely sequence of Markov states that
the robot traversed. However, we need the most likely trajectory in the topological map,
rather than the most likely trajectory in the Markov model. Since our Markov models
represent length uncertainty, Viterbi’s algorithm can become misled by the fan-out/fan-in
nature of the representation. To get a good estimate of the robot’s actual state sequence,
we use the most likely 7 state as the sequence generator. We also utilize multiple sequences,
thus eliminating ambiguity raised by the fan-out representation. Multi/Markov Viterbi is
summarized in Table 5.

3.1.2 Identifying the Planner’s Arcs

Once the set of most-likely Markov sequences has been constructed, we need to identify
which of the path planner’s arcs the robot traversed. The representation of the path planner
and of the POMDP are significantly different and the mapping is not direct. Only the need
to reverse-engineer the data for learning has identified this representation gap. Although the
details of this process are dependent on our particular implementation, the representation
gap problem is a general one. Each module in a given architecture may require a special-
purpose representation that is well suited for its task, and mapping the information between

20

Define 7 to be the threshold for a high probability state.

Define V to be the set of selected Viterbi sequences; Seq, € V is then
the most likely sequence generated from the most likely = state at
time ¢; s = Seq,(t') is the state at time ¢’ in Seq,, for 0 < ¢/ <¢.

Calculate 7, § and W as in Tables 3 and 4. Recall that ¥ depends on 4.
Let V = 0.
Foreach ¢, 0 <t < T
Let Simar = ARGMA Xy es7(s,t)
if 7 (Smaz,t) > T
Let Seq,(t) = Smax
Foreach ¢', from ¢t — 1 down to 0
Seq(t') = W(Seq,(t' +1),¢" +1)
Let V=V U Segq

Table 5: Multi/Markov Viterbi: Viterbi’'s algorithm for generating abstract trajectories in Markov
models with a high degree of fan-in/fan-out. It takes into account the state probability distribution, 7,
and uses multiple sequences to eliminate ambiguities created by the data representation.

layers may be non-trivial. Careful design of the architecture may reduce the representation
gap, but it is extremely unlikely that the problem will be entirely eliminated.

The POMDP represents the world in a set of discrete square blocks. In our environment,
one metre squares have been found to be empirically reliable while remaining efficiently
computable. The path planner, on the other hand, represents the world in a set of arcs,
where nodes correspond to topological junctions like doors and corridors.

Although these representations clearly make sense for each module, there is no direct
correspondence between the Markov states and the arcs. The original Xavier system was
designed to create the Markov model from the topological map, not to extract the topological
map from the Markov model. Figure 16 demonstrates the difference for a lobby area. There
is no clear mapping from the Markov nodes to the path planners” arcs. A similar problem
exists at junctions in corridors.

We have addressed these problems by calculating the path using a greedy heuristic based
on expected execution times. First we calculate all the arcs that could possibly correspond
to a single Markov node. For example, each node at a corridor junction would correspond to
all the path planner arcs that meet there. Hence, there are often Markov nodes associated
with multiple arcs. This fact complicates the reconstruction of the arc sequence because a
single Markov sequence may map to multiple arc sequences.

We then reduce the number of possible arc sequences by permitting only the arcs that
correspond to the transition between sequential Markov states in the Viterbi sequence. How-
ever, for a single Viterbi sequence, we are still left with many possible arc sequences.

21

a) Markov Representation b) Path Planner Arc Representation

Figure 16: Different representations of a foyer.

arc2

Figure 17: Multiple arcs corresponding to multiple Markov nodes. are
corresponds to s, ..., s;, and arcy corresponds for s;, ..., s,.

The mapping function then assigns states to arcs in a greedy manner, based on expecta-
tion times. Consider Figure 17, in which are; corresponds to sq, ..., s;, while arc; corresponds
to Siy ..., S,. If we have an expected time e(are;) to traverse arc;, and time-stamps on each
state sg, t(sk), then we say that states s; through sj correspond to arc; for:

i —1, if t(si—1) —t(s1) > e(arey), or
k=< I, if, for some [such that « <1 <7, t(s;) —t(s1) < e(arcr) < t(si41) — t(s1),
7, if t(s;) —1t(s1) < e(arer).

arcy then corresponds to states spiq through s,. We greedily add states to arcs until the
Viterbi sequence is exhausted, thereby creating the complete arc sequence. We do this
mapping for each of the Viterbi sequences returned by Multi/Markov Viterbi.

Experiments show that selecting arc sequences in this greedy manner yields good results.
There are occasions however when the heuristic may fail. For example, imagine that the
corridor intersection in Figure 18 contains many obstacles. If most of the execution traces
contained paths from arey to arey, then ideally, the excess traversal weight of the intersection
should be evenly distributed between them. Instead, the heuristic will make the weight of
arcy; smaller, closer to the default value of an empty corridor, while arc; would be much
larger, containing all the weight of the difficult intersection.

Any newly generated paths that pass through both are; and arey would have the correct
total weight. However, any new paths passing through arcs and only one of are; and arey
would have a poor estimate of the true traversal weight.

Empirically, this problem has not occurred. In general, the paths used as training data
are a fair representation of the paths used at execution: if ROGUE travels certain typical

22

arc3

arcl \ e

Figure 18: An example of when the greedy heuristic may fail.

routes, then it is likely that it will continue to do so. Moreover, the incremental nature of
the learning algorithm means that ROGUE will self-correct with additional experience: if
ROGUE starts travelling new routes, new data will be collected, and the combined body of
evidence will create more accurate estimates of costs.

3.1.3 Summary of Event Identification

The probabilistic representation of the navigation module creates significant challenges in
reconstructing the robot’s path through the environment. ROGUE needs to estimate the most
likely sequence of Markov states that the robot passed through, which can be done through a
merging of the Bayesian POMDP state probabilities and Viterbi’s algorithm. Then ROGUE
needs to reverse-engineer the path planner’s arcs from the Markov states. ROGUE collects
each of the possible sequences into one body of data that collectively describes the robot’s
true path. The process for extracting arc traversal events can be summarized as follows:

1. Apply Multi/Markov Viterbi; i.e. accumulate likely sequences of traversed Markov
states.

2. Apply the heuristic to break the representation-gap; i.e. map the Markov state se-
quences into topological arc sequences.

These arc traversal events, £, become input for the learning algorithm after they have been
evaluated.

3.2 Costs

Once arc traversal events have been identified from the execution trace, updated costs need
to be calculated. These costs become the value predicted by the learning algorithm as a
function of the situational features. The learned costs are used by the path planner as
traversal weights.

The cost evaluation function, C, for the path planner yields an updated arc traversal
weight for each arc traversal event ¢ € £.

23

In our current implementation, this weight is equal to the product of the desired velocity
on that arc and the actual time spent traversing it, divided by the modelled length:

C(e) = vt/l.

This cost represents the experienced difficulty of the arc traversal. When the robot travels in
a straight line at the desired speed, the cost is 1.0, indicating that the default cost estimate
was correct.

Weights may be greater than one for the following reasons:

e The robot travels in a straight line more slowly than desired.
e The robot travels along a sinuous path at the desired speed.
e The modelled length of the arc is shorter than the actual length.

Weights may be less than one for the following reasons:

e The modelled length of the arc is longer than the actual length. (For the experiments
conducted in our environment, the modelled length is 10% longer than the actual
length.)

o The heuristic incorrectly assigns traversal times to arcs.

3.3 Features

Features, F, of the environment are used to discriminate between different learning events.
It is crucial to find a good set of relevant features, since the hypothesis space can only be
described in terms of the available features. If critical features are omitted, then the learner
will be unable to converge on the correct target function. It is an important open problem
to autonomously determine a good set of features.

Features are defined by the robot architecture and the environment. Usually they are not
dependent on the tasks. For this reason, the execution module defines and collects features.

Features available in Xavier include speed, time of day, sonar observations (walls, open-

7 “crowded,” “clut-

ings), camera images (which could also be abstracted to indicate “empty,
tered,” etc.), other goals, and the desired route. For example, travelling too fast past a par-
ticular intersection might lead to missing a turn. Images with lots of people might indicate
difficult navigation.

Characteristics that make a good feature include:

e it is easy to detect (in terms of accessibility and cost),
e it is informative, and
e it is projective.

Fasy detection is important because features are recorded frequently, usually once per
time step in the trace. The system cannot spend most of its time calculating and recording
feature values, nor can it spend all its time gathering the information before making decisions.

24

Informative features are ones that contain information relevant to learning. A good
learning system will be able to prune out irrelevant features, but we do not want the system
expending effort to collect data that will later be ignored.

By a “projective” feature, we mean one for which the gathered information at one moment
can help the system make decisions about the future. Usually these features are “high-level.”
that is, they do not depend exclusively on execution. For example, a feature like time can
be easily projected into the future. Similarly, a feature such as the goal location will not
change for the duration of the task. “Execution-level” features can be projective when we
can control them; for example, the robot’s speed can affect the reliability of navigation
because the robot misses fewer openings and travels more smoothly.

Most execution-level features, such as sonar readings or images, are not usually projective
because what the system sees now may have little or no bearing on what it sees in the future.
It is not often the case that current sonar readings relate to future sonar readings at a different
location.

There are also features which may be projective with respect to execution, but not pro-
jective with respect to planning, such as travel direction. Travel direction can have direct
impact on the cost of an arc; for example, an arc near a corridor intersection may be very
expensive when making a turn, but when travelling straight from within the corridor, may
be much cheaper. Travel direction, however, cannot be predicted before planning, and hence
the path planner needs to carefully consider each route.

For the experiments in this article, we only use the high-level features such as time of
day, route and other goals, along with execution-level features we can control such as the
robot’s speed. We incorporate sonar readings as one of the features when learning for the
task planner [Haigh, 1998], where the current reading (whether or not a door is open) affects
the next immediate decision.

3.4 Events Matrix

Each training event is stored in a matrix along with its cost evaluation and the environmental
features observed when the event occurred. Those environmental features which change
during the traversal are averaged. Table 6 shows a sampling from an events matriz generated
by ROGUE.

This collection of feature-value vectors is presented in a uniform format for use by any
learning mechanism. Additional features from the execution trace can be trivially added;
this particular matrix was recorded for the experiments described in Section 6, while sonar
readings were added for the task planner experiments [Haigh, 1998].

The events matrix is grown incrementally; most recent data is appended at the bottom.
Each time the robot is idle, the execution trace is processed and new events are added to the
matrix. The learning algorithm then processes the entire body of data, and creates a new
set of situation-dependent rules by compressing the many examples. By using incremental
learning, ROGUE can notice changes and respond to them on a continual basis.

The complete process for identifying, evaluating and storing arc traversal events from

25

ArcNo Weight CT Speed PriorArc Goal Year Month Date DayOfWeek

233 0.348354 38108 34.998001 234 90 1997 06 30 1
192 0.777130 37870 33.461002 191 90 1997 06 30 1
196 3.762347 37816 34.998001 195 284 1997 06 30 1
175 0.336681 37715 34.998001 174 405 1997 06 30 1
168 1.002090 60151 34.998001 167 31 1997 07 07 1
246 0.552367 60099 34.998001 247 253 1997 07 07 1
201 1.002090 64282 34.998001 202 379 1997 07 07 1
134 16.549173 61208 34.998001 234 262 1997 07 09 3
238 0.640905 54 34.998001 130 379 1997 07 10 4
169 0.429588 39477 27.998402 168 31 1997 07 13 0
165 1.472222 8805 34.998001 164 379 1997 07 17 4
196 5.823351 3983 34.608501 126 253 1997 07 18 5
194 1.878457 85430 34.998001 193 262 1997 07 18 5

Table 6: Events matrix; each feature-value vector (row of table) corresponds to an arc traversal event
e € £. Weight is arc traversal cost, C(¢). The remaining columns contain environmental features, 7,
valid at the time of the traversal: CT' is CurrentTime (seconds since midnight), Speed is velocity, in
cm/sec, PriorArc is the previous arc traversed, Goal is the Markov state at the goal location, Year,
Month, Date and DayOfWeek form the date of the traversal.

Foreach time step ¢ < T" in the execution trace
Let 8,00, = ARGMAXy, _ 7(s,1)
If 7($maz,t) > 7, for some threshold 7
1. Let Seq, be the Viterbi sequence generated from $,,4.:
Seq6) = 5
Foreach t' from ¢t — 1 down to 0
Sequ(t') = W(Seq (1" +1),¢ +1)
2. Calculate the arc sequence that corresponds to Segq,
3. For each arc traversal event ¢ € £ in the arc sequence
Estimate the cost of ¢ from C: C(e) = vt/
Store the arc traversal event ¢, the features F, and

the weight C(¢) in the events matrix

Table 7: ldentifying arc traversal events £ from the execution trace.

the trace is summarized in Table 7. Step 1 corresponds to Section 3.1.1, step 2 corresponds
to Section 3.1.2, and step 3 corresponds to Section 3.2. Each arc traversal event is stored in
the events matrix along with the relevant situational features and the cost evaluation. The
matrix is then used as input for the learning algorithm, described next.

26

4 Learning Algorithm

We now present the learning mechanism that creates the mapping from situation features,
F, and events, &, to costs, C.

The input to the algorithm is the events matrix described in Section 3.2. The desired
output is situation-dependent knowledge in a form that can be used by the planner.

We selected regression trees [Breiman et al., 1984] as our learning mechanism because

the data often contains disjunctive descriptions,

the data may contain irrelevant features,

the data might be sparse, especially for certain features,
the learned costs are continuous values.

Bayesian learning would not successfully handle disjunctive functions, k-Nearest Neighbour
algorithms would not handle irrelevant features well, neural networks would not generalize
well for sparse data, and standard decision trees do not handle continuous valued output
particularly well [Mitchell, 1997; Quinlan, 1993]. Other learning mechanisms may be appro-
priate in different robot architectures with different data representations.

We selected an off-the-shelf package, namely S-PLUS [Becker et al., 1988], as the regres-
sion tree implementation. A regression tree is created for each event, in which features are
splits and costs are learned values.

A regression tree is fitted for each arc using binary recursive partitioning, where the data
is successively split until data is too sparse or nodes are pure. A pure node has a deviance
below a preset threshold. Deviance of a node is calculated as D = " (y; —u)?, for all examples
i and predicted values y; within the node.?

Splits are selected to maximize the reduction in the deviance of the node. Chambers &
Hastie [1992] discuss the method in more detail.

We prune the tree using 10-fold random cross validation, in which a tree is built using
90% of the data, and then the remaining 10% of the data is used to test the tree, resulting
in the relationship between tree size and misclassification rates. This calculation is done 10
times, each time holding out a different 10% of the data. The results are averaged, giving us
the best tree size so as not to over-fit the data. The least important splits are then pruned
off the tree until it reaches the desired size.

Figure 19 shows a learned tree, before and after pruning. The pruned tree represents
the situation-dependent arc costs of arc 208.° Each internal node in the tree represents one
feature comparison. The left subtree indicates data for which the feature was less than the
comparison value; the right subtree contains data for which the feature was greater than the
comparison value. Leaf nodes show the arc’s learned costs.

>The average deviance, %Z(yl — p)?, is not used because we want a node to be split when sufficient

evidence accumulates; there is more value in splitting leaves with large numbers of examples.

6Arc 208 appears in corridor 2 of the Exposition world described in Section 6.1.

27

PriorArc<208

PriorArc<208
T

Date<11
CT<54449.5
0.6967 0.8128 Datex14.5

CT<57218.5 0.6967

0.7548

1.9740 CT<54449.5

0.6967

1.3930

CT<50752.5 CT<42798 20520
1.7420 :

CT<50947.5
1.3930

1.74201.6260 1.5610 1.0450
(a) Before pruning. (b) After pruning.

Figure 19: A learned tree. Leaves represent learned costs (traversal weights); C'T'is current time, in
seconds since midnight.

When coming from the direction of arc 209, arc 208 has cost 0.7548. Otherwise, in the
second half of the month, arc 208 has cost 0.6967. In the first half of the month, from
midnight to 14:39:58 the traversal weight is 1.5610. From 14:39:59 to 15:07:29, it costs
1.0450 and for the rest of the day its traversal weight is 2.0320.

Section 6 presents the results of using regression trees to learn situation-dependent costs
for path planner arcs. Our experiments show that regression trees adequately describe the
situations found in Xavier’s environment, and that situation-dependent costs are a feasible
extension to the path planner, and significantly enhance the system.

5 Updating the Path Planner

Once the regression trees have been created (one for each arc), they are ready for use by the
path planner. Each path from the root node of the tree to a leaf of the tree can be viewed
as a situation-dependent rule.

The path planner requests the new arc costs from the update module each time it is
preparing to generate a path. These costs are generated by matching the current situation
against each arc’s learned tree.

The update module parses the learned tree, matching each feature against the calculated
or current value. When it reaches a leaf node, it updates the path planner with the learned
value.

The mechanism for extracting the value of the feature from the current situation is pro-
vided a priori. For robot-dependent situation data, such as speed and vision, the update
module monitors TCA messages from the other executing modules, and makes explicit in-
formation requests when necessary.

Using the A* algorithm described in Section 2.2.1, the path planner then uses the updated
costs to calculate the best path. If the updated arc cost is high, then the path planner is
more likely to avoid using that arc in a route. In this way, the path planner can successfully

28

predict and avoid areas of the environment that are difficult to navigate.

In the event of a failure during navigation, for example a closed door, the path planner is
re-invoked, at which point it re-requests the learned arc costs. A particular set of arc costs
is valid for the calculation of a single path; any replanning forces an update of the costs.

6 Experimental Results

We will present two sets of experiments in this article. The first simulated-world set demon-
strates that ROGUE can learn patterns. The second was run on the real robot, validating
the algorithm and the need for it. We have also performed experiments testing rule stability,
data generalization, and learning rates [Haigh, 1998].

Xavier’s simulator is primarily used to test and debug code before running it on the real
robot. The simulator allows software to be developed, extensively tested and then debugged
off-board before testing and running it on the real robot. The simulator closely approximates
the real robot: it creates noisy sonar readings, it has poor dead-reckoning abilities, and it
gets stuck going through doors. Most of these “problems” model the actual behaviour of
the robot, allowing code developed on the simulator to run successfully on the robot with no
modification [O’Sullivan et al., 1997]. The simulator allows the tight control of experiments,
to ensure that the learning algorithm is indeed learning appropriate situation-dependent
costs.

6.1 Simulated World: Learning Patterns

The first environment tests ROGUE’s ability to learn situation-dependent costs. Figure 20
shows the Ezxposition World: an exposition of the variety one might see at a conference.
Rooms are numbered; corridors are labelled for discussion purposes only. Figure 20a shows
the simulated world, complete with a set of possible obstacles. Figure 20b shows the topolog-
ical map used by the path planning module; this map displays everything the robot “knows”
about its environment.

The simulator has limited capabilities for dynamism: currently doors can only be opened
and closed only at the whim of the user, and obstacles are static. For our experimental
stage, we needed the robot to be operating in a dynamic world. We added dynamism by
running each experiment in a variation of the map shown in Figure 20a. The position of the
obstacles in the simulated world changes according to the following schedule:

e corridor 2 always clear
e corridor 3 with obstacles

— EITHER Monday, Wednesday, or Friday between (midnight and 3am) and be-
tween (noon and 3pm)
— OR one of the other days between (1 and 2am) and (1 and 2pm)

e corridor 8 always with obstacles
e remaining corridors with random obstacles (approximately 10 per map)

29

] =
350334 E30434 4435 534 P3SE334) 5330434 435534

0331332 333|430y W33532
p3ufsso) p3d4sd m3idsso
2
mboolzzs| © Eodlazem kodlsos

) borlazel BoAazd WaoAses

0330330 | B33439 | B33s3g] |
b31)330[5] Bay43ds| Bsdsio
328] | [Bedlazd | 2asssl
Co7|32e] | BzAl4cd | Mezrsce

.
{
|

pray
OS]
1T
[¥]
[t

|

bottom

1Z e
s E2alazd] |6
313| | Bigl41s
316| | Birl41a

bosfsosl podlazz
4 5 Bz14z0 ¢
b1ofs1s] B1ad41d
17§316| W517416

11 213 312. 313412 413 512L
1182410 C11NE10) 118410 4118510

Lobhy

o1 30312] | BL3ladd | Bi3512
b14z10] | Bidlatd | Bidlsio] |

cogfz08| |, Bod408] | oS08
Cozlz06| | Borl4cd | BoAsod |
Cosi304] | Bos404l | Bossc4)
Co3lz02] | Bo3l4od | Bozsoz] |

10203 COSN308 30403 A0R50E
1070206 ! 207 306.8 307 406.9 4070506
105 Z204 2OSN304 05404 405504
103202 203 302r S03402 403502

1018200 201300 w 400y [H014500 200

AN I A N N N N
?OO|702|?O4|?OE||?O8|?:LO|?12|?14|?16|?18_ ?OeJl?O!2|?O]4|?OJE|?O]8|?1JO|?112|?:L]4|?:L]6|?:l!8_
(a) (b)

Figure 20: Exposition world. (a) Simulator: operating environment. Obstacles marked with dark

\Jll |_||
B
~J fuo
I R |

bodlzoo] | Bodl4od | kodlsco] |

boxes. (b) Path Planner: topological map. Arcs shown in light grey, a sample path shown darker.

In each map, we ran a fixed path through the environment: from corridor 1 to booth 303
to 411 to 327 to 435 to 210, collecting the execution trace. (We ran actual user requests in

Section 6.2.)
This set of environments allowed us to test whether ROGUE would successfully learn:

e permanent phenomena (corridors 2 and 8),
e temporary phenomena (random obstacles), and
e patterns in the environment (corridor 3).

The events matrix was generated as described in Sections 3.1 and 3.2, and then processed
as described in Section 4.

6.1.1 Data and Rule Learning

Over a period of two weeks, 651 execution traces were collected. Almost 306,500 arc traver-
sals were identified, creating an events matrix of 15.3 MB. The average training value of the
arc traversals was 1.65. Figure 21 shows the frequency of arcs for a given cost.

The 17 arcs with fewer than 25 traversal events were discarded as insignificant, leaving
100 arcs for which the system learned trees. (There are a total of 331 arcs in this environment,

30

45000 -

35000

25000

Number of arcswith that value

20000 |

15000 -

10000

5000

0 L L ;
00 10 20 30 2.0 50 6.0 7.0 80 90 100
Weight

Figure 21: Arc cost frequency: most arcs in the training set have a cost close
to 1.0, the default value.

of which 116 are doors, and 32 are in the lobby.) Trees were generated with as few as 25
events, and as many as 15,340 events, averaging 3060. A low number of traversals usually
indicates that the robot strayed from the nominal path, while a large number indicates that
the robot went over that arc more than one time. Generated trees had an average size of
18.04 total nodes and 9.02 leaf nodes.

Figure 22 shows a sampling of learned trees. All arcs shown are from corridor 3. Both
DayOfWeek and CT are prevalent in all the trees. (CT is CurrentTime, in seconds since
midnight.) In Arc 244, for example, before 02:08:57, DayOfWeek is the dominant feature.
In Arc 240, between 02:57:36 and 12:10:26, there is one flat cost for the arc. After 12:10:26
and before 15:00:48, DayOfWeek again determines costs.

Figure 23 shows the cost, averaged over all the arcs in each corridor, as it changes
throughout the day. ROGUE has correctly identified that corridor 3 is difficult to traverse
between midnight and 3am, and also noon and 3pm. During the rest of the day, it is close
to default cost of 1.0. This graph shows that ROGUE is capable of learning patterns in the
environment. Corridor 8, meanwhile, is always well above the default value, while corridor
2 is slightly below default, demonstrating that ROGUE can learn permanent phenomena.
Minor variations in the value are a result of noise in the training data.

Table 8 shows the overall average cost of each of the three types of corridor: one that
never has obstacles, one that occasionally contains random obstacles, and one that always
contains obstacles. This data shows that ROGUE successfully separates different types of
phenomena.

Figure 24 shows learned expensive arcs for Wednesday at 01:05am. As expected, corridor
2 is considered inexpensive, while corridors 3 and 8 are considered expensive. As the cost

Corridor 2 Empty 0.73
Corridor 4 Random Obstacles 1.13
Corridor 8 Many Obstacles 3.28

Table 8: The average cost of all the arcs in each type of corridor.

31

PriorAr?d 84.5

Priorﬂlrc<65 Date{<8.5
CT<Aos53 |
04810 177 %al140 6T< 34064
5824 T
CT<63147 5 4153 0.684810 5306

CT<5$5300T <6g2s750 140 0.5428010

058184095 20140
0789481
(a) Arc 238
CT<9¥325‘5
CT=4196.5 Datey:14.5
CT=Al213 DayOftesk<1.5 PriorAlcc2d2
12,2800
CT<301 Dateg13.5 Datex13.5 CT<BJ669.5
0.9008 1.2210
Dates23.5 CT<453a CT<53591.5 PriorArg<120.
2.9300 07328 08543 0.8861
CT<p352 CT=43045 <53307 .5
0.8802 4.1080 0.9288 141009294
1.74001500 1.2 1E057 4004307490
(c) Arc 242
CT<Ei‘845‘5
Month<?. 5
1.2080
DayOfesk<3.5
2.3090
0.5691 19.5100

(e) Arc 246

PriorAr?< 118.5

CT<1(656.5
08116

CT=<10566 CT<43828
CT<10355.5
28,1500
f DayOftfeck<5.5
7.8610 1.7940
DayOfweek=0.5
26290
2.2970
61380 3.0990
16.0200 44780
(b) Arc 240
CT<|7737
CT<3345.5 Catey16.5
DayOfiesk=3.5 CT<pB83 DayOfeek<1.5 Dates27.5
DayOfMedk<2 5 DayOfWeek<Dake£13.5 CT<44639
1.112(8.1320 0.9662 4400
CT<45019
1.6468.2010 3.7013.9560.8218.6000 0.8635
DayOfeek<3.5
0.9858
3.7970.9810
(d) Arc 244
PriorAIrc<190
PriorAjc<66.5 Wonth=7.5
Date<16 CT<5]025.5
1.6440 1.0380
DayOftesk<5.5
0.8014 3.1010 1.7390
1.6860 13200
(f) Arc 248

Figure 22: Learned trees for the six arcs in corridor 3.

32

50

451

Corridor Cost

40

35}

30

251

o} _ ol
38 20 20
O
=
-8 15k 15}
=
=
B 3
|4 10b 10b
O
3 05} o5}
=
=
Q
O 0.0 L L L L L L L L] 0.0 L L L L L L L L] 0.0 L L L L L L L L]
0 3 6 8 11 14 17 19 22 25 0 3 6 8 11 14 17 19 22 25 0 3 6 8 11 14 17 19 22 25
Current Time Current Time Current Time

Costsfor Corridor 2 (Wednesday) (dev=0.10) Costsfor Corridor 3 (Wednesday) (dev=0.10) Costsfor Corridor 8 (Wednesday) (dev=0.10)
(a) Corridor 2 (b) Corridor 3 (c) Corridor 8

Figure 23: Learned corridor cost (average over all arcs in that corridor) for Wednesdays.

threshold increases, fewer arcs are considered expensive, and in particular all arcs containing
random obstacles have been eliminated. Arcs near turns can be more expensive, because the
robot may be recovering from the turn. Also, short arcs may be more affected by an error
in the heuristic mapping from the Multi/Markov Viterbi sequence.

For comparison, Figure 25 shows learned costs for Tuesday at 09:45am. Note that corridor
3 is not considered expensive at any time.

The data collected for this experiment has shown that ROGUE’s learning algorithm suc-
cessfully identified patterns in the environment. ROGUE also successfully identified both
permanent and temporary phenomena.

6.1.2 Effect on Path Planner

Figure 26 illustrates the effect of learning on the path planner. The goal is to have ROGUE
learn to avoid expensive arcs (those with many obstacles). Figure 26a shows the path
normally generated. Figure 26b shows the path generated by the path planner after learning;
note that the expensive arcs have been avoided.

Table 9 shows a sample path calculation, for a path from room 231 to room 319. It shows
the default path, evaluating it with both the default cost values and the learned costs. It
also shows the new path, evaluated with the learned values. Assuming the learned costs
closely reflect reality, the new path is 60% of the cost of the default path.

Table 10 shows the total weight x length values for several routes, using the learned costs
to evaluate both the default path and the new path. The new path is consistently better

33

234 | |pzelzz4] | Ban|4zd] | BzelEz4) 234 | [pzslz34] | Fagjazdl | lazels34) o34 | B35334] | Bamazd | Bamaz4
233 & k33332 | E3alase] | k33532 232 & B33l332 | [B33la32] | B23532) 234 & E3as3g] | 33aa3d | Maassg
E 5313305 Eail430,5] B31530 s 5311330)5] [Eail4dcs] E3ds30] o Ca1l330],| Eala3os]| k3530
l’_izg 328 | [G2dla2 4205238 l’_izg s28| | |E2dl4z2 409523 !_ oolsze] | Bedacs | kedsed
4 [Eovlzz6] | Ber4zd [BzAlszd H Ez7lzze] | BeAacd | BzAse6) 4 | Ezrzze) | BzAlagd | kedsss)
. Ez3lzzz | Baazd | | s “Boslssa] [Eadasa | | s IZEn=en
4 5 Godl 42_]|§ . 4 2] 42‘]'5 . 4 sE2adazd [[P
JEE HE] JEE e | Eiglsie] | Badlats 2 gt EEp
2N Gl Rk R 2% Gl i R “Earzie] | EiA 41d §
1ize1d | Bi3lsizg] | Bid4ad | Biasig 11321 2k il JEk Bl I 113215 | Badfzaz] | Fadadis [Bids1g
t1alz1d [Bralzio] | Bidlas 411/510)| 114dz1 14|300] | a4t 4111510 11421 C1afz0] | Badlasd | pralsiol
109208 | Eogfzoe] [Eogjaod] [, frod 508] 10920 | osizog| [[ogfa0d| | jkos 508 509 20¢l | ogksos| | [sogfaoq] [kog 50§
Loz zoa | zo7|308| | Eo7l4cd | MoAEo0a 107208 | go7lzce| | BoAlacd | forlsoe 1oAlz08 | EoviEoa] | [BoA|40E | RO7S06
lomezod | Bos|z04] | o404 | Homs04) Tog|204 | Los|304] | Eosl4cd | Roslsoal Lomlzdd | EosEd4] | Eosl4cd] | B0 E04
tozzod | Ro3lsoz] | Bos4cd | kozsog Tos202 | Bo3fsoz] [Bodlacs | Rodlsoz| lodlzaz | Eozaoz] | Foslaod | ko3Eoz

Toalzod | Boalzodl [Bodlaod [Rodlsda] Toaleco | Eouzool | Bodl4od | Hodsdo] todlzad | Bodlzool | Fodacd | Eodlsco

N T O O S S I S T Y I A
(a) Costs > 1.25 (b) Costs > 2.00 (c) Costs > 5.00

Figure 24: Expensive arcs for situation: Wednesday, 01:05am. Note that corridors 3 and 8 are
expensive, along with arcs containing random obstacles and difficult turns. (Dark, thick edges are
expensive.)

234 Extal Kt 535434 350534 234 035354 530434 1135 53'2 234 E35N334 5350434 435 53?
234 & E33l332] | B3dlasd | k333 o3 & E33332] | B33l433 | B335z 234 § E33l332 | Badlesd | ksalsad
I 05113305 Baal430;] Hals30] o Cafszols| Badasds| Esdssd] @ S 50 P EEd CEC R ZEN S5
l’_izg 328 oG4z 425573 1[Beala7s Zoo|azE | leodEss) !_ 025|328 Zool428] | Hzdlszs
. [Gorlzce| | Farlazd | fazAlsoe dhE EnaEnT S L% | Ezrlzze| | Eerl4ge | Bznlsze
s “Bedsoz | Bzdasd | | s [Baaksog | Fzdazd | | s e23lzz2] | Bzdlasd | |
4 < [F=1! 42‘]'5 . 4 B4l 42_0]3 : 4 B3] 426]'5 :
[B1olzie] | Biglads | E1oz1s] | 519413 B2 e EE BE
2N =Gl Bk R Earlzae] | BaAladd § TErrlade] | BLA4da |
11321 z13(312] | 313412 [413512 11321 2k el =k REl 2k 2 L1302 | Bislzae] | Bislais] | paslsiz)
114f21 14|300] | Bead4d G1dl510] 114021 D14fz10] [F1dlato] | 140510 t1aloid | Bralzeof | Bralasd | Faallsiol
509 2ogl | posksog| | odlaog |, o 50§ 509 ZOE RN 26 <O WEGE EOE R NZIE 50§ Lo% 208 | Bosizos] | Fog40d | pros 509
107208 | Eo7lzoe] | EoAl4od | Rorlsoa To7lz0e | Rorfzoe| | [FoAfacd | konsos Loz | fo7lsoe| | BoAlacs | forlsoe
105204 | 205|304] | Eom 404 | 05504 Tomzd4d | Eosizod] | BoS 404 | Fos(504] loglzod | osfz04] | Eogl404 | [aosE04
toalzoz] | Bozfzoz] [Bos402 | oz soz) 103204 | Eoslzoz] | Bodlaod | Fosfso] to3lzod | Bozlzoz] | Eozldod | Hodsoz
10120 Co1|so0] | [Bod40 201f{500] 10ljzo Zo1300) | [Bodlaod | ko500 toilzod | Bodlzool | Bod4cn | Eodso0

S O D D D D O T T T T T T T T 1] T) D
(a) Costs > 1.25 (b) Costs > 2.00 (c) Costs > 5.00

Figure 25: Expensive arcs for situation: Tuesday, 09:45am. Note that corridor 3 is not considered
expensive.

34

36| | ELA41d | m 36 I 2174416
32 | Gadla1d | B3 312 | Big412 N B13ls:
0l | Eaallatsd T B1als |z10 I z110440 T 4115

z08| | Boglaod | Moas |s0s| | Godl4od | Mogsi EEEEEE Expensive arc

306 | BoAl408 | BoAs |Z06 l z0Al408 | BoAs e Path

304 ¥ 05 404 | Boss |304) F Bes 404 | oS & @ Start location

302 | Bo3 402 | MO3 S |302 I S03400 | Wozs LR Goal location

00l | Godldod | Hods |zod | Bodlaod | kodls:

1 ?Dg ?:LICI ?:llZ ?:L]4 ?:LJEu ?:LIS 1 ?DE 710 ?:llZ ?:L]4 ?:LJEu ?:LIS
)

(a) Default Path (b) New Path

Figure 26: Comparison of path planner’s behaviour before and after learning. (a) Default path (when
all corridor arcs have default value). (b) New path (when corridor arcs have been learned) on Wednesday
01:05am; note that the expensive arcs have been avoided (arcs with cost > 2.50 are denoted by very
thick lines).

Default Path Default Path New Path

Default Costs Learned Costs Learned Costs
Arc W L WH*L || Arc W L WH*L || Arc W L W * L
176 1.00 82.00 82.00 || 176 1.14 82.00 93.32 || 176 1.14 82.00 93.32
175 1.00 189.00 189.00 || 175 0.53 189.00 100.40 || 175 0.53 189.00 100.40
174 1.00 205.00 205.00 || 174 0.44 205.00 89.52 || 174 0.44 205.00 89.52
173 1.00 69.00 69.00 || 173 1.45 69.00 100.05 || 173 1.45 69.00 100.05
172 1.00 347.50 347.50 || 172 1.69 347.50 585.88 || 172 1.69 347.50 585.88
171 1.00 82.50 82.50 || 171 2.57 82,50 212.11 || 265 0.61 796.50 483.63
170 1.00 108.00 108.00 || 170 3.53 108.00 381.35 || 205 1.18 190.50 225.55
169 1.00 355.50 355.50 || 169 3.34 355.50 1185.95 || 203 0.84 272.00 227.23
291 1.00 749.50 749.50 || 291 1.00 749.50 749.50 || 202 1.61 83.50 134.18
201 1.00 190.50 190.50 || 201 1.00 190.50 190.88 || 201 1.00 190.50 190.88
199 1.00 274.00 274.00 || 199 1.43 274.00 392.09 || 199 1.43 274.00 392.09

Total: 2652.50 Total: 4081.05 Total: 2622.74

Table 9: Path length calculation for a path between room 231 and room 319. W is weight and L
is length. The path chosen after learning is 60% the total learned cost of the default path, or a 40%
improvement.

35

Start Goal Situation Default Path Default Path New Path Percent

Room Room Default Costs Learned Costs Learned Costs Improvement
231 303 Mon, 15:40 4503.50 6481.96 5969.99 8%
303 411 Mon, 15:40 2908.00 6753.12 3768.66 44%
411 327 Mon, 15:40 3343.00 5438.67 5438.67 0%
327 435 Mon, 15:40 2683.00 2759.07 1274.97 55%
435 210 Mon, 15:40 4969.50 6502.58 5595.47 14%
Total: 27423.43 22047.76 20%

231 303 Wed, 01:00 4503.50 6433.49 5586.48 13%
303 411 Wed, 01:00 2908.00 6250.80 3768.66 40%
411 327 Wed, 01:00 3343.00 5002.09 5002.09 0%
327 435 Wed, 01:00 2683.00 8902.85 1280.35 86%
435 210 Wed, 01:00 4969.50 12351.17 5305.65 57%
Total: 38940.40 20943.23 46%

231 303 Thu, 01:00 4503.50 6432.49 5586.18 13%
303 411 Thu, 01:00 2908.00 6090.72 3768.67 38%
411 327 Thu, 01:00 3343.00 4842.02 4842.02 0%
327 435 Thu, 01:00 2683.00 3447.87 1280.34 63%
435 210 Thu, 01:00 4969.50 6896.18 5305.66 23%
Total: 27709.28 20782.87 25%

Table 10: Path length calculation for a variety of paths under three different situations. We show the
default estimate of path length, evaluate the default path with the learned costs, and the length of the
path that A* finds with the learned costs. Finally, we show the percent improvement in path length
between the default path and the new path.

than the default path.

The data we have presented here demonstrates that ROGUE successfully learns situation-
dependent arc costs. It correctly processes the execution traces to identify situation features
and arc traversal events. It then creates an appropriate mapping between the features and
events to arc traversal weights. The path planner then correctly predicts the expensive arcs
and creates plans that avoid difficult areas of the environment.

6.2 Real Robot

The second set of data was collected from real Xavier runs on the fifth floor of our building
(part of which was shown previously in Figure 3).

Goal locations and tasks were selected by the general public through Xavier’s web page,
http://www.cs.cmu.edu/~Xavier. This data has allowed us to validate the need for the
algorithm in a real environment, as well as to test the predictive ability given substantial
amounts of noise.

We show the incremental nature of ROGUE through an analysis of the data at two
snapshots in time.

36

6.2.1 31 July 1997

Over a period of three months, 17 robot execution traces were collected. These traces were
run between 9:30 am and 3:40pm and varied from 10 minutes to 82 minutes.

More than 15,000 arc traversal events were recorded. Trees were learned for 89 arcs from
an average of 169 traversals per arc. The average tree size was 20.4 nodes (10.2 leaf nodes).

Figure 27 shows the average learned costs for all the arcs in the lobby on a particular
Wednesday. Values differentiated by other features were averaged”. The histogram shows
the number of execution traces per time step. The system correctly identified lunch-time
as a more expensive time to go through the lobby. The minimal morning data was not
significant enough to affect costs, and so the system generalized, assuming that morning
costs were reflected in the earliest lunch-time costs.

10.0 -

Arc Cost

80}

6.0

401

20}

=3
=)

1 1 1 1 1 1 1 1 1 1 1
10 11 12 13 14 15 16 17 18 19 20

T._-_ Current Time, 24 hour clock

Figure 27: Learned costs for Wean Hall lobby on Wednesday, August 6. (Data from April-July 1997.)
The histogram below the graph indicates volume of training data, in terms of number of execution
traces; most data was collected between 1:30pm and 2:45pm.

H
o oo
]

6.2.2 31 October 1997

During the subsequent three months, an additional 42 traces were collected, yielding a total
of 59 execution traces, containing a total of 72,516 events. Trees were learned for 115 arcs
from an average of 631 traversal events per arc (min 38, max 1229). Data from nine arcs
were discarded because they had fewer than 25 traversal events. Average tree size was 23.1
nodes (11.5 leaf nodes).

Figure 28 shows the average learned costs for all the arcs in the lobby on a particular
Wednesday. Values differentiated by other features were averaged. The histogram shows the
number of execution traces per time step.

"Note that since the robot operates in a less controlled environment, many features may affect the cost
of an arc. In the exposition world, other features do not appear in the trees.

37

20

Arc Cost

N

1 1 1 1 1 1 1 1 1 1 1
10 11 12 13 14 15 16 17 18 19 20
Current Time, 24 hour clock

0.0

10—

15—

Figure 28: Learned costs for Wean Hall lobby on Wednesday, November 11. (Data from April-October
1997.) The histogram below the graph indicates volume of training data, in terms of number of
execution traces; most data was collected between 1pm and 6pm.

This graph shows that the system is still confident that the lobby is expensive to traverse
during the lunch hour. The greater volume of data reduced the cost estimate, but the
morning data was still not sufficient to reduce the morning cost. To our surprise, the graph
shows a slightly higher cost during the late afternoon®. Investigation reveals that it reflects
a period when afternoon classes have let out, and students come to the area to study and
have a snack.

This data shows ROGUE’s robustness to a changing world, even in an environment where
many of the default costs were tediously hand tuned by the researchers. The added flexibility
of situation-dependent arc costs increases the reliability and efficiency of the overall robot
system.

7 Related Work

This section describes research closely related to that presented in this article. Our work
contributes to the machine learning community and the robotics community.

Although there is extensive machine learning research in the artificial intelligence commu-
nity, very little of it has been applied to real-world domains. Common applications include
map learning and localization (e.g. [Koenig & Simmons, 1996; Kortenkamp & Weymouth,
1994; Thrun, 1996]), or learning operational parameters for better actuator control (e.g.
[Baroglio et al., 1996; Bennett & DeJong, 1996; Pomerleau, 1993]). Instead of improving
low-level actuator control, our work focusses instead at the planning stages of the system.

In this section, we describe some of the work related to our learning approach. There are
three primary groups of related work:

o learning action costs from a real-world environment,

8Note that the April-July data did not contain many traces during this time period.

38

e learning symbolic descriptions of actions, and
e learning plan quality.

7.1 Learning Action Costs

The situation-dependent rules that ROGUE learns for the path planner determine arc traver-
sal costs. Other researchers have also explored the area of learning action costs.

CSL [Tan, 1991] and Clementine [Lindner et al., 1994] both learn sensor utilities, in-
cluding which sensor to use for what information. CSL represents very early work in the
area, since its “sensors” were actually features of the object, e.g. the “height-sensor.” The
approach, however, is general, and it is clear that learning is a good method for predicting
sensor reliability. Clementine explicitly uses utility theory to define the tradeoff between
sensor cost and sensor reliability, and is applied to multiple sensors on a mobile robot. Even
though they explicitly state “the ultrasonic sensors were reliable for other settings, they are
less desirable for sensing [glass|,” they do not incorporate situation-dependent features in
their utility estimates.

Haigh et al. [1997a] used situational features in a case-based reasoning system to assign
costs to cases. Their route planning system used these costs to select a good set of cases
for planning under the given conditions. Our current approach essentially assigns costs at a
finer-grained level, that of the actions rather than of a set of consecutive actions.

Reinforcement Learning (overviewed by Kaelbling et al. [1996]) learns the value of being
in a particular state, which is then used to select the optimal action. This approach can
be viewed as learning the integral of action costs. However, most Reinforcement Learning
techniques are unable to generalize learned information, and as a result, they have only been
used in small domains.

Recently, several research have been exploring techniques for allowing generalization in
Reinforcement Learning [Baird, 1995; Boyan & Moore, 1995; McCallum, 1995]. Essentially,
these systems replace Reinforcement Learning’s standard table-lookup mechanism with al-
ternative function approximation techniques, such as decision trees or neural networks. Ex-
perimentally, these algorithms seem to produce reasonable policies. However, they may be
very computationally intense since a single generalization might require the entire space to
be recalculated.

Moreover, Reinforcement Learning techniques typically learn a universal action model
for a single goal. Our situation-dependent learning approach learns knowledge that will be
transferrable to other similar tasks.

7.2 Learning Symbolic Descriptions of Actions

Situation-dependent rules control the applicability of actions as a function of the current
features of the environment. In the artificial intelligence community, several researchers
have explored techniques for learning or changing action models. Most of these systems

39

rely on complete and correct sensing, in simulated environments with no noise or exogenous
events.

OBSERVER [Wang, 1996] and ARMS [Segre, 1991] learn action models by observing
another agent’s solution; they rely on complete observation of the environment and external
agents or noise. Learning is assumed to be correct and irreversible. EXPO [Gil, 1992]
learns operators by experimentation; it designs experiments, and explicitly monitors effects
in environment. It also assumes complete and immediate sensing with no external events or
noise.

Learning in real world domains, however, cannot utilize techniques that rely on closed-
world assumptions such as complete observation, single agents, or exogenous events.

LIVE [Shen, 1994], like EXPO, also uses experimentation to learn a model of the envi-
ronment. [t extends EXPQO’s abilities by learning stochastic effects from incomplete sensing,
but does not handle environments with noise or exogenous events.

IMPROV [Pearson, 1996] also relaxes the assumption about complete and correct sensing,
while still managing to learn operator descriptions. The planner learns through experimen-
tation, by trying alternative operators until it achieves a success. It then compares the
successful episode with the failures, and modifies operators to compensate for the errors.

Performance in IMPROV degrades dramatically with the noise introduced from sensing,
but remains better than the system without learning of any kind. Part of the reason for
this degradation is because the system uses only training data generated from the most
recent version of the operator. Changing the operator means that old data is invalidated,
and hence must be ignored. As a result, the system cannot explicitly identify and eliminate
noise through analysis of long term trends in the data. In ROGUE, the operators remain
constant, while search control rules change. As a result, data remains valid over the lifetime
of the robot, and ROGUE can statistically identify and eliminate noise from the large body
of data.

Although both IMPROV and LIVE aim at relaxing the closed-world assumptions made
by most artificial intelligence learning systems, neither has been applied to a real-world
robotics domain. The difficulties posed by real-world domains have generally limited learning
to action parameters, such as manipulator widths, joint angles or steering direction. For
example, Grant & Feng [1993] built a system that also tunes parameters in for grasping
actions; Zhao et al. [1994] use genetic algorithms to find an optimal sequence of base
positions and manipulator configurations to perform a series of different manipulation tasks
on a mobile manipulator; Pomerleau [1993] uses neural networks to select good steering
directions in an autonomous land vehicle. Bennett & DeJong’s [1996] permissive planning
paradigm tunes parameters in actions.

7.3 Learning Plan Quality

The above-mentioned systems all learn action models, focussing on operator correctness
rather than planning efficiency or plan quality. ROGUE does not learn action models; it
assumes that actions are correct, but that their costs or applicability may vary according to

40

the task and the environment.

Much of the research towards plan quality has focussed on learning search control rules.

QUALITY [Pérez, 1995] learns control rules to generate high quality plans, where quality
can be defined in terms of execution cost, reliability or user satisfaction, and operators may
have different costs. It relies on a comparison of pairs of complex plans to learn control rules
that bias the planner towards the higher quality plan. New learned knowledge overrides
previous knowledge, but noise is not accounted for.

HAMLET [Borrajo & Veloso, 1994] learns control rules that improve planning efficiency
and the quality of plans generated. It assumes that all operators have equivalent cost. It
relies on training the system with simple problems for which it can find optimal solution(s),
and then uses bounded explanation and induction to learn control rules. Rules are incremen-
tally refined and with more training examples will converge towards a possibly disjunctive
set of correct rules. Noise is also not accounted for in this system.

CHEF [Hammond, 1987], PRODIGY /ANALOGY [Veloso, 1994] and Haigh & Veloso [1997a]
use analogical reasoning to create plans based on past successful experiences, where the belief
is that past success might help lead to future success. Only Haigh & Veloso’s route planning
system explicitly aims at creating better quality plans; it assigns situation-dependent costs
to cases with the goal of selecting the best case for the given user under the given traffic
conditions. Noise and exogenous events are not handled in any of these systems; all successful
cases are stored.

Most of the remaining research towards learning search control rules has focussed on
making planning more efficient, rather than on making better quality plans. In the robot
control domain, execution efficiency is extremely important, while planning efficiency is much
less so. As pointed out by Kibler [1993], the major concern for real-world problems is the
quality of the solution and not the speed at which the solution is reached.

ROGUE’s situation-dependent costs guide the path planner towards more efficient plans
in which failures can be predicted and avoided. Statistical analysis and incremental learning
allow ROGUE to explicitly account for noise in both its sensors and its actuators. Exogenous
events that affect planning are explicitly identified and incorporated into the search control
rules.

& Conclusion

We have presented a general framework for learning situation-dependent rules. These rules
are extracted from execution data, and then used by a planner to improve the quality of
generated plans. The planner-independent approach relies on extracting learning opportu-
nities from the execution traces, evaluating them according to a pre-defined cost function,
and then correlating them with features of the environment. Planners can then use these
situation-dependent rules to make better decisions.

We instantiated this framework with Xavier’s path planner, creating a learning robot
with the ability to learn from its own execution experience. ROGUE uses predictive features

41

of the environment to create situation-dependent costs for the arcs that the path planner uses
to create routes for the robot. ROGUE effectively identifies relevant training data, i.e. arc
traversal events, £, in the execution trace. ROGUE then correlates the events with situational
features, F, to create updated costs, C. These costs, represented as learned regression trees,
reflect the patterns detected in the environment, and the path planner will know which
areas of the world to avoid (or exploit), and therefore find the most efficient path for each
particular situation.

ROGUE processes the execution trace generated by the navigation module to extract
events relevant for learning. The execution trace contains a massive, continual stream of
probabilistic, low-level data. To identify which arcs the robot traversed in the topological
map, we modified Viterbi’s algorithm to operate directly in the Markov model; Multi/Markov
Viterbi effectively generates abstract trajectories in Markov models with a high degree of
fan-in/fan-out. In this manner, ROGUE effectively abstracts the information in the execution
trace to identify arc traversals. Each of these arc traversals is then evaluated, and the cost
recorded along with the situational features existing at the time of the traversal event.

This data is then correlated by a regression tree algorithm to create situation-dependent
arc costs for each of the traversed arcs. Finally, the path planner uses the updated costs to
create efficient, situation-dependent routes for the robot. The algorithm works incrementally,
improving the situation-dependent rules after each run of the robot.

We presented empirical data from both a controlled, simulated environment as well as
from the real robot. Our data demonstrates the effectiveness and utility of our approach.

8.1 Other Applications

Situation-dependent rules are useful in any domain where actions have specific costs, proba-
bilities, or achievability criteria that depend on a complex definition of the state.
The approach is generally applicable in domains where:

the environment changes according to some predictable pattern,
action costs or probabilities change as function of world state,
it is hard to pre-specify costs or probabilities, and

a planner will benefit from increased knowledge of the environment.

Methods that learn an average cost or probability for an action will improve a system’s
behavior on average. If there are many patterns in the domain, however, there may be
times when the system’s default behaviour is actually better than the learned behaviour.
Situation-dependent rules will change the cost or probability of an action according to the
current environment. The system will not only be able to respond effectively to changes in
the environment, but also behave in a manner that is directly tailored to their environment.

We have applied our approach to Xavier’s symbolic task planner, successfully learning
action probabilities and creating control knowledge to guide the planner’s decisions [Haigh,
1998]. Other possible applications include:

42

Learning operator or action costs for planners that try to optimize total plan execution
cost. (ROGUE learns action costs for the route planner.) A Martian path planner might
decide on one route when there is a dust storm and different route otherwise. A network
routing planner may select one route when congestion is high, and another otherwise.

Learning operator probabilities for probabilistic or conditional planners, such as for
Weaver [Blythe, 1994] or U-PLAN [Mansell, 1993], or Xavier’s navigation module. In
Xavier’s navigation module, the transitions between Markov states are currently as-
signed default probabilities; situation-dependent probabilities would probably improve
performance of the system. (ROGUE’s control rule learning for the task planner can
be viewed as a form of learning operator probabilities.)

Learning sensor probabilities or reliabilities, in any system (planner or otherwise) that
relies on sensor information. For example, Xavier’s navigation module uses a default
value for P(observation|state), where state is a very simple state description.

Learning sensor costs and utilities, in any system (planner or otherwise) that relies on
sensor information. For example, under certain conditions some sensors may be easier
or better to use than others. Medical domains are a good example of when the utility
of different tests may change according to each patient’s symptoms.

Learning case costs in case-based reasoning systems for which quality of the final solution
depends on the current environment. In such systems, different cases may be more
appropriate than others. For example, Haigh et al.’s route planner [1997a] selected
cases depending on likely traffic congestion.

Since the learning approach is planner-independent, it is usable from any execution mod-
ule to any planner, regardless of data representations. The important point is that the
system must process the execution data to extract information relevant for planning, and
then correlate that information with features of the domain. The designer must specify
how to extract relevant learning opportunities from the execution data, and how to use the
learned information within the planner.

8.2 Important Issues

Several important issues need to be considered when incorporating situation-dependent costs
into a system.

How to extract learning opportunities, and how to design the system to exploit
them. Learning opportunities for any planner can be identified by asking the question:
“What will change the planner’s behaviour?”

The path planner makes decisions based on estimates of the arc’s length, blockage prob-
ability and traversal weight. Therefore improved estimates of these factors would improve
the planner’s performance. The task planner, meanwhile, makes decisions based on opera-
tor descriptions and control rules that affect goal and action selection. Therefore improved

43

descriptions — correctness, costs, or probabilities — about tasks and actions would aid the
planner in improving plans.

It is important to design the planner so that learned information can be seamlessly
incorporated. Adding control rules to PRODIGY4.0, required no changes to the internal
algorithm. When we added learned arc costs to the path planner, however, we had to
modify some of its internal structures (data and control) to support the changes. Adding
learned sensor reliabilities to the POMDP navigation module would require a massive effort
to change the way these probabilities are stored and used in the code. It is important to
make the critical components accessible to external modules.

How to identify and add features for learning. Features of the environment are used
to discriminate between different learning events. It is crucial to find a good set of relevant
features, since the hypothesis space can only be described in terms of the available features.

A good feature will have the following characteristics: it is easy to detect, in terms of
accessibility and cost; it is informative, so that the system doesn’t waste time gathering
information about irrelevant features; and it is projective, in that gathered information at
one moment can help the system make decisions about the future.

If critical features are omitted, then the learner will not converge on the correct target
function. It is an important open problem to autonomously extract relevant features from
the data.

It is also important to design the system so that new features can be added at any
time. In ROGUE there are several missing features, including the distance travelled since
the last turn, the length of time since the battery was last recharged, and the length of
time since the batteries (or other equipment) were last replaced. As we identify additional
relevant features, the learner should seamlessly incorporate them into the data and learned
information. This design consideration will be more important when systems are capable of
autonomously identifying relevant features.

Forgetting data. The massive amount of data that can be collected in a system that
interacts with a real environment could lead to a lot of wasted effort when old, irrelevant
data is processed. For this reason, it has been argued that the system will need to have some
scheme for “forgetting” data.

However, our experiments show that the system should use as large a history as physically
and computationally possible [Haigh, 1998]. Any data that is explicitly forgotten will never
again influence learned rules, and hence a short history means that long-term patterns will
never be detected. Unless the system maintains data over a span of several years, it will
never detect annual patterns such as New Year’s Day; instead such patterns will be treated
as noise. Moreover, any situation that lasts longer than the history length will be considered
permanent.

A longer history improves confidence in the validity of the environmental knowledge
captured. Our situation-dependent learning approach learns rules that separate old data

44

from recent data, thereby successfully identifying temporary phenomena, and it can do so
in a fairly small number of execution traces.

8.3 Future Research Directions

This work has opened up several areas for future research.

One area of possible research involves extending the cost evaluation function for events.
In particular, the cost function for arc traversals currently involves velocity, time and length.
It would be interesting to extend this function to incorporate position confidence and other
metrics, because they would aid in showing the applicability of the approach.

Another valuable research direction would be to explore methods to have Viterbi’s al-
gorithm correctly sum probabilities over fan-out edges. Our approximate algorithm gives
good results, but an exact algorithm would likely do better. We discuss possible approaches
elsewhere [Haigh, 1998].

It would also be interesting to see our learning approach implemented with another
learning algorithm. Regression trees were well-adapted to our domain and our data; neural
networks or Bayesian learning might be more suited to other other domains.

Learned environment costs would also be useful for customizing the environment. Hu-
mans already customize environments greatly for children and the handicapped. It seems
only appropriate to also consider customizing the environment for our future co-workers:
robots. Areas of the environment that the learning system identifies as being difficult or
expensive to achieve tasks could be modified to improve system performance.

Another area of possible research is to have the system identify what areas of the envi-
ronment need to be explored. Currently, ROGUE will only un-learn information when it is
forced to re-execute an action it would otherwise avoid. For example, if ROGUE learns that
a particular corridor is extremely expensive, ROGUE will only go into that corridor when a
task demands that it must. It would also be useful for ROGUE to explore the environment
where data is particularly sparse.

A last area of possible research, and perhaps with the greatest potential for improving
the performance of learning systems, is to automatically decide what features to add to the
data set. Klingspor et al. [1996] have already designed techniques for learning high-level
feature concepts from low-level data. It remains an open research problem to automatically
incorporate those features into learning.

References

[Baird, 1995] Leemon C. Baird (1995). Residual algorithms: Reinforcement learning with
function approximation. In A. Prieditis and S. Russell, editors, Machine Learning: Pro-
ceedings of the Twelfth International Conference (ICML95), pages 30-37, Tahoe City, CA.
(San Mateo, CA: Morgan Kaufmann).

45

[Baroglio et al., 1996] C. Baroglio, A. Giordana, M. Kaiser, M. Nuttin, and R. Piola (1996).
Learning controllers for industrial robots. Machine Learning, 23:221-249.

[Becker et al., 1988] Richard A. Becker, John M. Chambers, and Allan R. Wilks (1988). The
New S Language. (Pacific Grove, CA: Wadsworth & Brooks/Cole). Code available from
http://www.mathsoft.com/splus/.

[Bennett & DeJong, 1996] Scott W. Bennett and Gerald F. DeJong (1996). Real-world

robotics: Learning to plan for robust execution. Machine Learning, 23:121-161.

[Blythe, 1994] Jim Blythe (1994). Planning with external events. In Proceedings of the
Tenth Conference on Uncertainty in Artificial Intelligence, pages 94-101, Seattle, WA.
(San Mateo, CA: Morgan Kaufmann).

[Borrajo & Veloso, 1994] Daniel Borrajo and Manuela Veloso (1994). Incremental learning
of control knowledge for improvement of planning efficiency and plan quality. In Working
notes from the AAAI Fall Symposium “Planning and Learning: On to Real Applications”,
pages 5-9, New Orleans, LA.

[Boyan & Moore, 1995] Justin A. Boyan and Andrew W. Moore (1995). Generalization in
reinforcement learning: Safely approximating the value function. In G. Tesauro, D. S.

Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems,

volume 7, pages 36976, Cambridge, MA. The MIT Press.

[Breiman et al., 1984] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone (1984).
Classification and Regression Trees. (Pacific Grove, CA: Wadsworth & Brooks/Cole).

[Cassandra et al., 1994] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L.
Littman (1994). Acting optimally in partially observable stochastic domains. In Pro-
ceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), pages
1023-1028, Seattle, WA. (Menlo Park, CA: AAAI Press).

[Chambers & Hastie, 1992] John M. Chambers and Trevor Hastie (1992). Statistical models
in S. (Pacific Grove, CA: Wadsworth & Brooks/Cole).

[Gil, 1992] Yolanda Gil (1992). Acquiring domain knowledge for planning by experimenta-
tion. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA. Also available as Technical Report CMU-C5-92-175.

[Goodwin, 1996] Richard Goodwin (1996). Meta-Level Control for Decision-Theoretic Plan-
ners. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA. Available as Technical Report CMU-CS-96-186.

[Grant & Feng, 1989] E. Grant and Cao Feng (1989). Experiments in robot learning. In
Proceedings of IEFE International Symposium on Intelligent Control 1989, pages 561-5,
Albany, NY.

46

[Haigh, 1998] Karen Zita Haigh, Situation-dependent Learning for Interleaved Planning and
Ezxecution. PhD thesis, School of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA. Available as Technical Report CMU-C5-98-108.

[Haigh et al., 1997a] Karen Zita Haigh, Jonathan Richard Shewchuk, and Manuela M.
Veloso (1997a). Exploiting domain geometry in analogical route planning. Journal of
Ezxperimental and Theoretical Artificial Intelligence, 9:509-541.

[Haigh et al., 1997b] Karen Zita Haigh, Peter Stone, and Manuela M. Veloso (1997b). Exe-
cution in PRODIGY4.0: The user’s manual. Technical Report CMU-CS-97-187, Computer
Science Department, Carnegie Mellon University, Pittsburgh, PA.

[Haigh & Veloso, 1997] Karen Zita Haigh and Manuela M. Veloso (1997). Interleaving plan-

ning and robot execution for asynchronous user requests. Autonomous Robots. In press.

[Haigh & Veloso, 1998b] Karen Zita Haigh and Manuela M. Veloso (1998b). Planning, exe-
cution and learning in a robotic agent. In R. Simmons, M. Veloso, and S. Smith, editors,

Artificial Intelligence Planning Systems: Proceedings of the Fourth International Confer-
ence (AIPS-98), Pittsburgh, PA. (Menlo Park, CA: AAAT Press). Submission.

[Hammond, 1987] Kristian J. Hammond (1987). Learning and reusing explanations. In
Proceedings of the Fourth International Workshop on Machine Learning, pages 141-147,
Irvine, CA.

[Kaelbling et al., 1996] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore
(1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research,
4:237-285.

[Kibler, 1993] Dennis Kibler (1993). Some real-world domains for learning problem solvers.
In Proceedings of KCSL93, 3rd International Workshop on Knowledge Compilation and
Speedup Learning (in ICML93), Amherst, MA.

[Klingspor et al., 1996] Volker Klingspor, Katharina J. Morik, and Anke D. Rieger (1996).

Learning concepts from sensor data of a mobile robot. Machine Learning, 23:305-332.

[Koenig, 1997] Sven Koenig (1997). Goal-Directed Acting with Incomplete Information. PhD
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA. Available
as Technical Report CMU-CS-97-199.

[Koenig & Simmons, 1996] Sven Koenig and Reid G. Simmons (1996). Passive distance
learning for robot navigation. In Lorenza Saitta, editor, Machine Learning: Proceedings
of the Thirteenth International Conference (ICML96), pages 266-274, Bari, Italy. (San
Mateo, CA: Morgan Kaufmann).

47

[Kortenkamp & Weymouth, 1994] David Kortenkamp and Terry Weymouth (1994). Topo-
logical mapping for mobile robots using a combination of sonar and vision sensing. In Pro-
ceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), pages
979-984, Seattle, WA. (Menlo Park, CA: AAAT Press).

[Lindner et al., 1994] John Lindner, Robin R. Murphy, and Elizabeth Nitz (1994). Learning
the expected utility of sensors and algorithms. In IEEE International Conference on

Multisensor Fusion and Integration for Intelligent Systems, pages 583-590. (New York,
NY: IEEE Press).

[Lovejoy, 1991] W. Lovejoy (1991). A survey of algorithmic methods for partially observed
Markov decision processes. Annals of Operations Research, 28(1):47-65.

[Mansell, 1993] Todd Michael Mansell (1993). A method for planning given uncertain and
incomplete information. In Proceedings of the Ninth Conference on Uncertainty in Artifi-
cial Intelligence, pages 250-358, Washington, DC. (San Mateo, CA: Morgan Kaufmann).

[McCallum, 1995] Andrew Kachites McCallum (1995). Reinforcement Learning with Selec-
tive Perception and Hidden State. PhD thesis, Department of Computer Science, Univer-
sity of Rochester, Rochester, NY.

[Mitchell, 1997] Tom M. Mitchell (1997). Machine Learning. (New York, NY: McGraw Hill).

[Mitchell et al., 1994] Tom M. Mitchell, Rich Caruana, Dayne Freitag, John P. McDermott,
and David Zabowski (1994). Experience with a learning personal assistant. CACM,
37(7):80-91.

[O’Sullivan et al., 1997] Joseph O’Sullivan, Karen Zita Haigh, and G. D. Armstrong (1997).
Xavier. Carnegie Mellon University, Pittsburgh, PA. Manual, Version 0.3, unpublished
internal report. Available via http://www.cs.cmu.edu/~Xavier/.

[Pearson, 1996] Douglas John Pearson (1996). Learning Procedural Planning Knowledge in
Complex Environments. PhD thesis, Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI. Available as Technical Report CSE-TR-
309-96.

[Pérez, 1995] M. Alicia Pérez (1995). Learning Search Control Knowledge to Improve Plan
Quality. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA. Available as Technical Report CMU-CS-95-175.

[Pomerleau, 1993] Dean A. Pomerleau (1993). Neural network perception for mobile robot
guidance. (Dordrecht, Netherlands: Kluwer Academic).

[Quinlan, 1993] J. Ross Quinlan (1993). C4.5: Programs for Machine Learning. (San Mateo,
CA: Morgan Kaufmann).

48

[Rabiner & Juang, 1986] L. R. Rabiner and B. H. Juang (1986). An introduction to hidden
Markov models. [EEE ASSP Magazine, 6(3):4-16.

[Segre, 1991] Alberto Segre (1991). Learning how to plan. Robotics and Autonomous Sys-
tems, 8(1-2):93-111.

[Shen, 1994] Wei-Min Shen (1994). Autonomous Learning from the Environment. (New
York, NY: Computer Science Press).

[Simmons, 1994] Reid Simmons (1994). Structured control for autonomous robots. [EFEFE
Transactions on Robotics and Automation, 10(1):34-43.

[Simmons et al., 1997] Reid Simmons, Rich Goodwin, Karen Zita Haigh, Sven Koenig, and
Joseph O’Sullivan (1997). A layered architecture for office delivery robots. In W. Lewis
Johnson, editor, Proceedings of the First International Conference on Autonomous Agents,

pages 245-252, Marina del Rey, CA. (New York, NY: ACM Press).

[Simmons & Koenig, 1995] Reid Simmons and Sven Koenig (1995). Probabilistic robot nav-
igation in partially observable environments. In Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-95), pages 1080-1087, Montréal,
Québec, Canada. (San Mateo, CA: Morgan Kaufmann).

[Tan, 1991] Ming Tan (1991). Cost-sensitive robot learning. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA. Available as Technical Report CMU-
CS-91-134.

[Thrun, 1996] Sebastian Thrun (1996). A Bayesian approach to landmark discovery in mo-
bile robot navigation. Technical Report CMU-CS-96-122, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA.

[Veloso, 1994] Manuela M. Veloso (1994). Planning and Learning by Analogical Reasoning.
Springer Verlag, Berlin, Germany. PhD Thesis, also available as Technical Report CMU-
(CS-92-174, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

[Wang, 1996] Xuemei Wang (1996). Leaning Planning Operators by Observation and Prac-
tice. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA. Available as Technical Report CMU-CS-96-154.

[Zhao et al., 1994] Min Zhao, Nirwan Ansari, and Edwin S. H. Hou (1994). Mobile manip-
ulator path planning by a genetic algorithm. Journal of Robotic Systems, 11(3):153-153.

49

