COMPLETENESS AND INCOMPLETENESS THEOREMS FOR
HOARE-LIKE AXIOM SYSTEMsT

A Thesis
Presented to the Faculty 6f the Graduate School
of Cornell University
in Partial Fulfillment for the Degree of

Doctor of Philosophy

by
Edmund Melson Clarke, Jr.

September 1978

+This research was supported by an IBM Graduate Fellowship Award.

BIOGRAPHICAL SKETCH

Edmund Melson Clarke; Jr. was born on July 27, 1945 in Newport News,
Virginia. In June 1967, he received a Bachelor of Arts Degree with High
Distinction in Mathematics from the University of Virginia, and in August
1968, a Master of Arts Degree in Mathematics from Duke University. His
professional experience includes serving on the faculty of the Department
of Mathematics at Madison College from September 1968 until June 1972.

In August 1974 he received a Master of Sciencé Degree in Computer Science
from Cornell University. .His professiconal memberships include the

Association of Computing Machinery and Phi Beta Kappa.

ii

ACKNOWLEDGEMENTS

I am deeply indehted to Professor Robert Constable, my thesis
advisopr. His qﬁestions, critical suggestions, and interest made this
work possible. His confidence in me and encouragement made it bearable.

I am grateful tolProfessors Juris Hartmanis and Richard Platek for
serving on my special committee. Also I wish to thank Professors James
Donahue and Susan Owicki and fellow graduate students, Mike O'Donnell
and John Privitera, for helping me with various parts of this research.

Most of all I am grateful to my sons, Selden and Jon, whose mis-
chievous ways brighfened many a dark hour and to my wife Martha whe
"could make a chicken last three meals and still taste like é gourmet
delight" and withéut whose love and encouragement this thesis would

never have been completed.

iii

Chapter
1.1

1.2
Chapter

2.1
2.2
2.3

2.4

2.5
2.6

Chapter
3.1
3.2
3.3
3.4
3.5
3.6

Chapter
L.
4.2

L.3
L4
4.5

TABLE OF CONTENTS

1. Introduction

. Introduction

Outline of Thesis

2. A Fixed-Point Characterization of Partial and
Total Correctness

Predicate Transformers

Syntax and Semantics of a Simple Programming Language

Healthy Predicate Transformers Revisited

Forward and Reverse Predicate Trangformers for Partial
Correctness -

The Fundamental Invariance Theorem

Predicate Transformer Fixed-Point Theorems

3. Expressibility, Soundness, and Completeness
Intfoduction

Generalized Cpntrol Structures

Proof Systems for Partial Correctness
Expressibility

Completeness

Generating Hoare~like Rules of Inference

L. Non-Regular Control Structues

Introduction

Non-Regular Systems and the Necessity of More Complicated
Rules of Inference

Axioms for Non-Regular GCS's
Gorelick's Theorem
Total Correctness

iv

. Page

10

1T

2k
33
37

52
52
53
5h
S8
62
66

T2
T2

T2
77
86
91

Chapter 5. Programming Language Constructs for Which it is
Impossible to Obtain Good Hoare-Like Axioms

5.1 Introduction

5.2 A Simple Programming Language and its Semantics

5.3 Hoare-like Axioms for Staﬁic Scope, Global Variables, ete,
5.4 Soundness and Completeness

5.5 Recursive Procedures with Procedure Parameters

5.6 Coroutines .

5.7 Semantics of Coroutines

5.8 Axioms for Cordutines {no recursion)

5.9 Coroutines and Recursion

5.10 Discussion of Results and Open Problems

References

Page

98
98
100
105
109
117
121
122
123 .
127

130

132

COMPLETENESS AND INCOMPLETENESS THEOREMS FOR
HOARE-LIKE AXIOM SYSTEMS

Edmund Melson Clarke, Jr., Ph.D.
Cornell University 1976

ABSTRACT

~

It is well known that Hoare-like deduction systems for establishing
partial correctness of programs may fail to be complete because of
'(a) incompleteness of thé assertion language relative to the underlying
interpretation and (b) inability of the assertion language to express the
invariants of loops. 5. Cook has shown that if there is a complete proof
system for the assertion languasge (e.g. all true statements of the
assertion language) and if the assertion language satisfies a certain
natural expressibility condition, then sound and complete axiom systems
for a fairly large subset of Algol may be devised. We exhibit programming
language constructs for which it is impossible to obtain sound and complete
sets of Hoare-like axioms even in this special sense of Cook's. These
constructs include (i) recursive procedures with procedure parameters in
the presence of global variables and static scope and (ii)} coroutines in a
language which also allows recursive procedures. Such features appear to
be inherently difficult to prove correct and (one might argue) should be
avoided in the design of languages suitable for program verfication.

A fixed point characterization of partiasl and total correctness for
recursive programs is alsc given. This characterization is based en a
treatment of program invariants as fixed points of a predicate transformer

which can be obtained in a natural manner from the program text. We show

vi

that the weakest precondition for partial correctness is the maximal
fixed point of this predicate transformer and that the weakest pre-
condition for total correctness is the minimal fixed point. This
characferization is important because it sheds light on the relationship
between partial and total correctness and because it simplifies proofs of
soundness and completeness. Non-regular recursions and total correctness
are considered, and a theoretical Justifiéation is given for the claim
that "total correctness is not substantially more difficult to establish

than partial correctness."

'CHAPTER 1

INTRODUCTION

1.} Introduction

One of the most important problems facing users of digital computers
is the problem of program reliability. An approach to this problem which
has been extensively investigated in recent years is one in which programs
are proved correct in much the same way that mathematical statements are
proved correct; it should be possible to be as confident in correctness
of a sortiing program as in the truth of the Pythagorean theorem.

Many different formalisms have been proposed for proving programs
correct. OFf these probably the most widely referenced is the axiomatic
approach of C. A. R. Hoare [HO69]. Hoare gives a set of axioms and rules

of inference for proving pgrtial correctness of Algol-like programs. The

formulas in Hoare's system are triples of the form {P} A {Q} where A is a
statement in the programming languege and P and Q are'predicates expressed

in the language of the first order predicate calculus (the assertion

langusge). The partial correctness assertion {P} A {Q} is true iff
vhenever P holds for the initial values of the program veriables and A is
executed, then either A will fail to terminate or Q will be satisfied by

the final values of the program variables.

Examples of axioms and rules of inference for programming constructs

include: -

(1) {P e} x:=e {P} . assignment statement
x

(2) {p} A {s}, {s} A, {Rr} composition of statements
{p} (Aliﬁe) {R}

(3) {PAv} A {p} while stetement

{P} while b do A {PA~b}

The axioms are designed to capture the meenings of the basic statements of
the programming language. Proofs of correctness for composite .statements
are constructed by using these axioms together with a proof system for the
assertion language.

Modern programming languages use statements considerably more
complicated than those deseribed above. One might wonder how well Hoare's
axiomatic approach can be extended to handle more complicated statements.
In this paper we will be interested in the question of whether there are
progremming languages for which it is impossible to obtain good Hoare-like
exioms. This question is of obvicus importance in the design of programming
languages whose programslcan be naturally proved correct.

But what is a good Hoare-like amxiom? One property a good axiom system
should have is soundness ([BHOTW], [DOT6]). A deduction system is sound iff
every statement which is provable within the system is, iﬂdeed, true.

Another property is completeness [COT5]. A deduction system is complete

if every true statement is provable. One suspects from the Godel incomplete-
ness’ theorem that, if the deduction system for the assertion language is
axiomatizable and if a sufficiently rich interpretation (such as number
theory) is used for the assertion language, then for any {sound) system of
Hoare-like axioms, there will be assertions {P} A {Q} which are true but not
provablelwithin the system. One might wonder, however, if this incomplete-
ness of the Hoare-like systems reflects some inherent complexity of the
programming language constructs or whether it is due entirely to the
incompleteness of the assertion language. If, for example, we are dealing
with the integers, then for any consistent axicmatizable proof system there
will be predicates which are true of the integers but not provable within
the system. How can we talk about the completeness of a Hoare-like axiom

system Independently of its assertion language?

One way of answering this. question is due to S. Cook [CO75]}. He
gives a Hoare-like axiom system for a subset of Algol ineluding the while
statement and non-recursive procedures. He then proves that 1f there is
a complete proof system for the assertion language (e.g. all true statements
of the assertion 1angugge) and if the assertion language satisfies a certain
natural expressibility condition, then every true partial correctness
assertion will be provable. Gorelick [GOT5] extends Cook's work to handle
recursive procedures. Other campieteness results are given by deBakker and
Meertens [DET3} and by Manna [MATO].

In this thesis we extend the work of Cook in two direections, first,
toward general techniques for establishing the soundness and completeness
of Hoare-like axiom systems; then toward the diseovery of natural programming
language constructs for which it is impossible to obtain good Hoare-like
axiom systems.

In the first part of the thesis a fixed point characterization of
partial and total correctness for recursive programs is given. This
charécterization is baséd on a treatment of program inveriants as fixed
points of a predicate transformer which can be obtained in a natural
mamer from the program text. We show that the weakest precondition for
partial correctness is the maximal fixed roint of this predicate transformer
and that the weakest precondition for total correctness is the minimal fixed
point. Thi=s charécterization is important because it sheds light on the
relationship between partial and total correctness and because it can be
used to simplify prodfs of soundness and completeness for programing
language constructs. Non-regular recursions and total correctness are
cbnsidered, and a theoreﬁical Justification is given for the claim that
"total correctness iz not substantially more difficult to establish than

partial correctness."

Next we show that there are natural control mechanisms for which it
is impossible to obtain sound and complete sets of axioms in the sense
described above. While such incompleteness is expected for data structures
{e.g. the integers, stacks, queues,'etc.), it is surprising that is should
exist for control structures.

The first progrémming language feature considered is recursive
procedures with procedure parameters (provided that statie scope is used
and global varisbles are allowed). This result is surprising for two reasons.
First, it holds even if we disallow calls of the form "Call P(...,P)".l
Secondly , we show that it is possible to obtain a sound and complete system
of Hoare-like axioms (using static scope and allowing global variables) if
we either (a) allow recursive procedures with variable parameters (call by
simple name) but disallow procedure parameters or (b) allow procedure
parameters but require that procedures be non-recursive.

An independent source of incompleteness is the coroutine construct.

If procedures are not recursive, there is a simple method for proving
correctness of coroutines, based on the addition of auxillary variables
[OWT6]. If, however, procedures are recursive, we show that no such simple
method can give completenss. These observations generalize to languages
with parallelism and recursion.

Incompleteness results can also.be obtained for {a) call by name
parzmeter passinglwith functions and global variables and (b) label
variables with retention. All such features are too complicated for a
simple axiomatic description of the type advocated by Hoare and thus in a

sense inherently difficult to prove correct.

1Calls of the form "Call P(...,P)" appear to be necessary if one wants
to directly simulate the lambda caleulus by passing procedure parameters.

l.2 Outline of Thesis

In Chapter 2 we introduce the notion of a predicate transformer. This
eoncept, origiﬁally due to Dijkstra, serves as an important theoretical tool
throughout the thesis. The chapter begins with an informal account of
Dijkstra's ideas. Next a formal syntax and semantics is given for the
programming language which serves as the subject of study in the first part
of this thesis. This language is basically the langauge of parameterless
recursion schemes; it is the simplest.programming language which illustrates
all of the difficulties associated with recursion. The additional problems
caused by block structure and various parameter passing mechanisms are
considered in Chapter 5. Once the formal semantics for the programmiﬁg
language has been developed, we show how Dijkstra's ideas on predicate
transformers can be made'rigorous. Several generalizations of Dijkstra's
original ideas and a proof of his fundamentsl invariance theorem are also

given. We conclude the chapter with the predicate transformer fixed point

theorems; this is one of the main technical results of the thesis. The

theorem is used in later chapters to obtain proofs of soundness and
(relative) completeness for wvarious control structures.

Chapter '3 is a discussion of proof systems for partial correctness.
We introduce Cock's notion of expressibility and discuss how his completeness
results for Hoare-like axiom systems are related to the results of deBskker
and Meertens [DETB]; The chapter is concluded by showing how the predicate
transformer fixed point theorem may be used to obtain proofs of soundness
and completeness for Hoare-like axiom systems.

In Chapter 4 the problems posed by non-regular control structures are
coﬁsidered. We show how tﬁese diffieculties are handled by deBakker and
Meertens [DE73] and also by Gorelick [GO7S}. Finally, we show how the proof

system of the preceeding chapter can be extended to handle total correctness.

.In the final chapter we.consider more complicat;d programming
language constructs and ask the question of whether.there are ﬂatural
constructs for-which it is impossible to obtqiﬁ;éound and complete systems
of Hoare-like axioms. We show that it is impossible to obtain good axioms
for recursive érocedﬁres with procedure parameters if static scope is used
and global variables are allowed. Various ways of restricting the programming
language so that it is éossible to obtain sound and complete systems of axioms
are examined. The problem of obtaining a sound and complete system of axioms
for coroutines is also considered. We conclude by mentioning additional
applications of these ideas and by discussing the possible impact of these

results on future developments in programming languages.

CHAPTER 2
A FIXED-POINT CHARACTERIZATION OF PARTIAL

AND TOTAL CORRECTNESS

2.1 Predicate Transformers

In his paper entitled "A Simple Axiomatic Basis for Programming
Language Constructs," E.W, Dijkstra describes a method- of proving total
correctness of computer programs. Dijkstra's method is notable because
of its simplicity and the. light that it sheds on related appreoaches to
program correctness such as the inductive assertions method of Floyd
and the axiomatic approach of Hoare. In this chapter we deseribe Dijkstra's
method and show how it can be formalized within the framework of a least
fixed point theory_of programming language semantics. We also indieate
some directions in which Dijkétra's work can be extended. In particular,
we show that Dijkstra's ideas can be used to simplify the task of proving
soundness and (relative) completeness of Hoare-like proof systems for
partial correctness. Thus, we regard Dijkstra's work more as a tool for
the study of partial and total correctness rather than as an independent
system for constructing proofs.

Dijkstra specifies the meaning of programs by giving a set of rules

for obtaining the weakest precondition which should be satisfied by the

initial state of the program in order to guarantee that the program will

terminate and that a given post condition will be satisfied by the final

state of the program.

For example, assume that we are given a program A which supposedly
computes the square root of its input variable x and assigns it to the
variable y. In this example, the post condition P is obviously given

7

b} y = ¥x. If the weake;t precondition corresponding to P turned
out to be x > 5 then we would know that in order for our alogorithm to
correctly comﬁute the square root of x, x would have to be greater
than 5 and that if x were less than 5 we could expect to get
erroneous results. Faced with such a result we would probablf refuse to
approve - A as a squafe root computing routine and continue searching for
a different program with post condition P and the correct weakest
precondition of x > 0,

More formally, we regard the weakest precondition as a function of
the program A and the post condition P and we denote this function
by BA(P).l It shou;d be clear that as far as a total correctness is

concerned the predicate transformer BA(P) completely describes the

meaning of the program A. What we desire is a specification of this
predicate transformer for the atomic statements of the programming language
and a set of rules for depiving the predicate transformer for a composite
program from the predicate transformers of its component parts,

For certain types of statements these rules ave quite obviocus:

(1) If A is the null statement then obviously we want BA(P) = P for all

predicates P.

(2) If A is the assignment statement x: = e where e is some expression,
then BA(P) should be P E- (we assume that the predicates are expressed

as formulas in some logical system such as predicate caleulus: P g— means
the predicate P with all occurrences of the variable x replaced by the
expression e)}. For example, if A is fhe statement "x := x + 1" and P

is the predicate {}:+-y =20 and x < 3} then BA(P) is the predicate

lDijkstra uses the term predicate transformer for any function which
maps a statement - predicate pair into another predicate.

{(x +1)+y =20 and (x + 1) < 9}. The reader should note the

resemblence of this rule to Hoare's axiom for the assignment statement.
(3) If A is the composition of two statements Al and A2 i.e.

A= (Al; Az), then BA(P) should be BAl(BA2(P)) where BA., is the

1

predicate transformer'corresponding to A, and BA2 is the predicate

1

transformer for A2.

(4) If A is a conditional statement of the form M"IF b THEN A

1
ELSE A," then BA(P) is the predicate [b A'BAl(P)] vI-bA BAZ(P)l.

Again the reader should note the resemblence to Hoare's rule for the
conditicnal.
All of the predicate transformers defined by rules (1) to (4) have

the following properties:

(i) Pp=0Q implies that BA(P) = BA(Q): thislcondition must be
satisfied if BA(-) is to be a funection.

(i1) BA(false) = false: Dijkstra calls this property "the law of
the excluded miracle." Its justification is immediate since’ we are
dealing with total correctness.

(iii) BA(PA Q) = BA(P) A BA(Q): this condition merely states that the
set of initial states whichget mapped by A onto a-state in PAQ is
the intersection oflthe set of states which gets-mapped inte P and the
set mapped into Q.

(iv) BA(PV Q) = BA(P) V BA(Q): the justification of condition (iv)
is similar to the justification of (iii).

Dijkstra calls any predicate transformer which satisfies (i)-(iv) a

healthy predicate transformer.:

Unfortunately, with the types of statements described above we can

construct only very simple examples of programs--programs which de not

10

involve any repetitive'constructs. It is obvious that we could consider-
bly enrich this simple language if we allowed recursive procedures.
Dijkstra does this in his paper, but his treatment of recursion is awkward
and in some cases leads him to false conclusions (a counter-example to
his fundamental invarianée theorem for recursive procedures is given in
[MC73]).

In this chapter, we combine the techniques of deBakker LDE75], Cook
[0075], and McGowan and Misra [#C73] to show héw recursion can be handled
correctly. We also examine several generalizations of Dijkstra's eriginal

idea. We consider predicate transformers for partial correctness and

predicate transformers which give the strongest post condition corresponding

to a given precondititn. Finally we prove several theorems which

characterize these variants on Dijkstra's original idea as the maximal and

minimal fixed points of certain natural predicate transformer functionals.
This is the main technical results of the Chapter. In the remaining

sections we give a number of applications of this result.

2.2 Syntax and Semantics of a Simple Programming Language

In this section we describe a programming language consisting of
assignment statements, conditional statements, and a simple type of
parameterless proceduﬁe. Following Cook [CO75] we distinguish two formal
systems involved in discussions of the correctness of computer programs:

(a) the expression language LE which is used in forming the numeric and

boolean expressions of programming language itself, and (b) +the assertion

language LA which is an extension of LE and is used to describe the

conditions which must hold before and after various statements of the

programming language are executed. Both LE and . LA are first order

11

lar;guages (first order lanéuages with equality) an‘d therefore have the -
general structure described below:

{(variable) ::= ul|v|wlur v jw]...

{term) ::= ({variable) | f(k)(_(terml)..:(tennk))
LK)

where f is a k-ary function symbol, k > 0.

{atomic formula) ::= (-(term) = {term))

| I P(k)((terml). .e (ter'mk))
(x)

where p is a K-ary predicate symbol, .k > 0.
(formula) ::= (atoplic for*mulla)
| ~ (formula))
] ¢ (fortm;ila) V (formula))
| ({formula) A (formula))
| ({formula) + (formula))
| v u'i_ (fomula)
| 1 u; - (formula)
where u, is some variable.
Having defined the expression and assertion langurages, we can now
describe the syntax of the programming language PL[Lg,L,] which we wish

to study. A program is a pair (H,A) where H is a set of procedure

declarations and A is a statement. The synté\x of procedure declarations

and statements is given 'in BNF below:
{Declaration) ::= _ {Procedure name) E_(Procedure body)
{Procedure body) ::= (Statement)
(Statement) ::= (Compound statement)
| {Assignment statement)
| {Conditional .statement)
| {Procedure call)

l (Null statement)

12

[{ Undefined statement)}
{Compound sfatement) 3= ((Statement) ; {Statement))
(Aséignment statement)i ::= {program identifier) ::= {numerical
expressioﬁ)
'(Program Identifier) ::= any variable of Lp
.(Numerical expression). {:= any term of LE
{Conditional statement) ::= (_(boolean expression) -+
(statement) , (statement))
{Boolean expression) - ::= any quantifier free formula of LE

{Procedure call)

{Procedure name)
{Procedure name) ::= X|Y|z|X'|Yv¢|37]...
(Null statement) ::= I
(Undefined statement)} ::= Q
Thﬁs? for example, the paitr (H,A) is a typical PL program when A is
the statement
(v := blu,v); X); (u := g(u); Y))
and H contains the procedure declaration

X

fil

(b(u,v) ~ (u := £flu,v); X), 1I)

Y

(v := glu); (elv) > (X3¥), Q))
The semantics of the programming language PL[LE’LA] is equally

simple. An Interpretation @ for the programming language PL[LE,LA]

consists of

{a) a nonempty set D called the domain of the interpretation.

(b} for each k-ary function symbol f(k) of LA? a k-ary function
a[f(k)] from D to D.
{(¢) for each k-ary predicate symbol P(k) of L&’ a k-~ary predicate

ﬁ[p(k)] on the set D.

Note that since the language L, 1is an extension of the language L , @
E

13

.also provides assignments for the function and predicate symbols of LE' -

As is customary in treatments of first order predicate calculus, we
let Lﬂ(ﬂ) be the extension of L, in which a constant symbol
(Ofaﬁy function symbol) is added for each element of the domain of a.

We then assign to each variable-free term t of L, an element Q<] of

D and to each closed formula P of L, a truth value a[P]Ie {true,
falsé}. The details of this.assignment process can be found in any
textbook on mathematical logic and are therefore omitted here (see, for
example Schoenfield, [SC67]).

Having indicated how. meanings are assigned to the variable free
terms and closed formulas of LA we can begin to discuss how meanings
are assigned to programs. Let ID be the set of identifiers of the
language PL[LE’LA]' {(i.e. variables of LA)’ then the set § of
program states consists of the mappings s : ID+D. If t 4is a term of

LA with free variables KyseessX s then

s(x;). ..8(x)

t{s) = t
_ Xy X

If P is a formula of L,» we define P(S) 1in an analogous manner.

The meaning of a statement A ecan only be described once an inter-
pretétion 8 Thas been specified. Since the statement A may contain
procedure calls, the_meaniﬁg of A also depends on the set H of procedure
declarations made in the program in which A occurs. Relative to a
particular interpretation & and set of procedure declarations H, the

meaning of A is a function

y -~

Ha’H[A] : 85>5

(; = 8U {1}, where .. represents undefined)

which, intuitively speaking, gives the effect of the execution of A on

14

‘the values of the identifiers occuring in A. There are many ways that
M= ﬂﬂsH can be defined--in terms of computation sequences as in
[C075] or as the least fixed peint of a continuous functional as in
{DE?Sj. We will merely list a number of properties that M can be

shown to satisfy regardlessof the definition used.

2.2.1 Proposition:

{(a) M[Q] (s) = L

(b) M [1I] (s)

-]
(c) ML(A;3A,)T (s) = MLAJ(MIA] (s))

(d) M (b~ A1s8,01 (s) = MLA, T (s) if Alb(s)] = true

H[Az] (s) if Alb(s)] = false.
(e) M (u :=t] (8) = s' where
s'(i) =fs(i) if 1 #u
1Rt{=s)] if i =n
(£) M [X] (=) = Mt} (s) where X is a procedure name and

the declaration X = 1 occurs in the set H of procedure

declarations.

2.2.2 Proposition:

M[((Al;ﬂz);ﬁs)] (s} = M[(Al;(Az;Aa))3 (s) for all statements
A, A, and A, of ST and for all states s € .
Let- fF be the set of partial funéti;;s from § t; S, i.e. PP is
the set of functions fF : é - é such that f£(}) =). If fl’f2 € PF we
write fl-l; £, iff for all %, fl(x) =] or fl(x) = f2(x). PF witﬁ

the relation E; is a complete partially ordered set or C.P.O. for short ,

15

2.2.,3 Proﬁosition:

. A A
1f M[Al] C M[A23 then "M[B —x—l-};;MEB YQ—] where

Al’ A2 -and" B are arbitrary statements and X is a procedure name.

The next proposition forms the basis of our treatment of recursion.

2.2.4 Proposition:

Let X be a procedure name occuring in a program which contains

the procedure declaration X = t. Let the statement sequence {Xl}i>0

be defined inductively by’ x° - Q.

[
ht
>4*L_

then

(a) the sequence {M[Xl]}i>0 is a chain in the C.P.0. PF of partial

function from § to § (ife. for all i, MLxh] E;M[Xl+l]).

< L] i
(b) MLX] = 30 M[x].
(If Lfi}iip is a chain of partial functions then h = 0 fi may be

defined by: h(x) = y if there exists a j > 0 such that fi(x) =y

for 1> j. hi{x) = L otherwise.)

We are now ready to discuss what it means for a program to be

correct.

2.2.5 Definition:

Let A be a statement of PL[LE’LA]‘ Let P and Q be formilas

of the assertion language LA’ We say that A is partially correct with

respect to the precondition P and post condition Q (and relative to

some interpretation @ and set of procedure declavations H) iff

16

Vs, s’ €S [(alP(s)] = true)
A (M{A3 (s) = s")
> (A0Q(s")] = true)]

If A is partially correct with respect to precondition P and post

condition Q then we write |=a{P} A {Qlor F{P} A {Q} if the interpre-
tation § is clear.

Notg that a statement A may be partially correct with respect to
the precondition P and post condition @ aﬁd still not terminate for
some initial state s which satisfies the precondition P. Since, in
additibn, we may wish to require that the statement terminate for any
state s which satisfies the precondition P, we will introduce another

notion of correctness called total correctness.

2.2.6 Definition:

Let A, P, and Q be as in the preceding definition. We say

that A is totally correct with respect to the precondition P and post

condition Q and relative to some interpretation

iff

Vs € s [(alP(s)] = true) +
is' € S [(M[A] (s) = s")
A CALQ(N]I = true)l]

If A is totally correct with respect to precondition P and post
copdition Q then we will write E a(P) A (Q).

We conclude this section by considering a simple example. Suppose

that a program contains the procedure declaration

X = (b(u,v) +~ (u := f(u,v); X), I)

17

in its declaration part. -If g is the interpretation in which D = N,

b 1s assigned the predicate b'(x,y) = {x >y} and £ is assigned

the function f‘(st) X - ¥, then we can view the procedure X as

yielding:

]
1

F{u>v+(ui=a-v;Xx), I)
Thus, if-a also assigns the constant a the value 0 € D, we have
Fa (b(u,a) A B(v,a)} X {~blu,v)}

i.e. the procedure call X is partially correct with respect to the

precondition P = u> 0A v >0 and post condition Q = u < v. Note

that X 1Is not totallj correct with respect to P and Q since in

exécuting a call on the procedure X if u =0 and v = 0 initially,

P will be satisfied but the procedure will diverge.

2.3 Healthy Predicate Transformers Revisited

We now indicate how Dijkstra's method is proving program correctness
can be formalized within the theoretical framework given in section 2.2
and show that a satisfactory treatment of recursion can be given. For
similar developments of Dijksfra's method, the reader should see
deBakker [DE75]} or McGowan and Misra [MC731.

Before we can talk about predicate transformers we must agree on a
method of representing predicates. We assume that an interpretation
A has been‘giﬁen for the programming ianguage PL[LE’ Ph] and that the
set H of procedure declarations has been fixed. § will denote the

set of possible machine states. We shall temporarily disregard

18

‘expressibility considerations and make the convention that a predicate

is merely a subset of the state set S and that the set of all bredicates
is just the power set of S, P(S). (Thus for the moment we ignore

the fact that if S is infinite there will be many subsets of § which
dd not have recursive descriptions). If the convention above is
fqllowed then logical operations on predicates can be interpreted as set
theoretic operations on subsets of § i.e. "op" beccmes "union”, and
"énd" becomes "intersection", "not" becomes "complement", and "implieé"
bécomes "is a subset of ".

Under the conventions made above, we shall see that if A is a

‘statement of ST and P €S is a predicate then it's natural to define

the weakest precondition corresponding to A and P +to be the set

{s € s | M[Al(s) € P}. Formally we make the following definition:

2.3.1 Definition:

Let B : ST x P(S) + P(S) be the predicate transformer defined

by

B[AI(P) = {s ¢ S | M£AJ(s) ¢ P}

- We can immediately show that the predicate transformer B : ST x P(S) + P(S)

satisfies the four conditions necessary to be a healthy predicate

transformer.

2.3.2 Proposition:

Let A be a statement of ST and 1let P,0 €S be predicates, -
then
(a) PSQ implies B[AN{P) c B{AI(Q)

(b) B[A] (false) = false where false = § C S

(c) BLAICP A Q)

.(a) BLAJC U Pi)

(c) B[(Sl;s

19

BLAI(P) A BLAJ(Q)
BEAT(P) V BLAJ(Q)

(@) BLAI(P ¥ Q)

Proof: Let g = M[A] so that g : S+ S then B[AJ(P) = g_l

(P)
and each of the four properties above follows from a property of inverse
images of sets. For axample (b) is true because gtl(ﬁ) =@ anpd (d)

isztrue because g—l(P Uq) = gql(P)lJ g-l(Q). In fact {(c) and {(d)

can be strengthened to apply to families of predicates.

2.3.3 Proposition:

" Let A be a statement of ST and let {Pi}i>

0 be a family of

Predicates on S then

H

u -B{A](Pi)

i>0 i>0
(®) BIAI(N P,) = N BLANE,)

i>0 i>0

In much the same manner it is possible to handle the null statement

A

the undefined statement and the composition to two statements.

2.3.4 Proposition:

() BLIX(P)

P

(b) BLQ3(P)

False

2)J(P) = B[Sl](B[Szl(P))

Proof of (c): s € B [(835,)1(P) iff M [(535,)3(s) =5’ and

s and

s € P. But m [(51;52)](3) = g' iffFqs" 3 M[Sll(s)

M[S2](s") =s'. Thus s €& B [CSl,Sz)](P) iff M[Sl](s) s" and

20

s" g B[SZJ(P). ‘Repeating the argument used in the preceding line we obtain
the desired result that s ¢ ‘B[(SJ}S2)](P) iff s ¢ B[Sl](B[SQ](P)).
The treatment of recursion is slightly more complicated but uses

the same basic idea.

2.3.5 Proposition:

Let X be a procedure name occuring in a program which contains
the'procedure declaration X = t. Let P €S be a predicate. Define

the: statement sequence {X*} by induetion:

i>0
x0 =g
i+1 xt
U=

then

(a) The sequence {B[Xi3(P)}i>0 is an ascending chain in P(8), i.e.
for i>0, BIX'NUP) cBrxitI(p)

(b) BIXI(P) = U BLx*1(p)
' 13_0

Proof of (a): s € B{X UP) implies that there is an s' such that

MEX2(s) = s' ana s’ € P. But by proposition 2.2.4 this implies

that H[Xl+l](s) =s' and s' €P.

1(P).

Thus s € B[X1+l

Proof of (b): We show first that B[X)(P) cu B[Xi}(P).
i»d

Let s € B[XI(P). Then there is an s' € S such that M[X)(s) = s' and

s € P. But MIXI(s) = L] Mrxt1(s). Hence there must be a 3§ > 0 =uch
) i>0

that H{X]](s) = s'. Siﬁée si'e P it follows that s ¢ B{XJHP) and

hence that BIX1(P) © U BIX')(P). The containment U BLX 1(P) c
i>0 i»0

21

‘B[X]I(P) follows since each step in the. preceding argument is reversible.

In order to propertly treat the assignment statement and the condition-

al statement we need to introduce a simple notion of expressibility.

2.3.6 Definition:

Let p be a formula of the assertion language FR' He say
that' p expresses the predicate P €5 iff for all s¢ S

Alp(s)] = trueeds ¢ P.

2.3.7 Proposition:

Let p be a formula and let P € S be a predicate such that
P expresses P, Let A be the assignment statement u := t where

is a term of LE’ then p ﬁ- expresses the predicate B[A](P).

Proof: It is easy to show that if p is an arbitrary formula of
L@ and t is an arbitrary term of L,(8) then
alp £ (s)1 = afp alt(s)] ()]
u
In order to prove the proposition we must show that if p expresses P
then p E-expresses B[A](P). This is equivalent to showing that
alp ;E— (s)] is true iff s' = M[u := tl(s) and s’ € P. But s =

Mlu := tI(s) iff

-s'(i)

s(i) 1 #u
and

s ()

alt(s)]

I
Since, by hypothesis, p expresses P we have that s ¢ P iff Alp(s')]

" is true. It follows that s' = Mlu := t](s) and s' € P iff

alp g[ifls—)] (s)] is true. Hence the desired result follows from the

identity stated at the beginning of the proof.

22
Similarly, we have the following rule for the conditional’

2,3.8 Proposition:

Let the formula q express the predicate @ € 5. Then’

Blq > Al,A;_,](P) = (QA B[Al](P)) Vv (-QA B[A2](P)).

Proof: s € Blg +Al,A23(P) iff Mlq - Al,AQJ(s) = s' and
s' € P, But H[q+Al,A23(s) = s' iff R[q(s)] = true {(i.e. s € Q)
and .H[Alj(s) = s' or a[(s?] = false (i.e. s € ~ Q) and
M[A,](s) = s'. It follows immediately that s € Blg » Al,A2](P)

iff s € [Q ABIA J(P)) V(- QA BLA,1(P)).

Henceforth, if the formula p expresses the predicate P
then (by a convenient abuse of notation) we will use P and P inter-
changeably in predicate transformer equations. We must always remember,
howeirer, that there may be- rﬁany PCs for which there does not exist a
formula p such that p expresses DP.

We illﬁstrate how the above properties of the predicate transformer

A
theory and let 8 be an interpretation in which the symbols of Ln get

B can be used to compute B[AI(P). Let L, be the language L~ of number

their standard meanings. Suppose that A = (Al;Az) where Al is the

assignment u := u-v and A2 is the conditional (u > 2+ v := 3, v := u-4).

If P is the formula u + v < 6 then BIA,J(P) = (u>2Au+3<8) V¥

W<2Au+ (u-4y) < 6)= (u < 3). Hence B[A](P) = B[Al](B[Az](P) = {u-v < 3}
We have now shown that B[LAJ{(P) has all of the properties that we

argued in 2.1 a healthy predicate transformer should have. We next

investigate the relation between the predicate transformer B and the notion

of total correctness. Since, by the abuse of notation mentioned above,

23

.'we are identifying the.formula p and the predicate {s | alp(s)] = true}
€ S. The definitions of partial and total correctness now simplify to:

partial correctness: N
: {p} A {q} iff

Vs, s'"¢e€S[sepAMAI(s) = s?
=|"%=5='€q]

total correctness:
() A (a) iff

¥ sls € p=»3s' [M[Al(s) = 5"

s' € 911

2.3.9 Proposition (total correctness):

Let A be a statement of PL[LE,LA] and let p and q be

formulas of the assertion language: L, ‘then F (p)A (q) iff p c B [Al(q).

Proof: .(=») assume that {p) A fq) is true. Then

Vs éls [se€p =T s [MIAKs)Y = s"A s' € q]]. Let s € p- By the
definition of total correctness above we see that there must exist an s'
such that s' = M[AJ(s) and s' € q. But this means that s € B[A](q).
Thus p € BEA](Q) ©=) assume that p < B[AI(q). Le'-t s € p. Then

s € B[A](q). Hence M[AJ(s) = s' and s' € q thus V s €SlseP =

3 s' [M[AX(s) = &' and s' € qll.

The above results show that we are justified in thinking of
B[AJ(q) as the weakest or most general precondition which should be
satisfied by the initial state of the' program A in order to guarantee that
A will terminate and that q will be satisfied by the final state,

It is also possible to formulate partial correctness in terms of the

predicate transformer B.

24

2.3.10 Proposition:

Let ‘A, p, and q be as in the preceding proposition, then
F {pla{gq} iff p A BA(true) + BA(q) where true is the identically

true predicate (i.e. the entire set §).
Proof: Similar to the proof given on the preceding page.

By way of example note that if X is the procedure defined at the end
of section 2.2 then B[X](true) = B[XI({u < v}) = {v > 0}. Thus,:by

proposition 2.3.9, X is totally correct with respect to precondition

{v > 0} and post condition {u < v}. By proposition 2.3.10 we see that
. . H

X is partially correct with respect to precondition P = {v >0} and

post-condition Q = {u < v} since PA B[X](true) + B[X1(Q) ié true,

We will. see however that it is easier to treat partial correctness
using the two generalizations of Dijkstra's orginal idea which arve

discussed in the next section.

2.4 Forward and Reverse Predicate Transformers for Partial Correctness.

In this section we introduce two generalizations of Dijkstra's
original idea both of which are especially designed to handle guestions
relating to partial correctness. The first of the two predicate
transformers to be considered is denoted by R and associates with a
Statement A and a post condition Q the weakest precondition R[AI(Q)
which must be satisfied initially in order to guarantee that the predicate
Q -is satisfied when the statement terminates (if it does terminate).

Formally, we have the following defintion:

2.4.1 Definition:

Let R : ST x P(S) * P(S) be defined by R[AJ(Q) =

25

{s € s | MAX(s) =] or M[AI(s) € Q} (We shall call R the reverse

predicate transformer for partial correctness.)

The relationship between the predicate transformer R and the

predicate transformer B defined in the preceding section is immediate.

2.4.2 Proposition:

Let A be a statement in ST and let Q €S be a predicate,

then R[AI(Q) =~ BIAJ(T)V BLAI(R)

Proof: B[AI(T) is the set of states on which the program A termin-

ates.

The second predicate transformer which we wish to consider is denoted
by F and is in some sense the dual of the predicate transformer R
defined abéve.. I associates with a given statement A and precondition .
P the strongest post condition which will be satisfied by the final

state of A provided that the initial state satisfies the precondition

P.

2.4.3 Definition:
Let F : ST x P(8) + P(S) be defined by FL[AI(P) = {M[AN(P) |

8 € P} we will call F the forward predicate transformer for partial

L
correctness™),

lNote that there is no interesting analogue F' of a forward predicate
transformer for total correctness. This is the case because if we are
dealing with total correctness and the precondition P contains a
state for which the program A does not terminate then F'[AI(P)

would have to be undefined. If on the other hand, A terminates for
every state in P then we would have F'[A]1(P) = F[AI(P).

26

2.4.4 Proposition:

Let A be a statement of PL[LE’LA] and let P and @
be formulas of L, then the following are equivalent:
(1) (P} & (q}
(2) P> R[AJ(Q)
(3) FLAI(P) +~ @

Proof: We show only that (1)=>(3) (1) =»(3). Assume
that {P} A {Q} is true. Then v s, s'fs € P AM[A](s) = s* =s € QJ.
Let s' € F[AJ(P) +then ‘s' = M[AJ(s) and s € P. By above assumption
we get s' € Q. Thus when we view F[Al(P) and Q as sets we know
that FLAN(P) ©Q. (3)=5(1): Assume that F[AJ(P) CQ. Let s ¢ P.
and M[A](;) = s' then s' ¢ F[A]tP) so s' € Q, Thus we conclude that
Vs, s'[sePA MAI(s) =:s‘=:>5' € Q1 is indeed true.

Similarly, we obtain '

2.4.5 Propesition:

Let A Dbé a statement of PL[LE,LA} and let P,Q be
formulas of LA then the following are twrue
(1) {REAT(Q)} & {qQ}

(2) {P} a {rLaj(®;

The predicate transformer R satisfies all of the conditions
necessary to be a healthy predicate transformer with the exception of

the law of the excluded miracle. The law of the excluded miracle in some

sense characterizes total correctness.

2.4.6 Proposition:

Let A be a statement in ST.

27

"{a) if P, Q€S are predicates thenm P €Q implies R[ANP) C

R[AT(Q).
{b) if {Pi}i>0 is a family of predicates then

-
R[A] (13_0 P:)

U
1>0 R[A](Pi) o

N N Realc
R[A] (iip P,) = ;1o ROAE.)

Proof: Similar to the proof of proposition 2.3.2.

In a manner analogous to (b) we prove the following,.

2.4.7 Proposition:

Let Q(u)_and P(u) be formulas in LA

y {u must not be changed by the statement A) such that P(u) expresses

with free variable

R[AI(Q(u)), then

(a) R[A] (T u Q{u)) = Tu P(u) and

it

(b) RI[A] (¥ u Q(u)) Yu P(u)

By a slight abuse of notation we write

(A') RIAD (@ u Q(u))
(B') RLAD (V u Qu))

du RCA] (Q(u)) and

Vu R[AT (Q(u))

In addition, with the exception of the rule for £ and the rule for recur-
sion the -rules for "computing” R[AJ{(P) are the same as those For

BLA1(P).

2.4.8 Proposition:

(1) RI[QI(P) = true
(2) RLIXP) = P

(3) R[(Al;AQ)](P) = R[Al} (REAgl (P))

"{u) Rfu :=tJ (P)=1"r

28

et

(5) R[b » A ,A21 (P) = (b A R[Al].(P))V(- bAR[A2] (P))

1

Proof: See the proof of propositions 2.3.%, 2.3.7, and 2.3.8.
As one would expect the rule for recursion is the dual of the one

given in 2.3.5.

2.4.9 Proposition:

Let X be a procedure name. occuring in a program which contains the

procedure declaration X= T.

Let P &S bea predicate. Define the statement sequence {Xl} by
i>0

induction

X" =q
. i
xl+l = T %F

then

(A) The sequence {R[Xl] (P)}i>0 is a descending chain in P(S), i.e.
for all i > 0 RIx¥*1](p) < RIX'] (P).

(8) R[X1(P) = N KX\ (p).

i>0
i+l ivl)
Proof of {A): Let s € R[X "1 (P) then M[X "] (s) =L or
there is an s' such that M[X J'H“] (s) = s'" and s'gP. 1If M[Xl+l] (s)

=L then M [X'] (s) =1 also. If H{Xl+1] (s) = s' then either
H[Xi} (s) =L or MIX'](s)=s' and s'€ P. Thus in any case

s € R[X'1 (P).

Proof of (B): Let s ¢ R[X] (P) then either M[X1(s) = L or there

is an s' such that M{X] (s) = s' and s' € P. Thus either for all
i>o M[X'] (s) = L. or there is a J such that i > j implies
M[Xll (s) = s'. But this implies that for each i either M[X']1 (s) = L

or there is an s' such that M[Xl] {s)=s'" and s' € P. It follows that

29

-s €ER [Xi] (P) for all i. Hence se . R[Xi] (P) and thus

>0

R[X] (P) © 1 R(XLY ().

'Conversely, let s € iQO R[Xi](P), then for all i > 0, s €R
[Xi] (P). So for all i 3_6: M[Xi] (s) =1 or there exists an s' ¢ S
such M[Xi]f(s).= s' and s' ¢ P. .But since the sequence M[Xi] (s)
is a chain we get that either for all i > 0 M[Xi] (s) = L or there
exist s' and j such that i > j implies that M[Xi] (s) = s' and
s' € P, Hence M[X] (s) =L or there is an s' such that M[X] (s) = s'
and s' ¢ P. This means that s ¢ R[X] (P) éo we conclude that 190
R(x'] (P) CRIXT (P). B

The predicate transformer F: ST x P(S) » P(S) possesses a

similar set of propefties.

2.4.10 Proposition:

(A) If P, Q&S are predicates then P € Q implies F[AJ (P) ¢ F[AJ(Q).

(B} F[A] (False) = False
(c) if {Pf i 0 is a family or predicates on 8
then F[A] (igo Pi) = i%b FL(A] (Pi)

and F[A] (520 P) 9120 FLAl (pyd

Note that (B) does not imply total correctness in the case of the forward
predicate. transformer. Note further that it is impossible to claim

equality in the second part of (C).

Proof: The proof of this proposition is similar to the proof of
proposition 2.3.2. Let g : S+ 5 be defined by g(s) = M[A] (s) then
properties (A), tB), and (€) follow from properties of direct images of
sets under the mapping g. If.we translate (C) from a satement about sets

toe a leogical assertion we obtain:

30

2.4,11 Proposition:

Let Q(u) and P(u) be formula in L, with free variable u (u
must not bé changed by the statemeﬁt A} such that P(u) expresses
F[A] (Q(u)) then
(4) FLA] (3 u Q(u)) =7u P(u)

(B) FtA] fV u Q{u)) »v u P{u)
Again by afslight abuse of notatioﬁ, we write
(A*) FLA} (3u Q(u)) = T u F [AT (Qu))
(B') F[A] (vu Q(uw)) » vu F {A] (Q(u))
The rules for "computing" F{A] (P) are analogous to the rules for

"computing™ REAT (P).

2.4.12 Proposition:

Let P €S5S be a predicate, then

(4a)y rLal <p)

false

(B FLI] (P) =P

(¢) FL(A;34)] (P) = FlA,] (F[4,] ()
(D) If X and the sequence {Xl} 1> are as in proposition 2.4.9 then
(i) the sequence {F[Xi] (P)}i>0 is an ascending chain in P(S)
. . i -
(i) rfx]1 (P) = iéb F [X7] (P)

(E)Y Flu :

1]

£] (P) =du’ [u=tE‘£-APPu—']
(F) F[(-lq > Al,Az)] (P) = F[Al] (PAB)VF [A2] (PA -~ b)

Note in (E) and (F) we are assuming that P is expressible.

Proof of E:
. u' ui
(i). F[u := t] (P)ec 3 Dl:t_u_APT]
Let s ¢F [u := t] (P) then there exists an s' such that
M{u := ¢t] (s') =s and s' € P.

By proposition 2.2.1 we know that

31

siu)

1]

alt(s')]
s(i) = s"(i) ig€id, 1 #u
I'I'hus, we have that |
alu()1 =are 2 ()]

and

ar? S8 (637 - true

u

It follows that

al(u = ¢ S"ﬁ“’ AP 3"‘1“’) (s)] = true

Hence
alg u (u=tELAP-LL'-) (s)] = true
u u
and
oot u!
s edu' (u=tTAPT)
(11). ga'lu=tEAPE T CPlu = €1 (P).

_ul ul
Let s ¢qu' [u _tTAPT]
Then
. 13t u?!
ala u'fu=t —1-1—/\? —-u—] (s)] = true
8o there is an a € D such that

l(u = t-E-/\PE-) (2)] = true.

Let s': ID-> D be defined by s'(i) ={a

Since Q@lu(s)] = alt % (s)].' and Q[P 1a_1 (s)] =
we have
Aluls)] = alt(s')]
and
alP{s'}] = true
Thus M[u := t] (s') = s and s'€e P

so s € Flu := t1 (P).

32

" 2,4,13 Proposition:

Let A be a statement in ST and let P, Q&S be predicates,
then

(1) FCA] (READ (@) S0

(2) P CR [A] (FEAD (P))

We conclude this section with two examples.

Example (1): If A is the statement in the example following proposition

"

2.3.8 then RI[AJ (P) = B[A] (P) = {u -~ v < 3}. This ¢an be seen in two
different ways. First the rules for "computing" R[A] (P) are the same
as those for computing B[A] (P) since A does not involve the undefined

statement or recursion. Secondly, recall that R[A] (P) =~ B[A] (true) V

B{A] (P). Since A always terminates, B[A] (true)

true. So R[A] (P)

= B[A] (P).

The computation of F[A] ({u - v <3}) is also straight forward.

E‘[Al] (u—v_*:_?.):'&'u;' [u=u" -vAu -ve<3]={uc<3s)

Thus F{A] (u - v < 3) F[A2] (F [Al] (u-v<3))

F[A2] (u < 3).

Flu := 3] (u<3 Au>2)YVF[u = u - 4](u <3 Au=<?2)

[v = 3 A2 <u< 3] Vfalse = [v = 3A2=ucx3].

thus F[A] (B[A] (P)) * P for P = {u_ + v < 6}

as we would expect from proposition 2.4.13,

Example 2: If X 1is the procedure considered at the end of section 2.2,
then R[X] ({u > v}) = {u >0} while BIXJ({ u>v })=1{v >0} Thus
we have a simple example of é situation in which B[X1 (P) and REX] (P)

differ.

33

2.5. The Fundamental Invarianée Theorem.

In this section we examine Dijkstra's Fundamental Invariance Theorem

for Recursive Procedures. We state (in the notation of the preceding

[N

sections) the version of the theorem which was given in Dijkstra's original

paper.

(Dijkstra): Let X be a procedure name occuring in a program
which contains fhe procedure declaration X = r. Let P, .Q €S be.
predicates. Define the statement sequence {Xl}i>0 by induction:

XO = Q

i+l X
X = ———
T X

If for a;l i>0
P> B [x'] (Q
implies
P+3[x] (@
then P AB [X] (T) + B [X] (Q).
As has been pointed out numerous times (see, for example, deBakker

[DE75] or McGowan and Misra [MC73]) this original version of the theorem

is incorrect. To see that this is the case simply choose P = true, (@
false, and 1t = I (vt is the procedure body for X, I is the null
statement), then all three implications reduce to {(true » false). The
references listed above give a slight modification of the original version
of the theorem which is correct. Instead of following this course, we
rephase the theorem in terms of the predicate transformers R and F

(for partial correctness) and examine some of the theorem's applications.

2.5.1 Theorem:

(Dijkstra) Let X be a procedure name occuring in a program which

nt

contains the declaration X 2 1. Let P, Q €S be predicates. Define

34

the statement sequence x* }'i}0 by induction

—

XO =

2
i+l _ xt
. - X =T

if for all i >0
P+ R[X*] (Q)
implies :

i+l

P~ RIX] (Q)

then we may conclude that

P+ R [X] (Q)

M: We rephrase the implications in terms of set inclusions.
we assume that for all i > 0

P cr [x11(Q)
impliies

i+l

PCR [XT7] (Q)

Note that R Ex°]_ (@) = R [42] (Q) = true = S so that P R (x%3 (Q)-

The

By

the assumption above and induction we conclude that for all i >0 Pc

R [Xi] (Q). Hence P Sigo R {x%3 (Q). But by proposition 2.4.9

R IX] (Q) = igo R [X,1 (Q) thus we conclude that P ©R [X} (Q) or that

the implication P + R [X] (Q)} is true.l

Before going further we give a simple illustration how the fundamental

invariance theorem can be used. We prove the soundness of Hoare's axiom for

the while statement, i.e. the axiom

{PA b} A {P}, PA?b-s-Q
- {p} x {q}

where X is bound by the declaration X z (b + (A; X), I) and A is an

lNote the similarity of the Fundamental Invariance Theorem to the rule
of Scott Induction (see [DE75] or |sCT1])).

35

" arbitrary statement of ST. - To be precise, let P, Q be two formulas of °
Lys then in order to prove soundness we must show that if P A b - R[A] (P)
and PA -~ b + Q are both true (under some interpretation @) then

P > R[X] (Q) 1is also true (in &). Let the sequence Xi i=1,2,3,...

defined. by

1z p o xh, 1

Note that since PAb > R[A] (P) and PA~b = Q are both true by
assumption, it follows that P - [(b AR[A] (P)) V(~ b A Q) is also
true . Note further that RIX'''1 (Q) = (bA RIAT (R[X'] (QMV (- b A Q).
Thus, if we assume that P -+ R[Xi] (Q) it will follow that

RIAD (P) » REAT (REXE] (Q))

b ARCAT (P) > b A RIAT (RIx'] (Q))

(b ARIA] (E))V (-~ bA Q) = [bA R(A] (RIX'] (0)1V (- bA Q)
P » X1 ()
Thus, by the version of the fundamental invariance theorem given above

we have that P + R(X] (Q) as was required. In a subsequent section we

- will show that the soundness of axioms such as those are for the while

statement follows directly from the greatest fixed point characterization
of " RIX] (Q).

As the reader probably expects there is also a version of the
fundamental invariance theorem which aﬁplies to the forward predicate

transformer R.

2.5.2 Theorem:

Let X, 1, P, Q, and X' be as in theorem2.5.1 then if for all

36

i 1'0
FIX™) (P) ~ Q
ﬁnpiies

Pkt

] (P)>q
Then we may conclude that

F[X] (P) » Q

Proof: As in theorem 2.5.1 we assume that F[Xi] (P) € Q implies
FLX 'H.l] (P) € Q. Observe that F[XOJ (p) = F[Q] (P) = § € Q. Hence, by
assumption and inducticn.we get that F[Xi] (P) €Q for all integers 1‘3.0.
Thus iyd FFXi'_I (P) € Q. By proposition 2.4.12 we know that F[X] (P) =
'&L F[kzj (P) thus F[X] (P) Eéll or equivalently F[X] (P) » Q.
= The duality of the forward and reverse predicate transformers for
partial correciness is further emphasized by the fact that we can equally
well carry out the proof of the suundnesa of Hoare's axiom for the while
statement by using the forward predicate transformer F. This time we
must show that is F[A] (PA D)+ P and PA ~ b+ Q are both true in

some interpretation @, then F{X] (P) -+ @ will also be true where

X

1}

(b » (A; X} 1I). Thus we assume F[xi] (P} ~ Q. Since FL[A]l (PA b)
+ P we have
FLx'1 (F[A] (P A b)) »FIx1] (P)
or
FLX'1 (FLAT (PA b)) + Q
Since P A - b +Q, it follows that
FIX'T (PABIV (P A -~ b) >0
or

FIX #1y 5y 5 Q.

By theorem 2.5.2 we see that F[X] (P) + Q.

Note that in this case there is very little difference in the complexity

37

. of the proof of the soundness of the while statement regardless of

whether we use the predicate transformer R or the predicate tfansformer
F. ‘We will investigate this duality more in a later section of this paper.

2.6 Predicate Transformer Fixed Point Theorems

In this section we state and prove a number of predicate transformer
fixed point theorems. These theorems are important because of the light
they shed on the relationship between partial and total correctness and
also because theyare useful in proving soundness (relative) completeness
of Hoare-like axiom systems. We begin this section withaanumber of

definitions.

2.6.1 Definition:

A function G: P({S) = P(S) is additive iff whenever {Ui}i>0 is

a family of subsets of - S we have

¥ V) = iiUo G (U;)

G: P{S) > P(8) is fully additive iff whenever {Ui} is a family of

subsets of S we have both

U
(550 Us) igo G (u;)

and

o
et
1
V'D
a
o~
=
[H
—

2.6.2 Definition:

A set of procedure declarations

-
m
A

o]
i
-t

b
1]
~

34

is self-contained iff every procedure name - X - occuring in

T, 340+,T_ 18
1’ 3 n

one of xl...xn, and none of the Ti contains an instance of the undefined

statement .

2.6.3 Definition:

A self-contained system of proceduvre declarations

Xl = rl
X ®T,
X =1

Tt n

possesses the uniform termination property iff for all possible initial

states s € § and for all i, 1<3i<n we have M[Xi] (s) # L.

- We next introduce the notion of a regular system of procedure
declarations. The definition is modified from deBakker [DE71] and is given

in cases,

2.6.4 Definition:

Let. X be a procedure name, Tl and T2 be statements. Then

A. X is regular in X.

If T, does not contain X and T, is regular in X, then (11; 12)
is regular in X.

c. If T and T, are both regular in X then (b » T 12) is

regular _j:B X.

2,6.5 Definition:

A self-contained system of procedure declarations

Xp 51
X2 = 7
X =1

39

is a regular szstém iff each procedure boay T, is regular in all of
the procedure names Xj.

Intuitively, the vegular systems of procedure declarations are those
systems of procedure declarations which are directly representable as
flow charts. Thus, for example,

(a) X= (b~ (A)5X), T)

(b) X

1l

A5 (b > (A3X);, V)

Y

{c » (AS;X), Au)

A contains

are regular systems provided none of the statements Al, A2, Aa; 4

a procedure call, while

(c) Xz (b~ Al; X; A2, I)
and

{(d) X = (b > Al; X; Y, I)

| Y= (e (AysY), X)

are not regular systems.
We also need the following proposition since it enables us to work
with several procedure declarations simultaneously rather than one

declaration at a time.

2.6.6 Proposition:

Letj_xl = Ty
¥2 = T2
X =1
n . n

be a self-contained system of procedure declarations. Define the statement

sequence Xi, X;,...,X: for i = 1,2,3,...inductively as follows:
0 _ .0 o 0
Xl = Xz... = Xn = Q

4o

and R i
xi+1 - . i* T2ttty
1 1 X, Xg’ - X
. : xi, x;,...,x;
i+l _
xn "'Tn xl, x2’-oo’xn)
then -
_ i
(a) BX (P) = igo BX (P)
: = U gyl
BX (P) 130 an (P)
- N i
(B) Rgl(P) >0 B (P)
R (P) = .0 rx] (P)
= U pyd
) FXl(P) 1>0 Fxl (P)

Fxn(P)

i .
iéb FXl.(P)

Proof: See the proof of propositions 2.3.5, 2.4.9 and 2.%.12, Also
see proposition 2.2.4.

Let £ = T
*(;

1 be a regular system of procedure

=T
Tt n

declarations and let P €5 be a predicate. We associate with * and P
a set of n predicate transformers Gl’ G2"'Gn where each Gi: P(S)n >
P{S). The Gi's are defined in terms of a mapping r)@ ST x P(S) - P(3)
i.e. for all i Gi(Ul’Uz""’Un) =T [ti} {(P). I, is defined by cases
(a) 1, [(A;38,07 (@) = T, [a,1 () (4] (@)

(B) r, [(b~>A,A)] (Q) =1[b AT, [AT(@IVI-Db At 4,1 (Q)]

(¢) Iy [A] (Q) = R[A] (Q) = B[A] (Q) if A is

41

the identity statement or an assignment statement.

(D) r, [Xi] Q) = uy

Note that Fl [fi] (P) will be well defined as long as T,

is regular in X ...Xn. If X is bound by the procedure declaration

1
X = (b~ (A3X), I) then the predicate transformer G associated with
X and P is

G(0)

[bABA (UIV[- bAP]
[b ARA (DIV [~ bAP]

provided that A is a simple statement, i.e. A does not contain Q

or any procedure calls. If # is the regular system

X

Ali (b - (Az;x)s Y)

~
1l

then we have

1

6y {(u,v) BA, (ib A BA, (MIVI~-bAVD

-G2 (U,v) _[GABAa WI VI~ ec A BAu (P)]

We next list some of the properties of the mappings of G; P(s)Y »
P(S). These, properties can be verified by a structural induction on the

regular system (%*). To conserve space we illustrate each with an example

rather than include a detailed proof.

2.6.7 Proposition:

G; P(s)" + P(S) is fully additive in each component.

For example, if G(U) = [bA BA(WIV [~ bA P] then

q U u
G (i>0 Ui) (b A BA (i>0

DIV I~ bAFP]

b A i_li_'o BA (U)IV [~ bAP]

b2

H

1>0 [{b ABA (U NV (-bAP)]

1>0 G (U)

. . u = U i
The crucial step is of course that BA (i>0 Ui) 1>0 BA (Ui) which

[

follows from proposition 2.4.6. In exactly the same way we show that

a(.n 0,) =,

1>0 >0 G(U)

2.6.8 Proposition:

.Gi: P(s)" » P(S) 1is monotonic in each component.

Proof: This follows immediately from the fact that each Gi is

fully additive in every component.

2.6.9 Proposition:

i . i+l
s, (BX (P),..., BX;-(P)) = 8% (P)
- 0 itz
For example, 1f Xz (b+(A3;X), I) them X = and X = (b +

(a:x), I) so that Bx'L (p)

(b /\BA(BX EMV(-bAP)

G (BX (P))

2.6,10 Proposition:

G, (RX] (P),...Rx> (P)) = R (p)
3 1 n 3
See the example used to illustrate 2.6.9 above and recall that excluding
the undefined statement and recursion, the "rules" computing R[AJ (P)
and B{A] (P} are the same.

We are now ready to state the first of a series of predicate trans-

former fixed point theorems.

2.6.11 Theorem:

» g
1
-

Let 1 3 be a regular system of

o
HI
-

43

procedure declarations and let P €S be a predicate. Define

G-

G((Ul,...Uﬁ)) = (6,(U;...0)...6 (U,...U)).

Gn as indicated above and let G: P(S)” + P(S)® is given by

Then, if "<" is the natural ordering on P(S) (i.e. (Ul...Un) <
(Vl;..vn) iff Ui f-vi for all i, 1 < i <n) we may conclude

that with respect to "<M.

(A) (BX; (P),... BX_(P)) is the least fixed point of G.

(B) : (RX, (PYyeues RX_ (P)) is the greatest fixed point of G.

(C)} If the system * possesses the uniform termination property then

G has a unique fixed point i.e.

(BXl(P)... an_(P)) = (RX, (P)... RX (P))

Proofof(A): We show first that (Bxl (P),..., BXn (P)
is a fixed point of G.

. Ny o i i
G((BX; (P),..., BX (P))) = 6((igb BX] (P)U, BX_ (P))})

i iy i
;U BX. (P)},... G (ig? BX] (P)°"ig9 BX (F)))

_ i
—(Gl(i%b BX; (P)...

- s U i ; i U i i
(:5p & (BX (B),...Bx] (P)_),...,.i0 6, (BX] (P)...BX_ (P)))
by propositions 2,6.7 and 2.6.8.

1>0

i+l i+l
= (,go BK, (P)y..., Mo BT (R))

by proposition 2.6.9.

(Bx, (P),..., BX_(P))
Next we show that (BXl (P),.;. an (P}) is the least fixed point of G.
Suppose that {Ul...Un) is a fixed point of G then (i) (BXE (P),...,
BX) (P)) < (U;...U) and (1i) if (BXi (P),..., Bxi (B < (U...U)
then we have G((BXi (P),..., BXi (P))) < G((Ul"'Un>) by proﬁosition
2.6.8.
i+l

Since (Bxl (P)y..., S (P)) = 6((Bxi (P),..., Bx> (P))) and
n 1 n

Ly

it

S FRPON eri:l (P) <

e} ((Ul...Un>) = (Ul...Un) we get <BX
(Ul...Un).
Hence by induction we conclude that fer all i,
i i

(BXl (P)yeves BX (P)) < (Ul,..., Un).

So, |
i i

(.go BX] (P),..., igo BX (P)) £ @ys---5U)

or

Bx, (P),en.s BX (B))< (U,5...5U)

Proof of (B): The proof is similar to the proof of A. We show first

“that (Rxl(P),..., RXn (P)) is a fixed point of G.

_ i i
6({Rx, (P),..., RX -(P)}) = G ((igo RX] (P).... 0, RX (P)))

1>0
_ i i i i
={e, (1_9_0 RX (P)"'i?_o RX (P)),..., 6 (120 RX) (P)... 120 RX (P)))
} i i ' i i
= <1?_0 6, (Rx] (P)... RX_ _(P))""’igo 6 (RX] (P)...Rxn (P)))
_ i+l i+l -
= (igo RX] (P),...,ig0 RX (P))

(Rxl (P),..., RX_ (P))

We next show that (RXl(P),..., RX (P)) is the greatest fixed point of -

G. Suppose that QH:..UH) is a fixed point of G, then (i) GHS..UH)

0 0 cey s i i
< @) (P).... RX O (P)) and (ii) if (U)...U)< QX (P),..., RX_ (P))
JI ' i :

then G({U ...U) <G((RX] (P),..., RX (P)) 'so (U;...U)<
'(in*l (P)... inﬂ (P)).

Hence, by induction, we have that for all 1 > 0,

i i
(U, ---0) < (RX] (P)...RX] (P))
thus

- i i
<”1'“”n>i<igo RX] (P)e.. 0} RX (P))

45

(Ul...Un) < (Rxl (P),..., Rxn (P))

Proof of (C): If the system * possesses the uniform termination

property, then for all Jj, 1 < J £n we have BXj(true) = true and

thus that BXj (P) = RXi'(P).

Example: If X is bound by the procedure declaration X

(b > {(A;X) I)
then & (U) = [b ABA (U)IVI[- bAP].

By the above theorem we know that the least fixed point of G is BX (P)

and that the greatest fixed point of G is RX (P) (provided of course

that A is simple).

Example: If the regular system under consideration is

X

Al;(b-f(Az;X), Y)

Y

(e + (A3, A,

then G is given by
G((U,V)) =(a ([b A Ba, (WIVI-bAVD,
| [c A BA, (DIV [~ c ABA, (P)1)
In this case the least fixed point of G is the pair (BX(P), BY(P)) and

A

the greatest fixed point is the pair (RX (P), RY (P)) (if Al’ AQ, 32

Au are all simple statements.)

The reader should notice that the arguments used to establish
theorem 2.6.11 do not generalize to handle non-regular systems of procedure
declarations. To see that this is the case compute Fl[T](Q) where T is
Ai;X;A2 and oﬁserve vhat'happens to_Ae. If we céhéidgr predicate transformer
functionals. rather than simply predicate transforpers in our search for fixed

point equations, the argument can be made to work.

ke

2,6,12 Definition:

Let Hy, Hy: P(S) + P(S) then we write H Q_H2 iff for all

PCs Hl(P) [= H2(P). If {Hi}i>0 is a family of functions such that

Hi: P{(S) - P(S) then we define

i>¢ i
“and
}-i_f" Hy: P(S) > B(S)
™ =
by 150 H, (P) .Eb H, (P)
and

T
lijal Hy 8) = Uhy (R

L

2.6.13 Definition:

Let G:r (P{S) =+ P(8)) +(P(8) » P(8)) then G is additive iff for

every family of functions {Hi}i>0’ H.: P(S) +P(S) we have

L)]
6o Hy) = o GHy)

if, in addition,

_ then we say that G is fully additive.

Let Xl = T - be a self contained system of

X

1t

T
n by

procedure declarations. Let H,: P(S) > P(S) for 1 £i<n and let
P €3, then we define Gi£H1°"Hn] (P) = r2 fTi] (P), 1 <i 5_n_ where
Tyt 8T x P(S) + P(8) is defined by:

(&) T, [(A;38)1 (B) = 1, (A1 (T, [a,1 (P))

T

-{B) ry[b~a,8,1()y=10b Ar2[A1] ®Ivi-bp A r, {a,1 (P)]

(c) r, [A] (p) = R [A] (P) = B[A] (P) if A 1is the null statement
or an aésignment statement,

(® T, [Xi] (P? = H; ()

Thus T, as defined above is identical to the F; used in the argument

preceding theorem 2.6.11 with the exception of case (D). Note that we can

regard G; -as a function from (P{S) +» P(S))" +to (P(S) + P(S)).

Example: If X is bound by the procedure declaration X = (b - Al;X;A2,I)

then G[H] (P) = [b /\BAl (H(BA2 (P)NIV I~ bAP]

If the declaration system is

{b + Al;X;Y,I)

Y2 (e AsY,X)

F
n

then we have

G, [H ,H,] (P)

b ABAl (H1(H2(P)))] vV E-b AP]

and

6,[H,,H,] (P) = [c'ABA, (H(P)IVI- DA H, (P)]

{Note that we are again assuming that Al and A2 are simple statements).
Before stating theorem 2.6.17 we list a number of properties of the

functionals Gi which are needed in the proof. As in the case of fheorem

2.6.11 these properties can be verified, in general, by laboriocus

structural inductions. We content curselves with an example illustrating

each.

2.6.14 Proposition:

G;: (P(s) » P(S)" =+ (P(S) » P(S) is fully additive in each component.

43

Example: Let G[H] (P) = [b /\BAl (H(BA2 (P)))IV [~ bA P] as above.
Then

tl

G E}i-(l, H; (P) = [b ABa (lﬁl} H; (BA, (P))I1V [~ Db AP)

[b/\BAl (igo H, (BA2 (PYNIV [~ bAP]

i_:l_»_jo 6lH;3 (P) = (I;E_;,' GLH,1) ().

Similarly, off) H,1 (p) = (] GLH,1) (P).

2.5.15 Proposition:

If - L, [y Ml,..., L EMn in the function space (P(S) » P(Ss)),
then '

6;[Lyseers LICG, [M,,..., M1

i.e. Gi is monotenic in each component.

Proof: This follows immediately from full additivity.

2.6.16 Proposition:

A) 6, [Bxt,... Bx;3 = px>*t

(B) G. [RX',..., Rx*] = rxitt
i " n n j

For example, if GI[HY (P) = [b /\13‘«;l (H(BA2 (PINIV - BAP]

then G[BXi] (P)

Lo A Ba (ext (BA, (P)))IV [~ bA P]
= sx'*L (p)
similarly, G[RX'] (P) = RA**L (p)
- We are now ready to state the second predicate transformer fixed

point theorem.

kg

2,6.17 Theorem:

= be a self-contained system of

procedure declarations. Let Gl""’ Gn be the associated set of
predicate transfofmer functionals described above. Define G: (P(S)
P(s))” + (P(S) » P(35))" by G[H,..., K1 = (6 [H,..., B],...,
e, [Hl,..., Hn]) then under the natural component-wise order;ng on
(P(8) + P(S)™ we have

(A) (Bxl,..., an) is the least fixed point of G.

(B) (RX 5.0, RXn) is the greatest fixed point of G.

(C) If * possesses the uniform termination property ther 6 has a

unique fixed point i.e. (Bxl... an) = (RXl... Rxn).

Proof: The proof is exactlythe same as the proof of theorem

2.6.11, using propositions 2.6.14 through 2.6.16 instead of propositions

2.6.7 through 2.6.10.

Example: If X = (b ~ A, 3X34,,1) so that GEH] (P) = [b A BA, (H(BA, (P)))]
V [~ bAP] then the least fixed point of 6 1is the predicate transformer
BX: P(S) ~P(S) and the greatest fixed point is
RX: P(8) - P(S).

Similarly if the system under consideration is

X = (b > A 3X3Y;1)

1}
Y

(¢ »A;Y,X)

2;
then

G[Hl,H2] (P) = {» /\BAl (Hl(H2 (P33 [~ bAPr]
e A BA, (H2 (PIvi c/\Hl (P)]).

The least fixed point of G 1is the function pair (BX,BY); the
greatest fixed point is (RX,RY). .
We conclude this section by stating a fixed point theorem for the

forward predicate transformer F.

Let Y0

X T
n n

il
-

be a self-contained system of

1t

Procedure declarations. Let H,: P(8) > P(S8) for 1<i< n and

let PES be a predicate, then we define Gi[Hl""’ Hn] (P) =

Tl 1(F), 1 <i<n. Where Ty: ST x P(8) +~ P(8) is defined by
i

(a) Ty [Al;A2)] (P) = T, [4,] (ry [a,3 ()

(B) I‘3 [b->a ,A.] (P) = I‘S [Al] (PA DYV r, [A2] (PA ~D)

1772

{C} Fa fA] (P) = F [A]) (PY if A is the null statement or an
'assignment statement.

(D) Pa [Xi] (p) = Hi (P).

Note that the rules for -Ps reflect the fact that we are dealing with the

forward predicate transformer - F. As in theorem 2.6.17 we can regard

G; as a function (P(S) + P(S))* to (P(S) + P(S)).

Example: If X is bound by the procedure declaration X = (b + A3;X,I)
then

GIH] (P) = H(F [AJ (PAD)IV I[PA -~ b]

2.6.18 Theorem:

u

Let Xl Ty be a self-contained

X
n n

It
-~

system of procedure declarations. Let Gl,... Gn be the associated

set of (forward) predicate transformer functionals (see above). Define

51

G: (P{S) > P(s))™ > (P(S) + P(3))" by

] G IH...H] = (6 [H.o.H Jyeury G [H...H D)

then under the natural component-wise partial ordering on
(P(3) -+ P(S))nl we have that (‘E‘Xl,..., FXn) is the least fixed
point of G. -

Proof: Similar to the proofs of theorems 2.6.11 and 2.6.17.

Example: If G is the predicate transformer functional corresponding

to X = (b AX,I) i.e.
GLE] (P) = R(F [A) (PA b)) v (P A~ D)
then by theorem 2.6.18 we.know that the function FX: P(S) + P(S)

igz the least fixed point of G. Hence FX =G [FX] and if G[H] = H

then FXCH in (P(S) ~ P(S)).

Chapter 3

Expressibility, Soundness, and Completeness

3.1 Introduction

.Hé mow wish to turn our attention to axiom systems for partial
correctﬁess of programs. In pafticular we will be concerned with
what constitutes a "good" axiom or-axiom system. A "good" axiom or
rule of inference must, of course, be simple to understand and easy
to use. This criterion must always involve a subjective element. More
formal criteria usually involve scme notion of soundness and/or

completeness. In this chapter we give the usual definition of soundness

[C075] and try to relate two notions of completeness which are found in
the literature on partial correctness. The first of these is the idea of
an adequate proof rule and is due to J.W. deBakker [DE73 and DE71]J. The

second is a type of vrelative completeness first studied by S. Cook

[CO75 or GO75]. It will turn out that adequacy and relative completeness
afe very similar concepts (i.e. the secondlis impiied by the first)
and that both can he demonstrated using the predicate transformer fixed
point theorems studied in the last chapter.

To illustrate the concepts mentioned above and to lay the foundation

for remainder of the chapter, we introduce the notion of a generalized

contfol structure. This conéept will enable us to augment the simple
prograﬁming language of chapter I with more elaborate control st;uctures.
We will be able to study the soundness and completeness of proof systems
which allow constructs with arbitrary recursive definitions e.g. while
statements, fepeat statements, and more complicated statements with

non-regular definitions.

52

>3

[

3.2 Genepalized Control Structures

We wish to augment the simple programming language discussed in

the precéding chapter with more elaborate control structures. This can

be done in general by introducing the noéion of a generalized control
structure for_GCS). |

A GCS is specified in an extension of the language PL[LE,LA]
described in seection 2.2 We extend the BNF definition of PL[LE’LA}
to include the productions

(statement) ::= (statement variable)

(stétement variable) ::= al]uzlaa cen
(boolean expression) ::= (boolean variable)
{boolean variable) ::= Bl]ﬁ2|83|...

The resulting language will be denoted by rrt [LE’LA]'

A generalized control structure C; comsists of a tuple

@Hi,xi,Bi,...,Bim,ail,...uin} where 'Hi 1s 'a set of Procedure declarations

in LY [LE,LA],'Xi is the name of one of the procedures defined in

Hi’ Bi ""’Bi are the boolean variables occuring in the declarations in
m

1 _
Hi’ and Gyreeest; are the statement variables occuring in the
) n .
declaration part Hi' We will usually refer to (Hi,Xi,Bi N T

i
1 1
as the control structure prototype. Thus for example, a while statement

would have prototype Cl = (X = (B+a; X,I)}, X8, a > .
Finally,-we consider PL[LE’LA] augmented with control structures
Cl’CQ""’ Ck. We first extend the grammar for »PL {LE,LA] to Include

for l1<ic<k.

(statement) ::= C; [(boolean expressionl),... 1 (boolean expressicnm}

(statementl),...,<étatementn)]

if the prototype for C; s (Hi, Xi» Bil,...,Bim, ail,...ain).

(Note that the two extensions PL'[L ’LA] and PL[LE’LA: ¢

S

We denote the resulting language by PL[LE’LA: Claenns Ck]

o0 Gl

serve different purposeé and should not be confused.)
A typical program might be
u ﬁ= EF(u,v)y o
Cl[bl’ v := g(v));
v := hia);

c,[b

1 é, u := h(v)]

if C1 had the while statement prototype given on the preceding page,
then the above would be equivalent to

u = flu,v);

~while bl do v := g(v) od;

v := h(a);

while b, do u := h(v) od;

The meaning function M = M may be extended to handle the new

H
clauses of the grammar in a straightforward manner. Thus, in the example
on the preceding page -
HLe, [by, v := g(v)1] (s) =
LIgE LYl (s)

where H' contains the procedure declaration Y = (b, + v := g(v); ¥, I).

1

3.3 Proof Systems for Partial Correctness

In this section we introduce a formal system W for proving
partial correctness. The formulas in this system will consist of
precondition-postcondition assertions of the form {P} A {Q} where P,

Q are formulas of the assertion language LA and A 1is a statement

of the language PL[LE’LA] (or PL[LE,LA: Cl""’ Ck] -- see the

previous section). In section 2.4 of the last chapter we gave conditions.

55

‘for such an assertion to be true (relative to an interpretation

2: {P} A {Q} is true iff P - RA (Q) is true or, equivalently,

"FA (P) + Q is true.

Axioms for W will have the form {P} A {Q} i.e. they will
be formulas of W. For example, the assignment statement will be

characterized by the usual axiom
t
Qztu:=1t{Q} (1}
{By the argument -of proposifion 2.4.12, we know that the axiom
u u

{P}u:=t{:1uo[u=t-u—0/\ P-ug]}

would work equally well.)

Rules of inference will have the form

Hl,H2,..., Hn
F

where F 1is a formula of W and each Hi is either a formula of W,

a formula of LA’ or a composite formula of the form vFl F F2

where Fl and F2 are formulas of W (Hote that the notion of truth

defined above for formulas of W can be extended to composite formulas

without difficulty.) We will say that a rule of inference is simple,

' if none of the hypothesis Hi are composite formulas. We will gZenerally

be concerned with simple rules of inference in this chapter. Typical rules
of inference are the simple rules for the composition of statements, the

conditional statement, and consequence given below.

56

‘{_P}Al {o}, (Q} A, (R}

2)
R} (a5 A)) (@)
{P A b} Al {Q}, (PA ~ b} a, {Q}
. - (3)
{P}b + A34,) {Q}
P>Q, {Q} A {R}, ., (P}A{Q), Q>R ()
{P} A {R} {r} A (R}

The axioms and rules of inference numbered (1} - (4) above will be

referred to as the basic set.

~Let T be a proof aystem for. LA then a proof in the systenm

" {W,T) is defined in the usual way [GO0751 as a sequence of formulas of

W or T each of which is either an axiom or follows from ﬁreceding
fﬁrmulas by a rule of inference. If F is a formula in such a sequence
then we write FF and call F a theorem of (W,T).

We say that an axiom {P} A {Q} of W is valid, if it is true

under all interpretations &. We say that a rule of inference

Hl,.. ey Hn

F

of W 1is sound if whenever Hl,H2,..., Hn are all true in some interpre-
tation & F will also be true. A simple induetive argument shows
that if each axiom of W is valid and if all of the rules of inference

of W are sound then every theorem of (W,T) will indeed be true (we

will not concern oumselves with the soundness of the proof system T for

57

Lz.) Note that the soundness of the.Eggig‘égg of axioms and rules of
inference follows immediately from propositions in section 2.4,

In section 2.5, we showed how the soundness of the rule of inference
for the while statement could be established using predicate transformer
techniques. We conclude this section with a less trivial example
which illustrates the importance of the predicate_transformer fixed
point theorems.

Consider the GCS with prototype

X,Y)}, X)

02 = (X = (bl - Al; Y5A2), Y = (b2 > A2;

As we will see later, a "good" rule of inference for this construct is

given by

{(PA Db} A {U}, {PA - b} 4, {Q}, (UA b} &, {P}

{r} c, £b,,b,3 A>A,1 {Q}

to prove soundness of the above axiom, we assume that

EADb > RA, (V) (i)
PA -~ b, + RA(Q) (ii)
U Ab2 ~ RA,(P) (iii)

are all true and try to prove that P -+ RX(Q) is true.

By the first predicate transformer fixed point theorem we know
fhat (RX(Q), RY(Q))} is the greatest fixed point (even though A, and
A2 may not be simple statements i.e. A

1 and A2 may not define total

functions) of the system

n

G, (V,H) = (b A RA (W) V (~ b ARA,(Q))

G, (V,W) (b, ARA2(V)) V(- b, AW).

It is not difficult to show that the maximality of (RX(Q), RY(Q))

58

implies that it is also the least upper bound of the set
X = {(v.W)|v c 6,(V,¥) and W g¢2(v,m}
{see footnote below).
From (i), (ii),l(iii) above and (iv) U A ~ b, ~ U
we get that
P+ (b, ARA(UNV (- b ARA, (Q))

U~ (b, ARA(P)) V (~ b, A V)

o that

P> Gl(P,U)
and

U~ GQ(P,U)

are both true. Making use of the correspondence between < and +
we seé that _(P,U) € K and hence P » RX(Q) and U » RX(Q) are
both true. Since P > RX(Q) was what we were required to pfove,
this completes the proof of soundness.

Thus we see that souqdneés.follows from the greatest fixed point
characterization of <{RA{Q), RY{Q}}. A similar argument could be based
on the forward predicate transformer F. In this case soundness would
follow from the least fixed point Eharacterization of the strongest

post condition.

3.4 Expressibility ;

In his paper Axiomatic and Interpretative Semantics for an Algol

Fragment [C075], Stephen Cook peints out that it may happen that the

Let (L,C) be a complete lattice and let f: L + L be a monotonic
function. Then f has a greatest fixed point and fixed point is given

by
L fxfx £ £(x)}

59

assertion language ﬁA is not powerful enouéh to express the invariénts
for loops; If, for example, LE and LA are both the 1angﬁages of
Préssburger arithmetic (i;e. the language of arithmetic without
multiplicétion), then it is easily seen that Ly
Cook intfdduces the notion of exbressibility to handle this difficulty.

will have this problem.

We paraphase his definition using the texminology of Chapter 2.

3.4.1 Definition:

The language LA is F-expressive (relative to LE and &) iff

for every formula: P’ in L, and every statement A in PL[LB,LA]

(alternatively PL[LB’LA: Cioenes Ck]) there is a formula q in L,
sucﬁ that q expresses F[ﬁ] (P).l

It is easily seen that the full language of number theory
L = (N;.-’+’.’Q’l) is- F~expressive (relative to L, and an 8 in which
the symbols of Ln get their usual meanings).

In view of the close relationship betwegn F and the prediecate

transformers R and B, two other defimitions of expressibility

immediately come to mind.

3.4.2 Definition:

The language LA is B~expressive (relative to LE

every formula q in LA and statement A in PL[LE’LA] (i.e.

PL{LE’LA= Cy2-evs G 1) there is a formula p in L, such that

&) iff for

p expresses B[A] (q).

L Cook alsoc requireg that "=" be in LE and that it receive its standard

interpretation. This is unnecessary in ocur case since we are assuming that

both - LE and LA are first order languages with equality.

60

3.4.3 Definition:

The language Lﬁ. is R-expressive (relative to LE. and g) iff

for every formula q in LA and statement A in PL[LE’LA] there is

a formula p in LA such that p eipresses RIA] (q).
In this section we show that all of these definitions are really
equivalent,; e.g. if Lﬁ is R-expressive then it is also F-expressive, etc.
It is easily seen that B-expressibility and R-expressibility are

equivalent concepts. This follows immediately from the fact that

BA(Q) = RA(Q) A ~ RA(false)
and -
_RA(Q) = - BA(true) V BA(Q)
In order to include F-expressibility in this chain of equivalences,
it is cﬁnvenient to introduce two new predicates APAR and ATOT'
et A be a statement of PL [L_,L,] and let u = (ul,..., un)
be the variables occuring in A. Choose x = (Ryreees xn) and

}’: <y1""’ yn) so that none of the variables appearing in x and

Yy also appears in u. Then define

Appr(%,3) = vulu

H
1]

¥)]

% > RA(u

and

(x,y) = = X, BA(G =)]

|
1)
£
~
=1

1

ATOT

Using the definitions above, it is straight forward to show that

Hi

BA(P) = 3 ylA (w,y2 A p ¥

TOT

=1 M

and

RA(P) = I y[A (u,y) Ap -]

HI|

11

PLE
Combining these observations with the relationships between BA{P)

and RA(P) described above, we get

61

3.4.4 Proposition:.

Let A be a statement in PL[LE’LA} (PL [LE,LA:- c 1

then the following are equivalent:

a) BA{q) is expressible for all formulas q in LA

b} RA(q) 1is expressible for all formulas q in L,
c) Bror (%,¥) 1is expressible |
d) APAR- (:-;,'3'(") is expressible.

It is also relatively easy to show that

Apar (2,}‘) = va[FA(a=x)>u=y]
and that]
PA(P) = Tk [A(R,0) Ap =3
y

If we combine these relationships and use the previous proposition,

we get:

3.4.5 Proposition:

et A be a sFatement in PL[LB’LA] (pL [LE’La: Cl,..., Ck])

then the following are equivalent:

a) FA(P) 1is expressible for all formulas P in LA
b) ATOT(x,y) is expressible

c) APAR(x,y) is expressible.

Finally, from propositions (2.4.%)and(3.4.5)we get

3.4.6 Proposition:

The following are equivalent:

a) L, if F-expressive

A
b) L& is R-expressive
c) LA ig B-expressive.

lPr0positions 3.k.4 and 3.k.5 sbove were suggested in part by John Privitera.

- 62

3.5 Completeness

Given a system (W,T) for proving partial correctness (relative

to an interpretation @) of ‘programs in PI..[LE c . Ck], we

sLA= 1
would certainly like to know that every assertion of the form {P} A {Q]
which is trﬁe.in A is provable. This, of course, is a futile wish. If

W and T 4re axiomatizable then the set of theorems which can be proved
in (W,T). is R.E. However, note that the formula {true} A {false}

is true iff A does not halt for any initial values of its input variables.
It follows from recursion theory that the set of all such true formulas

may faillto be R.E. and that as a result we cannot hope for the type éf'
completeness described abovém Since T will not in general be complete
with respect to 'a the above result is not too surprising. One can

still ask if the incﬁmpleteness of (W,T) arises entirely from the
incompleteness of T or whether the axioms and rules of inference of

H. are partially responsible? Two approaches to this question have been

proposed.in the literature. The first is the notion of an adequate

proof rule and is due to J.W. deBakker. The second solution is a type

‘of relative completeness theorem first proposed by Stephen Cook. We

examine deBakker's.idea first.

3.5.1 Definition:

Suppose that L, 1is expressive relative to LE and 8. Let

A

H H

l’..-., n

= (%)
{P} A {Q}

be a simple rule of inference for the G.C.S5. A. Let U0 = P,U

s

U = Q be the predicate symbols appearing in the Hi but not in A
M

itself. Then (%) is a fully adequate proof rule for A iff

63

(A} each progrém statement occurring in some Hypothesis Hi occurs

syntactically as a proper substatement of Al.

-

(B) whenever {P} A {Q} is true, there exist predicates U ,...U,

expressible by formulas of LE such that
(1).-P »> U0

(ii) Uy > Q
(iii) all of the Hypothesis Hl’HQ""’HN will be true if

'UO""UM are substituted for UO,...,UH.

Cook gets around the problem mentioned abeve by assuming the

-

existance of a complete proof system T for LA’ or equivalently an oracle

for deciding the truth (relative to 81) of closed formulas in L A The

following simple theorem serves to comnect these two approaches.

3.5.2 Theorem:

Consider the programming language PL[LE,L C ..,Ck]. Suppose

At t1
that LA is expressive relative to LE and . Lett T be a complete

proof system for L, and &. Let RyseenR be simple rules of inference

A
for the GCS's Cla---ack which are both sound and fully adequate. Let

A be a statement of a PL[LE,L : C ""’Ck] program in which no procedure

A 1

declarations occur (other than those implicitly occuring because of the
GCS's Cl""’ck)' Then {P} A {Q} is true with respect to & iff

=

consists of axicms and rules of the Basic set plus the rules Rl,...Rk.

W,7) {r} A {q} where P and Q are f?rmulas of L, and W

1This condition is needed to rule out trivial rules of jinference such as

ip} A (Q}
P} a ot

which otherwise would satisfy condition B.

6h

Proof: Tﬁe "only if" part of this theorem was discussed‘earlier
in this chapter when we introduced the notions of soundness. The "if"
pért'df the theorem is prﬁved by structural induction on A.
Case{l): A is the assignment statement u := t. {P} u :=t {Q} is
true, so :P + R[u := t] (Q). R[u := t] (Q) = Q Eu Thus P + Q E
is a true formula of LA and {Q E} u := t {Q} 4is an instance of the
axiom for'the assignment statement. By the rule of consequence {P}
u =t {Q} is provable.
Case (2): A is a conditional statément of the form (b - Al’A2)' Since
{P} (bl+ Al,A2) {Q} is true we have {P}*RA(Q) or P +[b A Rﬁl (Q)]I'V
[~ b A RA(Q].
Thue P ADb + RAl(Q) and PA - b > RAz(Q) are both true. By the
inductive assumption {PA b} Ay {Q} and H{PA~ b} A, {Q). By rule of
inference (3) we get that H{P} (b =+ A.A)) {Q} or F{P} A {q}.
Case,(3): A is a composite statement A = (Al;Az). Since {P} A {Q}
is true, we have that {P} A, (RA(Q))} and {Ra,(Q)} A, {Q} are both true
and RAz(Q) is expressible by a formula of LA' By the inductive assump-
tion H{P} Ay {RA2(Q)} and F{RAz(Q)} A, {Q}. Hence by rule (2} for the
composition of statements H{P} (Al}ﬁz){Q} or H{P} A {Q}.

Case (4): Suppose A = Ci[bi""’bm; A ...An] and {P} A {Q} is true.

1

Then by full adequacy of R; ‘there exist formulas Ups++eUy in L,

such that

{(a) P+ U0

(b) Ug-* Q is true in LA (w.r.t Q)

is true in LA (w.r.t. &)

(e) H ,...,H (the hyptothesis of R,) are all true (w.r.t. 8).
0 ni YP i

s++.5H 3 all are formulas

Since Ri is a simple rule of inference H

!
of LA or have the form {\l} B {VQ} where Vl,V2 are formulas of LA

and B is a statement with simpler structure than A. By the inductive

65

assvmption I-Hj, 0 £j <n,. By rule Ri we get thati-{P} A {Q}.

i
Since A cannot be a procedure call, cases {1) - (4) include all
possibilities and the proof is complete.

To illustrate how one proves that a rule of inference is adequate,

 we return to the example at the end of section 3.3. There we considered

the’ GCS with prototype:

l!

We showed that the rule of inference

e, = (X = (b, + A3 Y,Az?, Y = (b2 + Ay X,Y)}, X)

{PA b }a) {U}, (PA~Db } A, {Q}, {UA by} &, (P}

{P} ¢, [b,,b,; 4,47 {Q}

for 02 was sound. We now show that this rule of inference is fully
adequate. Assume that {P} C2 {bl,b2; AI’A2] {Q} . is true. Then

P+ RX(Q) 1is true in &. By the first predicate transformer fixed

point theroem we have the (Rx(Q), RY(Q)) is a fixed point of the system:

6, (v, = [by A ra, (DT V [~ b, A Ra ()]

G,(v,¥) = [b, A RA,(VIV [~ b, A W]
Furthermore, note that if LA is expressive relative to LE and 33
then RX(Q) and RY(Q) will be expressible by formulas of L,- Thus
(a) é + RX(Q)
{(b) ¢+Q _
and (c) (i) RU(QADb, > RA (RY(Q))
(i.e. {RX(Q) A bI} A, {RY(Q)}})
(i1} RX(Q) A -~ b, » RA,(Q)
(i.e. {RX(QA “bl} A, e b

(iii) RY(Q)A b ~» RA2(RX(Q))

2
{i.e. {RY(Q) h-b2} A2 {(RX{Q)1H)

66

3.6, QGenerating Hoare-like Rules of Inference

In this section we give a simple algorithm for generating Hoare-like

rulgs of inference for GCS's which have as their declaration part a
regular: system of procedure declarations. The rules of inference gen-
erated in this manner will be shown to be both sound and complete.
Because of the relationship between regular systems of procedure

declarations and flowchart schemes, this section can in some sense

be viewed as a restatement of the inductive assertion method [FL67]

and a proof of its soundness and comple%eness. We believe that the

preseht method of procf demonstrates the usefulness of the predicate
transformer fixed point theorem discussed in Chapter 2.

The algorithm is stated in a form which simplifies the proof of
soundness and full adequacy so that some of the steps are redundant
and could be eliminated of simplified if desired. A similar remark
applies to the rules of infefence generated by the algorithm--in many
cases several assertions generated by the algofithm could be combined
into.a single assértion to obtain a mofe concise rule of inference.

Let C = (H; X3 Bl,..., BM; Ayseees a.N) be the GCS under
consideration. Thus H consists of a set of procedure declarations:

%3EYy

]
n

K = Tk
which is both self-contained and regular. The algorithm uses a set
TOP which ultimately will contain the required hypothesis of the rule

of inference.

67

Initialization:

Let TOP contain the formula P + U, of L, together with the

-triples.

[Ul’Tl’Q]
[u,,7,,Q]
(U, T,»Q3
(i.e. one for each procedure declaration; U

symbols)

l""’UK are new predicate

Algbpithm

(A) Apply transformation 1-5 below to the elements of the set TOP until
no further such transformations are applicable (the order in which these
transformations are made will turn out to be unimportant).

(B) When no transformations are applicable, the elemenfs of TOP are the
hypothesis of the desired rule for €, i.e. if TCP = {tl,...,ts}

then the rule for C is

T peaest
1 s
{r} ¢ [Bl""; Q. 5. JLQF

1

Transformations on the set TOP:

If a transformation has the form

L= P

then an occurence of t € TOP may be replaced by tl,...,tk.
(1) [U,I,v]=>U.>V
(2) [(u, (5,38,), VJ=‘>[U,sl,w], [w, 8,,V]

where W is a new predicate symbol

.(3) [u, (b » 51’32)’ v]=>[U A b,Sl,V], (UA~ b, Sy V)

(4) [U,Xi,V]:$=U +-Ui where Xi is the name of a procedure whose

68

declaration occurs in H.

(5s) [U,A,v]1=>{U} A {V} where A 1is an atomic statement other than
a procedure call. |

NHote thét when none of the above transformations are applicable, the

elements of TOP will contain no occurences of procedure names.

‘Note also that since we are dealing with a regular GCS, the algorithm

will never encounter an element of TOP of the form [U,Xi,V] where
Xi is a procedure name and V is different from Q.

An an example consider the GCS

Cl 3_(‘[X = (B+OI. s X, I)}s XoBsa)

Igg.l' . Transformation No.
P + U, [U, (Q +a; X, I) Q) : _ initiajization
p>u, UA~ g, 1, al, U A 8, (a3 X), Q) 3
P+U, U A~ B >q, [UAB, (a;%), Q] 1
P>uU,UA ~B>q, [UA 8,a, V], [V, X, Q) 2
P-+U,UAN ~g>0Q, UAB,a , V], V>U ' L
P>U, UM ~“B+q, {UAB}a{V},V+U 5

Thus the rule of inference for 03 should be

P>U, UA~B~»>qQ, v=0, {UAB}a {v}

{r} ¢, [a;8] {a}

which may be simplified to obtain the usual axiom for the while state-

ment

T ey . W iy ST

oY

P> U, UA~ B > 0. {UA g} a {U}
{p} ¢, [:8] {q}

We leave it to the reader to try examples involving more than one
procedure declaration.
We now show that the above algorithm generates axioms which are

both sound and fully adequate. The proof uses a version of the predicate

transformer fixed point thecrem which we restate for convenience below:

I
=]

_be a regular system of procedure declarations.

1]
~

and let Q €S be a predicate. We associate with ®* and Q a set

of K predicate transiérmers Gl’ Gzl...GK where each Gi : P(8) » P(S),
the Gi‘s are defined in terms of a mapping T : ST x P(S) * P(8), i.e.
for all i Gi(Ul, UQ,...ﬁK) = Ilt; M@ where I is defined by cases
(@) TlAA)1 (W) = TLA T (T [A,)](W))

() TLO > A, 401N = (b A T[A I V (~ BATIA,] (W)

(c) TLAI(W) = RIAN(Q), A atomic

@ rixI =g

Theorem:

Let (%), Q, G G be as described above.

l’..."
Define G: P(S)X » p(s) by 6(U_ ,...,U0)=z {c {U_,...,U),...

. l’ k]]-{ l l’ > K > >
GK(Ul""’UK)>' Then (RXi(Q),...,RXK(Q)) is the greatest fixed point of
G under the natural ordering on p(s)".

We consider the proof of soundness first. In order to make the

proof clearer, we apply the following notational transformation to the
algorithm: replace [U,T,v1 by U > T[t](V) where T is the mapping

associated with predicate transformers Gi in the statement of the theorem

T0

above. We will show that when the algorithm terminates P -+ R [Xl](Q)
will be a logical consequence of the assertions in the set TOP. More
preciseiy let TOQ'bé the elements of the set TOP after r transforma-
tions have been‘applied,.then we will show that:
b Ul’ - .
Uy > 6 (0, sl),

L e éK(.Ul,. .Uy)
musf all be true if the assertions in TOP are true. By the maximal fixed
ﬁoinf characterization of in(Q) it follows that Ul > Rxl(Q) is true-
and therefore P -~ RXl(Q) also.
First observe-th&tthiscondition holds initially. P Ul is in
TOPO. Since Ui -+ F[ti](Q) is in TOPo for 1 < i <K, we have that
Ui_+ Gi(Ul,...,UK) is true for 1 €i <K (by definition Gi(Ui,...,UK) =
T [Ti](Q))' NMext assume that the condition above is true of TOPn-l’
we ghow that it will also be true of TOPn. We proceed by examining the
ways in which TOP =~ may be obtained from TOPn—l'
(l) U=~ IF[IV)=Y *‘V : If U+V is true, then U+ T[I](V) will
be true also since FPLI1(V) = RIIJ{(V) = V.,
(2) U~ Ii(s;s s,)HVy=pu > s, 1wy, w > TFLs,1(V):
It is easily checked that TI[A]l(.) is monotonic, thus if
U » F[Sl](W) and ‘W -+ F{S2](V) are true, it follows that
u > T8, 1T [5,](v)) or U » TL(S;3 §,)1(V) is true also.

3) U ~+T[b+5 8,)1V)=>U Ap » rls,1(v), U A~b-~» r[szi(v):

l’
if UADL » I‘[Sl](V) and 0 A ~Dbp > 1‘[52J(v) are true then
U >k A I‘[SlE(V)) V(& b A I'[SQ](V)) or U - T[{(b~» 31,52)](\?)

is true also.

T

Sy v~ F[Xi](V)==bU_+ U Since 'H is a regular system of procedure

declarations we must have V = Q. Since F[Xi](Q) = Ui it follows
-that if U~ U, is true, U~ FX, (V) will be true also.

(5) U + TIANV)==3{U} A {V} : If {U} A {V} is true then U~ RA(V)
holds. Since A - is atomic and PLATJ(V) = R[AI(V), the desired
result follows.

This completes the proof of soundness. We next show that the rules of

inference generated by'the algorithm are fully adequate. Let P and

 be predicates such that P > R[C[bl,...,;-Al,...]] (Q) (i.e.
; -+ R[Xil(a)) is true and P and a are expressible by formulas of

LA'
predicéte symbols P ='V0,...,Vk-= Q occur in the assertions of TOPP

]J. Ve show that there are predicates

Assume that at the rth stage in the execution of the algorithm the

but not in C[bl,...A

l,-‘..,

~
Vk = @ which are expressible by formulas of L, and have

A

"~ ”~
P = V,eens

the property that all of the assertions in TOP, will be satisfied if

~ fal

Vo”"’vk' are substituted for VO,...,Vk.

Note that this condition holds initially. Choose U, = Rxl(Q),...,

1
~ . ~ ~ -~ Eal
UK = RXK(Q) then P —+ Rxl(Q) is true and since Gi(RXi(Q),...,

RXK(G)) = RXi(a) we also have that ai > F[Ti](a) is true. As in

'the-proof of soundness we assume that the conditionholds for TOPn—l

and show that it holds for TOPn as well by checking each of the

possible cases by which TOP,, could have been obtained from 'TOPn“ _ Thus

1
for example in case 2: U - F[(Sl,82)](V):=>U * P[Sl](W), W +'P[82](V)—-
merely choose W = F[S2](V) and observe that all of the required

conditions will be satisfied of TOPn if they were satisfied by TOPn_l.

The other cases are very similar.

CHAPTER 4

NON-REGULAR CONTROL STRUCTURES

4.1 Introduction

In this chapter we show that more powerful axioms are needed
in order tc obtain sound, complete axiom systems for non-regular control
structures. Using the tools of Chapter 2 we examine methods of obtaining
such axioms which have been proposed by deBakker and Meertens [DE73] and
by Gorelick [GO75]. In particular we examine the ciaim of d;Bakker and
Meertens that an infinite pattern of precondition-postcondition assertions
is needed when extgnding the inductive assertion metbtcd to handle non-regular
contrel structures. ‘We show that the érgument for the necessity of such
assertion patterns is based on a treatment Ef predicates as sets of
program states and of programs as state transformations. If predicates
are throught cf as formulas in firét order predicate caleculus, them sub-
stantially simpler rules of inference may be constructed which are both

sound and complete.

4.2 Non-Regular Systems and the Necessity of More Complicated Rules

of Inference

If we apply the algorithm of the preceding section to the (non-regular)
precedure definition
XzZb~> Al X A2,

we obtain the rule of inference

I

(i) P ~>U, {UAD) Al{wl}? v, > U, Q > Wy, {¥,} A, {Q}

{P} X {Q}

It is not difficult to show that (i) is sound--argument almost identical

T2 .

T3

to the one used in- section 3.3 works. Unfortunately it is also easy to show

that (i) cannot be fully adequate. To see that this is the case we first

simplify (i) to obtain

(ii) p~+ U, {U A Db} A, {U}, (Q} &, {Q}, U A-b=+Qq

{p} X {q}
(ii)} 1is also sound and will be fully adequate iff (i) is.
Next consider the procedure definition Y=Db ~» Al Y, A2. Note
that Y has a regular definition and the the algorithm of Chapter 3 is

known to apply in this case. Thus we obtain the rule of inference:

P>U, {UAB} &, (¥}, ¥~>U, @+0Q, {UA-Db}a, {0}

{P} Y {Q}

which is known to be both scund and fully adequate.
We simplify to obtain

(iii) ®p->uUu, {UADb} A {u}, {UA - b} A, {Q}

{P} ¥ {Q}

Let P., Q, and ii. be such that {PO} X {QO} is true but {PO} Y {Qo} is

~false. For example, sﬁppése that -
‘b=n>20
Ay = n = n-1 ’
A2 = n = ntl
Py 2 {n = no}
Q, = {n = no}

If (ii) is fully adequate, there would be a formula U expressible in

Q

the assertion language LA such that

Th

A - -
Py > Ugs (UG A b} A, (U}, {Qy} &, @y}, U, A - b >0,
are all true. But then we would also have

PO +.U0, {Uo A b} Al {UG}, {U0 A~ b} A2 {QO}

Thus, by (iii) we would be able to conclude {PO} Y {Qo} but this is a

- contradiction.

A more peneral version of the above argument is used by Fokkinger

[F073] and by deBakker and Meertens [DE73] to argue that an ipfinite pattern

of assertions is_pecessary in order to obtain the type of completeness that

we desire. In their paper on the "Completeness of the Inductive Assertion
Method", deBakker and Meertens suggest an infinite collection of assertions
determined by attaching a pair of assertions to each node in the infinite

tree obtained bylunwinding the recursive definition ("the tree of incarnations™).
Thus in the case of X = b » Al X A2, I +the tree of incarnations has the

form

P)l(q
Pl (b » Al }]{ A2, I) ql
p] A{b » Al)'(A2, 1) q2

so that we could expect to obtain the rule of inference

\
P> Po,
{Pih b} &, {Pi+l},
{o;,,} 4, 1o, > iew

Pih~b+Qi,

Q, * Q

75

For X =b > Ap X A2.X Ay By the tree of incarnations is more complicated:

A2 X AS’ Aq) QA

Py (b+Al X A, X Ay A Q, P, (B4 X Ay X Al A Q)

The -assertions Pc’ Q0 may indexed by strings ¢ in (0+1)% and
we obtain the rule.of inference

P » Pﬂ,
{Pcf\ b} Al {PUO}’
A - Dpla, .I;QU} s & (orisa
{Q) 4, [Pol}

{Q,} a5 {0,

Q, > @

. {P} X {qQ} _
To illustrate the methods of [DE73] we prove {using the notation of

+

" this paper) that the rdlé of inference given above for X = b - Al X A2 X
AS, Au- iz both sound gnd fully adequa?e.
First for soundness, we assume that
(a) P> P,
(b) P_ Ab-+R [a,1 (2)
(e) P A-bos R[A T (@)
(d) QUO - ‘R[A2] (PUl)
(e) Q y >R IA] Q)

(£) q, ~ 0

76

are true and show that P » RX (Q) must be true also. The argument
is based on the fundamental invariance theorem. Assume that for all
0 € (0+1}* we have PU -+ in(Qu) then

PUO > RXL(QGO) ’

P o~ RX (RAQ(Pol)) (by d)
Rﬁi (Poo) > RA) RX, RA, (Pal) (by monotonicity)

RX; RA, (Pcl) (by b)

(é) Pcl\ b+RAl

Similarly, Pcl -+ in(Qal)
So P > RX (RAS(QU)) (by e)
Combining this with. (*)‘ we get
P, Ab -+ RA; RX; RA, (RX; RA, (Q_))
Bo A -baRa Q) (byo)
Thus, P+ [bA Ra) RX, RA, RX; RA, (QIV [~ bAR Q)3
or Py in+l(Qd) i | : .
So P_ > RX(Q) for all o € (0+1)% taking o = A and making use of (a)
and (f)} we get P + RX(Q) as required.
| We turn next to full adequacy. Note‘that
RX(Q) = [b Ara Rx RA, RX RA, (1 V [- b Ara, (@)1

Let the sequence Qc:l’ a € (0+1)* be defined by

Q = Q
Qo = RA, RX RAsl(QU)
Q,, = Ra; (Q)

Let the sequence Pol’ o €(0+1)* be defined in terms of the sequence 0Q
by

Pq = RX (Qc)
Note that if Lh is expressive relative to Lo and &, then Pc’ Qcr

¢ € (0+1)* will be expressible by formulas of L.. Then
A

77

(A) P > RX(Q) = pA

RX(QU) Ab

(B) P_ A b

H

RA, (RX (RA2 {RX (RA3 (QU))))

Ra, (RX (Q o))

= RAl (PUU)

RA2(RX(RA3(QU)N

() QUO

RA, (RX (ch))

RAQ (Pcl) .

(0) q, = Ry Q)

(€) P, A -barA (Q)
(F) QA + Q since Q= Q

Thus, all of the-hypothesis of the rule of inference for X = b » Al X

' A2 X ha, Au are satlsfied and the proof of full adequacy is complete.

The argument used. be deBakker and Meertens for the necessity of rules
of_iﬁference such as those discussed above is based on the notion that

predicates are merely sets of states. If on the other hand predicates

ére'thought of as formulas in the first order predicate calculus and

the role of non-active variables is taken into account then substantially

simpler rules of inference can be constructed. Alternatively these rules
of inference may be viewed as ways of organizing or indexing the predicates

used by deBakker and Meertens.

4.3 Axioms for Non-Regular GCS's 2

In order to prove soundnéss and completeness of axioms for non-regular

GCS's additional machinery is needed. In this section we introduce this

additional machinery and apply it to a simple example of a non-regular
GCS. This example will serve as a prototype for our considerations of the

general case im the next section. We begin with a number of definitions

78

4,3.1 Definition:

Let A be a statement in a PL program E. A variable u is active

in A iff either
(i) A is an assignment statement and u occurs in the right or left

gside of A.

(ii) A 1is a conditional statement b - Al,A and either u occurs

2

in b or u is active in A, or u is active in A

1 2°
(iii) A 1is a composite statement (Al; A2) and u is active in ﬁl

or u is active in A2.
(iv) A is a call on the pfocedure X with declaration X = 1 oeccuring

in the declaration part of E and u is active in T.

If u is not active in A them u is said to be non-active. A term
is non~active if the only variables occurring in it are non-active variables.

Finally, a substitution. ¢ is an admissible substitution.if ¢ is

a substitution of non-active terms for non-active variables.
Thus, for example, if E =(H,A} is the program of Section 2.2 then

u,» V., and w, are non-active variables, w, and g(f(u_.,v_ })
0 o 0 g° 0
Woo h(uo,g(vo))
are non-active terms and ¢ = iz an admissible
u ’VO

substitution.

4.3.2 Proposition:

"Let A be a statement in a Pﬁ ﬁrogram E and let P be a formula
of LA which does not contain any free v;riables that are active in A.
Theﬁ
FLAl(PAQ)="PAF [A] (Q)
Proof: F [Al (PAQ) cF[Al (P) AF [A] (Q)
By the restriction on P in the hypothesis of the theorem {P} & {P}

is true and hence F [A] (P) CP. Thus F [A]l (PA Q) c P A F [A] (Q).

79 °

Conversely, let s €P A F [A] (Q) then s €P and s €T [A] (Q).

Thats there is an s' such that s = M [A] (s') and s' € Q. By the

. restriciton on P, s and s' can only differ on variables not
- occurring free in P. Thus s' € P also. Therefore s' €P AQ and

. s €F [A1(PA Q). It follows that P A F [A]l (Q) cF [a] (P A Q).

4.,3.3 Proposition

Let A. be a statement in a PL program E. Let ¢ be an admissible
substitution with respect to. A. Let Q be a formula of the assertion
language Lj- Then F [A] (Q)o =F [A] (Qo).

Proof: Let 1 contain the variables which are active in A. Let

u, contain new variables (i.e. not appearing in E, ¢, or Q) and have

the same size as u. Then

FLA] (Q(u)) o

F[A] (34, [u=u,Mo@)] de
a, A e)l
u A Qa,)lo

GO)U A Q(EO)U]

a3, (F [A] (3

:{Go [F [A] (u

:{GO [F [A] (u

But F[A] (u = ﬁo)c = F [{A] (u = ﬁo} and Q(Eo)o does not contain

any free variables which are active in A since o 1is admissible.

Thus, F [A] (Q(u))e = gﬁo [F [A] (u =mﬁo) A Q(ﬁo)c]

]

33, [F [A] (@ = 4, A (i)o)]

F [A] (20, [u = q, A Qi el)

F [A] (Q(u)e)
To illustrate the problems which cccur when dealing with non-regular

GCS's we consider the GCS C3 with prototype

Cy = (X =Db >4 X5 Ay I} X)

&0

We. will show that a sound .and complete rule of inference for

03 is

u u
() (PA D) A, (33, P 2 ATIL{Tu [0 =2 A TI} 4, (Q}, P A- b0

{P} ¢, [b: A; A1 {Q}

where 50 are the variables which oceur free in the predicates P and

13 A2]. u, consists entirely of

new variables. T is a predicate which does not contain any active

Q Dbut are not active in 03 [b: A

free variables.l
In order to prove that_ (%) is sound we assume

: u
(i) FA; [PADl~+ad, [P -2 AT
v
- 4]
. u, .
(i) FA, (3u, [Q —=AT]) +Q
v
0
and
(iii) P A - b +Q
and deduce FX(P) » Q by means of the fundamental invariance theorem.

. i
Define the sequence {X }:.LZ'0 by
X =g
Xl+l =Db > Al; Xl; A2,

So that FXi+l(P) = TA, (Pxi_ (ml (PA D))V (PN . b).

I

If FXi(Pj +Q

- LY - [y
then Fa, [FX (P)-2 A 1] Tu, [0_2 A T]
v W
0
50, by propositions()u.a.Q, 4.,3.2 and 4.3.11.

: a a
FX (qug [P ATI) > 3a, [Q 2A T]

Yo Yo

lIntuitively, the predicate T enables information to be transferred across a
procedure call. If the effect of A, on the program variables can be described
by a simple admissable substitution ¢, then T may be eliminated and 2 simpler
axiom involving the substitution ¢ will work.

81
By (i) and monotonicity of FXL(')

u

- rxt (FA,(PA D)) > 2a [Q 2 AT
v
0
By monotonicity of F4,(+)
i — Uy
FA,(FX™ (FA) (P A Db))) » FA, (2 u, [Q 3— AT])
0

By (ii) anmd (iii) we obtain
Fa, (FX" (FA, G AV (@A -D) +Q

So FX1+1(P) + (. Hence by the fundamental invariance theorem we

~ conclude that FX(P) - Q@ holds.

To prove completeness we need several new axioms in addition to
these of the basic set given in section 3.3 The new axioms are:
Rl. {T}A {T}provided that T does not contain any free variables
which are active in A.
R2. {F;} A {Q;}, {P,} A {Q,}

{Pl A P2} A {Ql A Q2}

R3. [P(3)} A {Q(ﬁﬁ’}_

{3 ‘:o P(G-O)} A {2 ‘30 Q(GO)}

provided that the variable ug is not active in Al.

lThis axiom is not absolutely essential. However its use simplifies the
statements of some of the other axioms and alsoc the proof of the
completeness theoremn.

82

Suppose that the assertion language L, is expressive. To show

A

completeness we assume that {P} A {Q} is true and show that it is

provable (given a complete proof system T for L, relative to al.

A
The proof will be by induction on the structure of A. The reader may
verify that the only interesting case is when A has the form

C3 [b: Al,Az]. We will split the proof of this case into two parts.

First wé show that it is sufficient to know that
G4 = 5} X {FXGE = 90}

is always deducible where w are the variables which are active in
the program and ;0 are new non-active variables. Suppose {P} X {Q}
(i.e. {P} C, [b: Ai;A2] {Q}) is true so that FX(P) + Q holds.

(Note that since LA is expressive, FX(P) + Q is representable by

a formila of LA' In fact, if T is a complete proof system for LA

S then kp FX(P) +Q.) If {W = W} X {FXGi = W)} is aeducible,then

k{w = GO A P(ﬁo)} X {FX(w = GO) A P(ﬁ%)} by axioms Rl and R2. Thus,

HO3W, [w = wy A PG)T X {3 &) [Px(a = §) A P(T)]} follows by

application of R3. Hence ~
w. [w=w. 0Pw - w. [w=w_ N Pw
k{ Twy [w = wy & PO)T} X {FX(qu Lw = w, P(w)1}
by propositions %.3.1 and 2.4%.11 we conclude that {P(W)} X {FX{(P(W))}

deducible and therefore by one additional application of the rule of

consequence that {P} X {Q} 1is also.

L1t is also possible to prove soundness and completeness using the

reverse predicate transformer R. In the proof of completeness we would
use {RX (w # GO)} X {w# ﬁo} instead of (% = ﬁo} X {FXGF = w)},

The argument based on {® = GO} X {FX(% = ﬁo)} ' séems consideragly more
natural however.

is

83

Next we show that {w = ﬁo} X {FX{w = ;:0)} is indeed always.

deducible. To simplify notation, let

Pz {w= Go}
Q = F¥(w = v-ro)
T(w,wo) = FA]_(P Ab)

Note that all three of these predicates will be expressible by

formulas of L A’

FA (P A b) R v.'io)

3 ;0 [w = Vo A T(Vo,ﬁo)]

T(w

1

3 v, [P 2N T(7,,0,)]
0

%

Hence by the induction assumption

<i

P A b} A (37 [P A T(7,,0)T

X
(=]

is deducible. Similarly we have

Yo - - - - - .Y
Evo [Q ‘_&— A T(vo,wo)] =!1v0 [FX(w = wo) ,;‘—Gf- T(vo,wo)]
0

‘_fo) A T(v,w)l

{Proposition 4.3.2)

i

15 by
Yo [FE(w

(Proposition 4.3.3) 3\70 [E:X(;r
{Proposition 2.4.11) = FX(HVOI:T:I

T N T(Fgsing))

7
Hence v, [Q = A T(v ,4)] = FX(FA, (P A b))
0

x

8h

So, FA, (3v. [Q -2 AT(70.53)3)= FA, (FX(FA (B A b))
0

But by -the predicate transformer fixed point theorem, we have

Q = FX(w = r}o) = FA, (FX(FA, (P AN V(- b AP).
: 7
Thus, FA, (3% [Q = AT(7p.7)D) » Q.

Yo
By the induction hypothesis, we have that

- Vo - - :
vy [@ = AT(v w1 4, {Q
“o

is deducible.

Since P-ﬂ ~-b+Q also followg from-the predicate transformer fixed
point theorem all of the hypothesislof (*#) are satisfied and we may
conclude that PP} X {Q} (i.e. {P} Cg [b: A ;a1 {Q} s is

deducible where P = { = GO} and Q = {FX(w = Go)]). This completes

"the proof.

To illustrate how rules of inference of the kind described above
may be used, we consider a simple example. Congider the procedure

definition:
X=(n>0)>n:=n-2;Xn:=n+1,1I

This may be considered an instance of the GCS ¢. [b: & A2] where

3 13
b is {n > 0}, A; is n:=n -2, and A, is n :=n + 1. We chow

that {P(n)} X {Q(n)} is deducible where P(n) isbiin and Q(n) is 2|n.

If we let

3
|
—
=
T
1
o

Then

ny
{U A b} A {Hnl [U;(;A T1}

™
{anlEV E; AT1} A, {V}

UA~b-~>vV

all hold so that we may conclude {U} X {V} also holds as an instance of
the axiom given abﬁve. Since P -+ in, [U A P(no)] and Ju, [v.A P(no)]
+ Q we may conclude j={P} X {Q} by using axioms R1, R2, and R3.

The crucial étep in the completeness proof is showing that in order
to prove the true assertion {P} X {Q} it is sufficient to first prove
{w = ﬁo} X {FX(w = ﬁo)}_ where W are the variables active in X and

Wy are new nonactive variables. This observation is originally due to
Gorelick [G075]. Although a simple algorithm can be given for generating
sound and complete axioms for nonregular GC§'s such as the one given for
C3 above, there is a much more natural way of organizing correctness
proofs for nonregular procedures. This method will be discussed in the

next section.

Although the use of non-regular systems of procedure declarations is
commont in programming, the reader may have noticed that all commonly used
contfol siructures are regular. This includes the "while" statement, the
"repeat-until” statement, even the "Zahn" construct. Cne reason for this
situation should be apparent from the discussion above--even simple non-
regular control structures have complicated axioms. Statement patterns
will be.used ffequently only if they are easy to understand, and control

structures which are easy to understand will not have complicated axioms.

86

4.4 Gorelick's Theorem

‘In this section we give a more natural method for handling non-
regular conprol structure (systems of recursive procedures). Instead
of trying t§ find a different axiom for each distinct contrel structure,
we give-a set of five axioms that work for all control structures (systems
of recursive procedures). The first three of these axioms are the axioms
R1-R3 given -in the previous section. In addition we will need

R4 {P} A {Q}
{Ps} A {Qu}

where ¢ .is an admissible substitution. This is the axiom of variabile

substitution given in Gorelick [G075].

R5 {r} Y {Q} F{P} t(Y}{Q} Y, a dummy procédure name
{P} ¥ {Q}

where the procedure X has declaration. X = T(X)}. This is the axiom

of recursive invocation fivst given in [HO71].

The soundness of Axiom R4 follows immediately from proposition 4.3.3
Assume {P} X {Q}. Then FX(P) + Q and FX(P)o = FX{Po) since o©

is admissible. Thus

FX(P)o + Qg
o

FX(Po) + Qo

It follows that {Fo} X {Qo} must hold also and that the axiom is sound.
?he soundness of axiom R5 follows directly from the fundamental

invariance theovem. Assume that {P} Y {Q}HP} 7 (Y) {Q} where Y

is a dummy procedure name. Then if FXi (P) » Q@ holds,

we will have {P} X~ {Q} and therefore by the assumption above

87

1t xh (0
or

p} % (0} since ¥ = by,

It follows that in+l {P} » Q must also hold and hence by the
fundamental invariance theorem that P - RX(Q) or {P} X {Q} holds.

We call a procedure declaration X = t elementary if all of the
procédure calls in t are on the procedure X itself. If we restrict
programs so that the only procedure declarations allowed are elementary .
declaratiohsl then axisms Rl to RS together with the axioms of the
basic set also, give éompleteness. The proof of this fact is originally
due to Gorelick [G075], we include it here since it can be understood very
easily with the toois that we have developed and since we will consider
modifications of this result to total correctness and to programming
languages.with block structure? statig scope and global variables in
later seéctions.

We show that if the assertion language L is expressive (with

A
respect to LE and @) and if we are given a complete proof system
T for LA (relative to &) then {P} A {Q} is true iff it is
provable. The proof will be by induction on the structure of A and 3
as in the last section’the only interesting case is when A 1is a procedure
call i.e. A is X where X = t occurs in the declaration part of
the program. Again, by the argument of the last section we know that
it is sufficient to show that {w = GO} X {FX(w = ﬁo)} is deducible
where W are the variables active in X and w, are new non-active

0

variables.

1 . . .
A more complicated version of R5 is needed to handle the general case
of mutually recursive declarations [GO75].

88

Let 'PO = {w = EOJ and Q = {rX(w = GO)}, we will show that
{PO}_Y {QO}}-{PD} T(Y) {QO}' The desired conclusion {Po} X {QO} will
then follow by R5. The proof of this result is also by a structural

induction~-this time on the structure of T using an induction hypothesis

which is slightly more general than what we really want to prove.

Induction. hypothesis:

Let T(X)- be a statement, let P, Q be predicates then if

{P} = (X) {Q} is true, then

{P,} ¥ {Q) F {P} (¥ {q}

Cazses on 1T:

(1) * is "I, "', or 'u := e": these cases are trivial and will
be left to the reader

(ii) r is b ~» Al(X), AQ(X): if {P} T (%) {0} is true then

F[b - Al(X)’A2(X)] (P) > Q is true, so,
F[Al(x)] (PAD)+Q ~i.e. {P ADb} Al(X) {Q}
and

FLA,(X)] (P A~b)=+Qq i.e. {P A~ D}aAX) {Q]
are also tfue by properties of the predicate transformer R. By the
induction'hypothesis, we obtain
P} Y {Q4} - {PADB} A (Y) {Q}
and
Py} Y {Qu} (P A ~ b} 4,(Y) {Q}.

Combining and using the axiom for the conditional, we get

(pg} ¥ {Q,} (P} b~ A (), a,(Y) {Q}

89

as required.

(iii) t is (Al;Az): proof is similar to (ii) above.

(iv) T ;s X: {P} X {Q} is true so FX(P) -~ Q is true. LA is
expressive.so FX(P) >~ Q is representable by a formula of LA and
is provable in T. Thus from {w = 50} Y {FX(w = ﬁo)} we may derive

-—

{w

¥, A g(ﬁo)} Y {EXG = w)) A P(W)} axioms R1, R2

{w = r}o A P(w‘ro)} Y {FX(w = ‘-"0 A P(w,))} Prop. 4.3.2

(3w, [w, A P(w)]} Y {Tw, [FX(w = Wy A P(w)} axiom R3

(S, [w=w, A Pw)I} Y {FX(Fn, [W = w, A PG)} Prop. 2.4.11
{P(w)} Y {FX(P(w))}

{p} Y {Q} : rule of consequence

We illustpate the above axioms by a simple example. Suppose X has the

declaration

Xze>0)+n:mn-1;Xm=mn+1; X;n :=n + 1, I

: n
we prove that {n = n, Am=0}X{n-= n, Am=29%_13
In order to establish this result it is first necessary to establish a

scmewhat more general result

' n
{n n, Hm mo} X {n ng Am=2 1+ mo}
U
to prove this we assume {n = g Anm-= mo} Y {n = n, Am=2 -1+ m}
and deduce
A A "o
{n = nyAm= mo} (YY) {n = ngAm=2"%-14 mo}

90

where "7 (Y) =(n> 0) +n:=n-1;Y; m :=mtly Y; n:=ntl, I. Clearly,
' n

we have {n = noﬂm =m0ﬂn =0} I {n= nOAm =29 _ lmo};thﬁs we only
need show
{n = noﬂm =m0)tn>0} n:=ml; Y; m:=m+l; Y; n :=pl {n = noﬁm =
n, ' ' ' '
2% - 1"*“6}.
This follows from the string of assertions below:
1) {n = noﬂ'm = mol\n >0} n t=n~1 {n = no—lﬁm = mo} Assigmment
' A no-l no—l
2) {un = no—lﬂm = mo} Y {n-= na—l m = 2 - l+m0} R’-l: g = no
n -1 no-l
3){n=ri0-lAm=20 -1+m0}m:=m+l {n=n0-lﬂm=2 +m0}
. Assigmment
no—l o,
4 {n=n_-1Am = 2 +m}Y{n=n-1Am=2" - 14m} n
0 ¢ 0 0 0
no-l 27 + mO
R = -
o 0
R T
5) {n= ng -1Am =2% . Limg}n := ntl {o = nOAm =27 - l+m}
Assigmment
If 1 - 5 above are combined using the rule of consequence, the desired
conclusion {n = nohm = mol\ n>0l n:=n-1; Yym :=mtl; Yyn :=n+l:
)13
{r= nohm =2%_1. m}, is obtained. Note that in applying Rt to a

precondition - postcondition expression which invelves a dummy procedure

a

name. Y one must use the real procedure declaration corresponding to Y

(e.g. X =21 (X)) in determining whether variables are active or inactive

in Y.

o1

4,5 Total Correctness

In Chaptér 3 and previous sections of Chapter 4 we have dealt

exclusively with partial correctness. We have worked with assertions -

of the form {P} A {Q} which were considered true iff when P was true
initially andf A was executed, then either the execution of A did neot
terminate properlyl or else @ was satisfied by the final state of the
program. Unfortunately failure to terminate properly is one of the most
frequent sources of error in incorrect programs. What we are really interested

in is total correctness--we want to be able to make assertions of the form

{F} A {Q} which will be true iff when P is true initially, A is
guaranteed to terminate,and Q -will hold of the final program state.
Traditionally, proofs of total correctness have been spljt into two parts:

(a) a proof of partial correctness and (b) a separate proof that the

program terminates in a satisfactory manner. In this section we argue

that such a division_is unneceésary and that total correctness is, in
a certain semse, no more difficult to establish than partial correctness.
We show that it is poséible to give a set of axioms for total correctness
which is both sound and complete under an expressibility condition on
the assertion language which is no more restrictive than that used in
the proofs of soundness and completeness for partial correctness axioms.
We begin by giving total correctness axioms for the null statement,
the assignment statement, the composition of statements, the conditional

statement,and the rule of consequence. Since none of these statements

lNote that there are two ways in which a program can fail to terminate

properly (i) by the occurence of an infinite loop of some sort and (ii)
by the occurence of an abnormal condition such as division by zero or
integer overflow. In this thesis we will not treat the latter case.

92

is capable of causing non-termination by itself, the axioms given are
analogous to those of the basic set for partial correctness (see

section H.4).

. 1 (P) null statement
2. 4P -3) X 1= e (P) ' assignment
3. (P) 4, €Q), <Q) A, (B composition

(P).(Al;Az) <{R)

4. {P A b) 8, (o), {PA-D) A, <Q) conditional

PP -E, 40>

5. P »q, {Q) A '(R), R=+5 consequence

{P> a {3}

. Next we need total correctness asioms analogous to RL-R5 to handle
recursive procedures. The first four of these axioms are very similar

to the original partial correctness axioms.
6. (1) a {r) - provided that T does
not contain any free

variables which are
active in A.

7. KBy ALQ), KR A (Q2>
(P, A Q) A(P,A Q)

8. (P(uo)) A (Q(u0)>' _ provided that u is
(3, P(uo)) A(guo Q(uo)> not active in A.
9. {p a {Q provided that{P } A {Q_} is an

{Pa) A {Qo> admissible subsfitution.

93

‘The last axiom (the one analogous to R5) is the crucial axiom for
total correctness-it allows proofs of total correctness to be constructed

which use induction on the depth of recursion of a recursive priocedure.

10. €P(0)> 1(2) €Q),<PUiY r Q¥ F{P(i+1)) 1(x) {Q
T (31 P(i)) X{Q)
where the proéedure ¥ has declaraticn XIE T(X).l
We illustrate the use of the axioms StIElted above by proving that
{n = ng Am= m0> X{n=0Anmn-= 2110) 'is true where X is defined by
X =z(n

Q->m:=1,

n/2; ¥y m = m2,

{even(n) » n :

(n-1)/2; X; m = 2m°))

n:
and even(n) is the predicate which is true if n is an even non negative
integer. In this case pli)s {n = nOA n, < ifAms= mo}, and
Qzfn=0 An = 2n0}. Note that P = {n. = nOA m = mo] is true iff
some P(i1) is true. It is also easy to show that (P(O))T () <Q> is true.
Thus to complete the proof we assume that <P(i)) r (Q) is true and show that
<P(i+l)> (r) (Q) must hold. This follows by the rule for composition of
statements and the rule for the conditional from the chain of six assertions
below.

(1) <even(n-)A n= no.r\ 0 < n, <i+tl Am = mo) n = n/2 (n = nOAn

iAnm-=

lThis axiom is a variant of one originally suggested to theauthor by

M. 0'Donnell. Note that it assumes that the integers are a subset of the
domain of the interpretation. If the domain is finite, a different rule
using the same basic idea (induction on depth of recursion) gives
completeness.

ol

k
(i1) (n =k0/\ kof_iﬁ'm#moﬂ n0=2k0) r (n =0/ n, = 2I<OA m= 2 0)

k n
ZkgAm=2Dm:=n’ (n=0An=22)

(iii) {n = 0 A n,

(iv) (“ evet_](n)'ﬁ‘ n o= no)\ 0 <nj<i+1l Anm-= m0> n := (n—l)/261 = kOA

k, < i/ m=m,An =2k + 1)

0
) {n=k Ak g iam=m An=2k+1>r(n=0An =2k + 1A
m=20>
ko 2 ' g
(vi) (nzoAno=2k0+1Am=2 Ymi=2m’ (h=0Am=20)

i

Steps (1), (iii) (div), and (vi) are straight forward. Steps (ii) and
(v) involve using the assumption <¢{P(i}) r ¢Q) together with axioms

6,7, and 9. Thus, for example, we obtain (ii)} as follows

n
(n = nDA ng < iAmnm-= m0> rén=0Anmn-=2 0> (by inductive assumption)

kO k
<n=k0Akoill\m=mo)r<n=0hm=2 > (axiomgwithc:r:_g)
{no =2k, yr <no- 2!(0) (axiom 6)
<n=k0/\k0<i/\m=m0/\ n0=2kc> »

k
{n=0A n, = 2k0A m = 2 0}) (axiom 7)

The rest of the proof is left to the reader.

The soundness of axioms 1-5 follows immediately from the results of
Chapter 2. Axioms 6-9 may be proved sound by an argument similar to that
used in showing the sloundness of R1-R4. To simplify the soundness proof

for axiom 10 we first prove the following lemma:

95

Lemma-:

Let {Pi}i > 0 be a family of predicates. Suppose that P -*BXI(Q)

0
is true with respect to @& and that if Pi - BX1+1(Q) is true then
i+l - BXl+2(Q) is true also. Under these conditions we may conclude

that for all n > 0 Pn -+ BX{(Q) holds.

Proof: As in the proof of the fundamental invariance theorem
(see section 2.5) we translate the problem into set nétation. From
the hypothesis of the lemma we may conclude that PnE an+l(Q) for all
n > 0. Since BXn(Q)SEBX(Q) the desired result follows immediately.
To establish the soundness of afiom 10, we assume that
{P(0)) (@) (@ and (PUL) r Q) F PGit1) () (Q) are both true.
Let Pi = P(i). Since <p(0)) Q) (b) is true, we see that

Py + BX'(Q) is true. Since (P(1)) r <0} F (i+1)) t(x) €Q) holds

2 T(Xl), Wwe see that if Pi +‘BX1(Q) is true Pi+l - BX1+2(Q)

must be true also. By the above lemma P, > BX(Q) holds for all

and x-V

n > 0. Since Ji P(i) is true if and only if some Pi is true, we
see that I i P(i) - BX(Q) is true or equivalently that (Eli P(i)) X (Q)
is true.

We next turn to the question of completeness. Since the inductive
argument used to prove completness in the total correctness case is
almost identical in structure to that given in the previous section for
partial correctness, we will merely try to indicate the ideas involved--
not give a full proof. Let D be the domain of 4. .ﬁé will assume that:
a) both LA and LE are extensions of LN’ the language of number

theory, and that the symbols of LA(LE) which are common to L

N
receive their standard interpretation under &, i.e. hlE;D.

96

b) there is a predicate "iﬁteger (X)" defined on D which is true of
X iff X 1is an integer (this provides a means of quantifying overn
the iﬁtegers); |

c) for all statements A and formulas Q in L, there is a formula

A
in L, which expresses BA(Q).

A
Note that in ¢) we could just have easily required that RA(Q) or
FA(Q) be expressible (see Theorem 3.%.6). Thus, if we restrict our
attention to interpretations which already satisfy a) and b) we will
not be requiring a stronger notion of expressibility in the total correct-
ness case than was used in the partial dorrectness case.

Let T be a complete proof system for LA relative to #1. Assume
that {0} A ¢{v) is true with respect to . We show that {UD A {V) is
provable using axioms 1-10 above and the proof system T. The proof is
by induction on tﬁe structure of A. Since the .proof is similar to the
one given in section 4.4, we will only consider the case where A
is a call on the X which has a declaration of the form
Xz(b- Al; X3 Az, I). We will show
(i) -<U> X <ﬁ>-is provable if ¢PY X {Q) is provable where

P = BX(w = GO) and Q = {w = GO} (w is the vector of variables
which is active in X and GO consists of new non-active
variables).
ii) There is a predicate P{(i) (expressible in LA) such that
a) P is true iff P(i) is true for some value of 1.

b) (P(O)) () {Q) is deducible.
c) PN r @) F¢G+) 1) Q) holds.

97

Proof of (i):

By assumption (BX(w = x}o_)} X (w = ;-0)

By axioms 6, 7 {BX(w = EO)IA Vw)) X (u = wo A VGr)

Hence C(BRGw = A V@) X (= Wy A V(D)

By axiom 8 (3w, BX(w = Wo A V(W) X (3w Lw =y A Vi,)J)
(BX(@wylw = w A V(w)1 x(aw Lw = w A V(w D

Since V =3w [w = w A‘V(w)] and L-U + BX(V), we get that

{U} X (V) as required.

Proof of (ii):

1+l (w = ﬁo). It is straightforward to show

Choose P(i) = BX
that P(i) is expressible by a formula of LA and that P is true
iff some P(i) is true, -

Since P{0) =.BXl(ﬁ = ﬁb) and x! = 1(Q) we see that
r‘(P(O)) T(Q).(Q); Finally we assume that "(P(i)) T (Q) holds and show
that‘—(P(i+l)) (r) (Q} must hold also. Let U(w, G) = BAQ(G = ;0) =
BAL(Q), then BAx(Q) =3w [Q A T] where T = UGy 59)

and ¢ = R P(_:L'l'l)h b = BAl(_E wl[P(l)c A T1), and

zll

.]
P(i+1) A -~ b > Q(i+l). From BA,(Q) = Hﬁl[qU A1) we get

k(aal[q:m T1) A, (Q). By induction we get l—éilma A T1) A, (Q). From
P(i+t1) A b = BA, (B4, [P(1)0 A T]) we get I‘—'{P(i+1) Ab) A, (T P(i)o AT1).
By induction F{P(i+1) A b) A, @w [P(i)o A TI). Thus by assumption

we have_L-(P(i)) r {Q); by axioﬁ g, l‘(P(i)U) r {(Qo); by axioms 6 and 7,
l'(aﬁl[P(i)c ATDr éal[czc A T1); by rule of consequence, }-(P(;'u-l) A b)
A5 r; A, (Q); by rule for conditional, F(P(i+1)} (b » Als T3 Ays T) (Q)
or k(P(i+1)) t(r) (Q).

Chapter 5

PROGRAMMING LANGUAGE CONSTRUCTS FOR WHICH IT IS IMPOSSIBLE
TO OBTAIN GOOD HOARE-LIKE AXIOMS

5.1 Introduction .

It is well kﬁown that Hoare-like deduction systems for establishing
partial correctness of programs may fail to be complete because of a)
incompleteness of the assertion language relative to the underlying inter-
pretation and b) the inability of the assertion language to
express the invariants of loops. S.. Cook [C075] has shown that if these

S
two sources of incompleteness are taken into account (i.e., by using an
"expressiveﬁ assertipn language togéthér with a complete proof system for
.the assertion language) then sound, complete axiom systems for a fairly
large fragment of Algol may be devised.

We show that there are natural control mechanisms for which it is
impossible to obtain sound, domplete sets of Hoare-like axioms even in this
special sense of Cook's. While such incompleténess is expected with data
structures (e.g. the integers, stacks, queues, etc.), it is new and somewhat
surprising that.it should exist for control mechanisms. These results
suggest that such constructs will be difficult to prove correct and (one
might argue) should be avoided in the &esign of languages suitable for
program verificétion.

The first such programming language feature considered is recursive
procedures with procedure parameters in the presence of global variables
and static scope. This result is surprising since it holds even if we dis-

allow calls of the form Call P(...,P)* and since it is possible to obtain

ata
Calls of the form "Call P(...,P)" appear to be necessary if one wants
to directly simulate the lambda-caleulus by passing procedure parameters.

98

99

" a complete Hoare-like axiom system in the presence of static scope and .
global variables if we either a) allow récursive procedures with vaﬁiable
parameters (call by reference)} but disallow procedure parameters or

b} allow procedure parameters but require that procedures be non-recursive.

Our discussion of b) appears to be the first explicit treatment of
how one can handlé static scope and global variables by means of Hoare-like
axioms. Cook (C075) and Gorelick (G075) both discuss global variables but
the semantics of the programming language that they consider assumes
- dynamic scope. Our proof that it is impossible to obtain a sound, complete
set of axioms for the full language (i.e., without restrictions such as
a) or b) uses a technique developed by Jones and Muchnick [J075] in which
a queue maéhine with undecidable ﬁélting problem is simulated in the runtime
stack.

The second feature that we consider is coroutines. If procedures are
not allowed to be recursiﬁe_then there is a simple axiomatic method for
proving correciness of coroutines which can be shown to be complete. This
method is based on adding auxilliary variables which serve as program
counters see EOW76]). If procadupgé are allowed to be recursive then it
is shown that no such simple method can give completeness. These observa-
tions generalizé in a natural manner to languages with parallelism and
recursion. .

Similar arguments arelalso applicable to a number of other programming
language features including (a) call by name with functions and global
variables, (b) pointer variables with retention, (¢) pointer variables
with redursion, and (d) 1label variables with retention. All of the features

described above can be viewed as being too complicated for a simple

axiomatic description of the type advocated by Hoare [HO71 and HO731 and

100

thus, in some sense, inherently difficult to prove correct.

A number of open problems are stated in section 5.9.

5.2 A.Simple Programming Language and its Semantics.

As in [CO74] we distinguish two logical systems involved in discussions

of program correctness--the assertion language L, in which predicates

A

describing a program's behavior are described and the expression language

LE in which the right hand sides of assignment statements and the booleahs
of conditionals and while statements are specified. Both LA and LE

are assumed to be first ;rder languagés with equality and LA is an
extension of LE. Thus, in particular, the variables of LE will be a
proper subset of the variables of LAf The variables of LE are called
program identifiers (PROG ID) and are assumed to be ordered by the

positive integers. The variables of L, are called variable identifiers

A
(VAR _ID). Let & be an interpretation for L,- Once & has been specified,
meanings may be aséigned to the terms and formulas of LA(LE) using the

standard technique of first order model theory.

A state is a mapping from a finite subset of VAR ID to D where D

is the domain of the interpretation aﬂl' If s is a state, i a variable
“identifier, and 4 an element of D, .then s5[i + d] is the function with

domain. DOM(s) U {i} which is given by

d if v =1
sfi €d] (v) =
s(v) if v# i, v € VAR ID
Similarly, if- A < DOM(s) g then s A is the function with domain A which

is given by

lﬂote that the definition of state given sbove is different from that used
earlier in the paper.

101

sA(v)=S(v) for v €A

In particular DEL(s,i) is-the function with domain DOM{s)- {i} given by

DEL(s,1) = s{oues) (i}

A

xl,xz,...,xn then we will use the notation P(s) to mean P s(xl),...,s(xn)

If P is a formula of the assertion language L, with free variables

x .".x
1? **n
5

An environment W is a mapping from a finite subset of PROC_ID to

FORMAL_PARAMETER LISTS X STMTS. Informally w (g) = {(%;P), K) means
that the procedure with name q has declaration "q:proc (X:p); K end"

where x are the formal variable parameters and p are the formal procedure

parameters. The notation =[q +_((§§S),_K)] is defined in a manner similar to that
given above for s[i < al and sﬁould be self explanatory. o

The meaning functio;, M= %& associates with a statement A, state s and
environment 7§ a new state s', Intuitively s' is the state resulting if
A 1is executed with initial state s and intitial environment T. The
définitioﬂ-of M is given Operationally in a rather non-standard manner which
makes extensive use of renaming. . This type of definition has the following two
advantages: i

a) It is very closé to the original statement of the copy rule in the

algol 60 report [NA63] -- thus there should be no question that we are

using static scope.

b) It simplifies the proof of soundness and completeness for the

Hoare~like axioms given in later sections. The definition of

102

MLAT (s)(m)- is by cases on A:

-

l -
(1) A is "begin new x; B end” * DEL(M [begin B %;—and] (s*)(m), xl)

where i is the index of the first program identifier not appearing

in A, 7w, or DOM(s) and s' = s[x* +-e0].(e0 is a special domain

element which is used as the initial value of program identifiers.,)

1

(2} A is '"begin q: proc(XP); K end; B end" - M[begin B %;vemd](s)(ﬂ')

where i is the index of the first procedure identifier not
) i
occuring in A or W and W' = Alq* +« {{x:p), K'%f)]‘ Note that
we are assuming that the syntax of allowable programs has been
) : Y

restricted to require that procedures be declared before they are

used,

{(3) A. is "begin B 3 E@ end" + M{begin B, end] (M[ﬁg(a)(ﬂ))(w)"

(8) A is "begin end" » s

(5) A is "x := " » g .where s' = s[x « a[é(s)J]
b MEA,] (s)m) if @L(b(s)] = true
(6) A E "h Al,Az" -3 ’
H[A2] (s)(r) O.W.
M[A; B*A] (s)(mw) if glw(s)] = true.

(7) A is "p#ato
) s ' Q.W.

("b*A" is our short-hand notation for the statement "while b do AM

(8) A Ii_s:' "eall g(a: P)" » M[K]'(s)(n) where 7(q) = {(X:T), X).

Xitjan
L TR

Hére a is the list of actual variable parameters and P is the 1list

of actual procedure parameters. Note that the entries in a must

be simple program identifiers.
If P 1is a formula of the assertion language Ly “which has free

variables X1a%paeeeaX o then we identify P with the set of all those

states s with domain {x_,x.,...,x } such that if s(x.) = ¢, Ffor
1272 I 1 1

: P Cqyseve,nl
1<i<n then 1 m 2. By convention the predicate TRUE is identified
- = 17777 0%y '

103

with the set containing the "empty" function s: ¢+ b, while the
predicate FALSE is identified with the empty state set. Under these
conventions note that the implication P + Q will be true with respect

te & if

¥ s[s EP-‘-‘#SI € Q]
’ free(q)

where free(Q) Is the set of program.identifiers which are free in Q.
We will be concerned with partial-correctness assertions of the form
{P} A {Q} /D where A is a plogram statement, P, Q are formulas of

L, .and D is a set of proceduwre declarations.

5.2.1 Definition:

We say that {P} A {Q} /D is true with respect to q iff

vs, s'[s € P A M[A] (s)(m) = s'=> s € Q] where
- free(Q)

T is the environment corresponding to D, i.e. w(q) = {(X:p), K
iff "q: proe (x:p); K end"” € D.

This is the usual definition of partial c;ar'rectness. if {p} A {o} /D
is true ‘;rith respect to A, We.will wWrite Fa {P} A {Q}/D. Note that in
order for l=& {P} A {Q}/D we are implicitly requiring that free (Q) €
free (P). The program iden{'ifier's which are global to A or to some

procedure in D must also comprise a subset of free(FP).

5.2.2 DYefinition:

We say that LA is -expressive with respect to L. and @ iff for

E
all A, Q, ® there is a formula of LA which expresses R[A] (3) (Q)

1oL

(i.e. TFLAT {(mM){Q)) where

{s .DOM(S} consists of those variables which are free in

RLA] (M)(Q)

Q or glcbal teo A or some procedure in T and

MLAT (s)(w) * or - ML[A] (s)(mW) € Q
' free(Q)

and

FIAY (M@ = (2] (o) s e a).

5.2.3 Proposition:

Suppose that L, 1is expressive relative to L. and &, let 7 be
the environment correspdndipg to D, then

(@) FgfRIA] (1)(Q)} & {Q}/D

(b) |=a'{P} A {Q}/D3 FaP > R[A] (%) (Q)

Proof;
(a) s € REAJ (m)(Q) and M[A]J (S)Gn) = s3' implies that

s', € Q.
free{Q)

(b) (=) Suppose that {P} A {Q}/D is true, then s € P implies that
either M[A] (5)(m) * or MLA] (s)(w) € Q. Hence
free(Q)

s € P implies s
- Ifree(R[A] @)@Q)). € R{A] (m)().

Thus Fﬂ P > R[A] (T)(Q).
) s € P implies sI € R[AD (m)(qQ),
. free(R[A] (m)(Q))
Thus if s € P and s' = M[A] (s){T) +then s'l € Q.
.) free(Q)
Hence #a {P} A{Q}/D.

Thus, we see that R[A] (r} (Q) is the weakest precondition corresponding

to A, 7, and- Q. Similarly, we may prove that F[A] (W)‘Q) is the

strongest post condition correspondingto A, 7, and Q. Note that it is

relatively easy to come up with examples of situations in which the assertion

105

langunage LA' is not expressive with respect to the expression language
LE and 8. Cook [CO075] gives the example in which the assertioﬁ language
LA and the expression language are both the language of Presburger
Arithmetic. Mitchell Wand [WA76] gives a different example of the same
phenomenon. |

Fortunately, more realistic choices for LA’ LE’ and & do give
expressibility; If LA and LE are both the full language of number
theoryyand @ . is an interpretation in which the symbols of number theory
receive their usual meanings, then LA is expressive with respect to LE

and & . Also, if the doskin of & is finite, then we have expressibil-

ity.

5.2.4% Proposition:

If Ly s LE are first order languages with equality and the domain
of & is a finite set, then LA will be expressive with respect to LE
and a.

BEEEE: Let D be-the domain of € ‘and suppose that IDI< ® . [et
A, Q, and 7 be given. Suppose that Xpse-erX are the variables which
occur free in A, Qs T. Because of the finiteness of D there are only

finitely many (say m) n-tuples (ai...aa) such that if we define

s.(x.} = a,7 then either MLAd(s,(m)) 4 or M[AJ(s.)(W) € Q.
o ' 3 .] free(Q)

Let R = v X = aj A X = aj Ao A x = aj s, then

. 1 < j <m 1 1 2 2 n n

it is not difficult to show that R expresses R[A] (m)(Q).

5.3, Hoare-like Axioms for Static Scope, Global Variables, etc.

In this section we give a deductive system for handling

106

(a) static scope, (b) global-variables, and {(c) nonrecursive pro-

cedures with procedure parameters which is both sound and (in the sense of

Cook) complete.

»

. i
(H1) (oA x* = e,} begin A %;—end {vi/p
{U} begin new x; A end 1Vi/D

where i is the index of the first program identifier not appearing

in A, D, or P.

i . i
(H2) {U} begin & %I- end {V}/p U {¢*: proc (z:p); X %I-end}

{U} begin q: proc (z:$); K; end; A; end {V} /D

where i is the index of the first procedure identifier not
appeariﬁg in XK, A, or D.

(13) {u} A {v}/Dl
{U}Ia {v}/D2,

provided that Dy S;D2 and D2 does notcontain the declarations

of two different procedures with the same name. .

(H4) (a) {U} A {V}/D —
{U} begin A end {V}/D

(b) {u} A, {VI/D, {V} begin A, end {W} /D

{U} begin A5 A, end {W}/D

(H5) - (H8) Usual axioms for assignment, conditional, while, and consequence
(see [HO71]). Note of course that each of these axioms must be

modified to make explicit the set D of procedure declarations).

(H9) {U} K g—fV}/D which includes P
15

TR

{U} call h(a:p) {V} /D U {h: proc {x:p); K end}

provided that D does not already contain a Procedure declaration

"h: (x:p'); K' end" different from 'h: proc (x:p); K end".

107

Note that axiom H9 is extremeiy simple; it merely states that if we can
prove the body of the procedure correct when we substitute the aétual
parameters for the formal pdrameters then we may conclude that the procedure
call is corréct. We illusirate how these axioms may be used to handle
static scope:bylconsidering a simple example involving nonrecursive

procedures with procedure parameters.

Exampie._{trﬁe}
begin
h: proc(:p}; begin new xj3; x := 13 call p(z); end
f: proc();
begin new x;

g: proc(y); y := x; end

K o= 2,
" ecall hig)l;
end ;
end;
z = 3; |
call £);'.
end;
z=21¢
The reader should verify that this preconditon -- post condition assertion

is correct with respect to the semantics given in section 2 {static scope).

Note also that if dynamic scope is used,the correct post conditioen is

z = 1.
Proof: HS
(1) {x'=2}z:=x" {z=2)}9¢
H9 ,Hua

~
N
—
r-—
®
]

2} begin call g'(z) end {z = 2}/ {g': procly); y := x'; end}

(3)

(4)

(5}

(8)

(7)

(8)

(%)

(10)

(11)

108

{xt = 2 Ay = e, begin -x" := 15 call g'(z); end {z = 2}/
{ g: proc;...x'...end} H5, Hub
{x"' = 2} begin new x x -:= 1; call g'(2); end {z = 2V

{g: proc...x'...end} Hl
{x' = 2} can2 h(:g) {z = 2}/

{g: proc...x'...end, h: proc...end} H9
{x! = eo} begin &' := 2; call H(:g) end {2z = 2}/

{g: proc;..x'...end, h: proc...end} ~ H5, Hya, b
{x' = eo} begin

g: proc(y); y := x'; end;

x' = 2,
call h(:g); .
end; H2

{2z = 2} / {h: proc...end}
{true} begin .
new x;
£; PPOC{&); y := X3 end
X 1= 2

call h(:g);

end; Hl
{z = 2} / {h: proc...end}
{truei call £() {z = 2}/
{h: proc...end, f: proc...end} H8

{true} begin =z := 3; call £(); end/
fh: proc...eqd, f: proc...end} H5, H4a, b
{true} begin

h: proc (:P);...endg

f: proc ()j;...end;

uy

z = 33 : By two applications
of H2.
call f£();
end;
{z = 3}/¢

This completes the proof. In the next section we will show that axioms

Hl1 - H8 above are sound and, in a certain sense, complete.

5.4 Soundness and Completeness

Consider the programming language desiribed in section 5.2 with
the pestriction that procedures be nonrecursive. (Thus we are
allowing: (a) static scope, (b) global variables, and (c) nomrecursive

procedures with procedure parameters.)

Theorem: 5.4,1

For al1l Ly» Ly, and & if (a) T is a complete proof.system for
LA relative to & and if (b) L, is expressive relative to L. and a,

then for all partial cgnrectness assertions of the form {P} A {Q}/D we

have

Fa®}a ios by e} a {oko

Proof: The proof will be divided into two parts. In the first

part we prove soundness i.e. if bk . {P} A {Q}/D then F‘a {fp} A {o¥/D.

In the second part we prove completeness, i.e, if E&{P} A {Q}/D then
Soundness: We must show that for each of the rules of inference H1-HS
that if all of the hypothesis of the rule are true (with respect to Q)

then the conclusion will be true also. Here we examine H1, H2, and

1190

H9 -- the remaining ones are left to the reader.
. i ’
X
First Hl. Assume that {U A x' = eo} begin A = end {V}/D

is true respect to #. Let T be the environment corresponding to
D. Thus by the definition of partial correctness we have
i

— end] (s)(M)=D s € v]
X free(V)

V s,s'[s €EWAxI =% Asgr - M[begin A
Since x- does not occur free in V, if we let sg" = DEL(S',Xl)
then s! cEv iff s! € V.

free(V) : free(V)

Thus
. i .
v s, s" [s €(UA x = eo) A st = DEL{M[begin A Ex_ end] (s)(T), x*)°

= s" € v]
. [free(V)

Let s* = DEL(s,x). Then
. i : i
M[begin new x:A end] (s#)(y) = DEL{M[begin A& x_x_ end] (s)(m), x)

Hence it follows tha\t

V s%, s"[s* €y Asn o= MLbegin new x;A end J(s%) (%)=l =" € V]
free(V)

or '=a{U} begin new x; A end {V}/D.
Next we consider H2. Assume that]
" F9® {U} begin A q—ql;end vi/p U {qi.: proc(x:p); K %end}
is true with respect to 8. Let = be the environment corresponding to

i ==y . al
D and let T = g + {(X:p) K E-)].

By the definition of partial correctness

V s, s'[s EUAs' = Mibegin A Ei end] (s)(mw') > g € v]
d free(V)

- - _ i
But M[begin q: proc(x:p); K end; A end] (s)(") = M[begin A %—end] (s)@mr)

111

Thus

Vs, s'[s €U As' = M[begin q: proc (x:p); K end; A end] (s)(m)

: s’ E v]
= 7 |zreen)

or
_Fa {U} begin q: proc (x:p); K end; A end {V}/D as required.

Finally we consider H9. Assume that {U} K %-g-{v}/n which

xp
includes P is true in &. Let T be the environment map corresponding

to D then we have by the definition of partial correctness that

v os,s's €U As' =ML K3 P 5 () m=> e € v
' X P free(V)

But Mleall q(a:B)1(s)(m*) = mik 2 £ 7 (s)(m)

%1 e
L=TEL. |

where 7' = x[q « ({(x:P), K)]. Since recursion has been disallowed, we

have

MK J (s)(w') = M[X J (s)(m)

CARET
o
X
L-FN L

thus

\
MLcall q (a:p)} (s)(n')

MLK 1 (s) (m)

LENTCX:
i

It feollows that

V¥ s, s'[s €EUA s' = Mlecall q (a:B)] (s)()=> s’ € V]
' free(V)

or that ﬁf]ﬂ call q (a:PMV}/D U {g: proc (x:p); K end}

which is the desired conclusion. The other cases H3-H8 are similar

to the ones considered above.

Completeness: We show that if T is a complete proof system for LA

appearing free in A, D, or free(U) then

112

relative' to & and if L, is expressive relative to L. and &, then

A E

for all partial correctness assertions of the form {U} A {V}/D.

Fa{u} 5 {v}/D = by g (U3 4 {v)/

The proof will be by -induction on the structure of A. We will show
that I—H,T {u} A {\.._’}/D if A 1is an atomic statement of the |
prdgraming language (e.g. an assignment statement). We will also show
that if A is a composite statement (e.g. "begin new x; B end" or
"while b do A") then to establish {U} A {V}/D it is sufficient to
first establish {U'} A* {V'}/D where A' is either shorter than A
or involves fewep procedure calls.

Case(1): Suﬁpose that A is "begin new xX; B end" and that {U}
begin new x; B end {V}/D is true with respect to Q.

Then by the definition of partial correctness |

V s, s'[SE€U A s' = Mlbegin new s; B endl (s)(m)=>s" € V]
- free(V)

where T is the environment corresponding to D. But

M(begin new x; B end] (s)(m) = DEL(M[begin B % end] (s*)(w), xi)
where i Iis the index of the first program identifier not appearing
in A, m, or DOM(_s) and s* = s[xi <+ eol. Since xi‘ does not occur

free in U or V, we have

{(a) if s*=s[xl+eoj then s € U iff s*EUAxi=e and

0!
(b) if s' = DEL{(s",x") then s' CV iff s" c V.
. free(V) free(V)

It follows that if 1 is the index of the first program identifier not

. i
Vv sk, s"sFe A xt = eo) A s" = M[begin B _x? end](s®)(m)

st € V]
ﬁ lfree(V)'

113

Applyiﬁg the definition of parfial correctness again ﬁé have that
{vAxt= eo} begin B %;— end {v},p. |
Since "begin B %;; end" ig strictiy shorter than "begin new %; B
end”, we @ave by the induction hypothesis that P'H;T{JA xi = eJ
begin B'%;-end {ﬁ}/D. |

Using the fact that i is the index of the First program identifier

not appearing in A, D, or U, we may use Hl to conclude }“

H,T
U} A {v}/p as required.
Case (2): Suppose that A is "begin q: proc (%:p); K end; B end"

and that {U} begin q: proc (x:p); K end; B end {V}/D is true with
respect to . By the definition of partial correctness
¥V s,s'[s €U A s' = M{begin q: proc {x:p); K end; B endl(s){w)

= s’ €v]
' Ifree(V)

where T is the environment corresponding to D. But M[begln q: proc
(%:p); Kend; B endl(s)® = M[begin Bg—-endJ (s)(™) where i is
the index of the first procedure identifier not occurring in A or

T and W = ﬂ[q « {(x: p), 1)]

thus '

' : i :
V s, s'[s €U As' = Mlbegin B i~ end] (s)(T* y==hg? € v]
d free{V)

. i
If we let D' bhe DU {qlz proc {x:p); K %r end’ then ™ is the

environment corresponding to D' and by another appllcatlon of the
definition of partial correctness, F: {u} begin B S__ end {V}/D .
Since "begin B %;-end" is strictly shorter than "begl? q: proc {x:p);
K end; B end" we conclude that — H,T fU} begin B %i-end {v}/p.

It follows by axiom H2 that I—;1 r Wha p also.
¥

Case (3): Suppose that A 1is “b*Al" and that {U} b*Al vl/p is

114

true with respect to 8. Since the assertion language Lh is expressive

with respect to LE and @, we know that there is a formula in Ly

which represents R[b*al] (n)(V) where w is the environment corres-

ponding to D. The reader may verify that each of the following assertions

13 correct.

(1) Fau +R[b‘-’=}11](11)(v) and hence k. U > R[b*A,] (M)(V) since T is

assumed to be a complete proof system for LA'

(ii)Fa[REb*Al] (m)(V) A b} A} RIB*A,] (@WIVIMD —- so |'-H,T {R[b#a,]
(M) A bl A {R[b*ﬂl] (m)(V)}/D follows by the induction hypothesis

since Al is shorter than b*Al.

(iii) hhg[b*Ai] (mY(V) A ~ b+ Vv and hence "H,T R[b*ﬁll (FHVIA

“b >V since T is a complete proof system for LA'

The desired pesult I_H,T {u} & {v}/D foliows by and application of the
while axiom and the rule of consequence.

Case(u): Suppose that A is "call q(a:P)", +that {U} ecall q(a:pP)
{V}/D is true with respect to @, that m is the environﬁent

corresponding to D, and that g(q) = {(x:p), K). By the definition

of partial correctnesss

Vv s, s'[s €0 A s' = M{canl q(a:P)1 (s)(y)=s* € v]
: . free(V)
But Mlecall q(a@:F)1 (s)(m = nixk 2& 7 (5y(m)
Hence
Vv s, s'ls €U & s' = Mk %-E—] (s)(m)=ds? € V]
X D free(V)

and we have

Fa {u} x

does not

ANE TR
=BT

{v}/D. since recursion is not allowed, K

X1
Y| ot

involve the procedure q. Thus by the inductive assumption

P
i—H’T u} x 2 Ewism,
X p

115

By axiom H9 we get

-

LT {P} ecall qfa:P) {Q}/D U fa: proc(x:p); K end}

Since "@: proc(x:p); K end" € D, we get the desired result that

fh’T{P} call q(a:P){qQ}/b.

Cases 5-8 correspond to A being one of
a) "begin B; Bf end"™
b) 'begin end"
c) Mx = e"
L1 . R
d) "b - Al, AQ

Since these cases are handled in a manner similar to that used in cases

1-4, they will be left to the interested reader. This completes the

proof of theorem 1.
If we disallow proced&re ﬁarametefs, then it is possible to obtain
a complete set of Hoare-like axioms even if the procedures may be
recursive. The axioms given in Gorelick [G075] can be used almost
verbétim in spite oﬁ;thé static scope requirement. We replace H9 by axioms

Rl -~ R5 below.

Rg {P} calir (x) {o¥/p =P} K(x) {9l/D, »r a dummy procedure name

{P} call q(x) {Q¥/D U {q: proc(x); K(g); end}

provided that D does not contain a procedure "q: proc(x); K' end"

which is different from "q: proc(x); K{(q) end".

'5.4,2 Definition:

Let the procedure q have declaration "q: proc(x); K end."

116

A variable y is active with respect to "ecall qia)" if y 1is either
global to K or y is in a (i.e. is an actual parameter of the call).
If y is not active with respect to “call Q(a)", then y is said to be
inactive (with respect to that particular call). Similarly, a term of the
assertion language LA is inactive if it contains only inactive variables.
A substitution O is admissible with respect to "call q(a)" provided

that it is a substitution of inactive terms for inactive variables.

R2) {p)_call qfa) (Q}/D ovided ¢ is admissible with respect
{p } call q(8) {Q}/D D reall S ss respect

R3) {P(u_)} ecall q(3)}{QCu)}/D
0 0 rovided that wu. is inactive
- TRPEIT call q@) (d u Q)10 P P

»

in "eall q{(a)"

(Rule R3 above is not absolutely necessary but its inclusion simplifies

the proof of completeness.)

Rt) {8} call q(a) {Q}/D provided that no variables which
{P AT} call q(a) {Q AT}/D occur free in T are active in
' . "eall qfa)".
R5) {P} call q(x) {Q}/D

{P

provided that no variable free in
P or Q@ occurs in a but not in
in the corresponding position of

X, {(x is the list of formal

parameters of q).

3/D

TREY

} call q(a) {q

PR

Theorem 5.4.3;

Let H' be the set of axioms H1-H8 together with axioms RL - R5.
Restrict the programming language of section 5.2 so that procedure
parameters are disallowed. For all LA’ L. and &, if (a) T is a

caomplete proof system for L, relative to & and (b) L, is expressive

relative to LE and ﬂ,then for all partial correctness assertions of

117

the form
{P} & {Q}/D, we have

l:a {p} A {Q}/:D¢=}l‘h’,r {F} A {Q¥/D

The proof of theoremS5.2involves modifying the argument of [GO75] to
apply to static scope. Since static scope may be handled by the

tecﬁniques described earlier in this section, the proof will be omitted.

5.5 -Recdursive Procedures with Procedure Parameters

In this seé¥ion we prove that there cannot be a sound, complete
set of Hoare-like axioms for a programming language with (a) global
variables, (b) static scope, and (c) recursive procedures with
prdcedure parametefs (sound and complete in thesense of section 3. The
effect of stronger notion of expressibility, ete. will be discussed
later.) To make the theorem stronger, we disallow calls of the form
Call P(...P) i.e. we require that actual procedure parameters be names
of procedﬁrés with no procedure formal parameters. Calls of the form
Call P(...,P} appear to be necessary in order to directly simulate the

lambda calculus by parameter passing.

Main Lemma 5.5.1;

Consider a programming language allowing recursive procedures with
procedure parameters (assuming static scope and allowing global variables)
then the halting problem for such a language is undecidable even under a

finite interpretation #.

The proof of the lemma uses techniques developed by Jones and

Muchnick [J0751. Before we outline the proof note that the lemma is of true

for flowchart schemes or while schemes since in each of these cases if

fﬂ| < ® the program may be viewed as a finite state machine, and we may

test for termination (at least theoretically) by watching the execution

118

sequence of the prégram to see if any progfam state is repeated. ‘In-the
case of recursion one might expect that.the program could be viewed as a
type of push down automaton (for which the halting problem is decidable).
This is not the case if we allow procedures as parameters. The Algol 60
execution rule, which says that procedure calls are elaborated in the
environment of the procedure'’s declaration rather than in the environment
of the procedure call, allows the program to access values normally buried
in the runtime stack without first "popping the top" of the stack.

As in Joﬁes and Muchnick [J075] we show that it is possible to
similate a queue machiﬁe which has three types of instruction a) Enqueﬁe
X -- add the value of x to the rear of the queue, b) Degueue x --
remove the front entry from the queue and place in x, and c¢) If
x = y then L1 else L2 -- conditional branch.

(By using procedures with procedure parameters instead of call by name as
in anes and Muchnick, we are able to avoid introducing any non Algol
B0 constructs.)

—

Suppose that the Queue machine program to be simulated is given by

then the simulation program (in the language of section 5.2) has the form
Begin | |
fiew I, Dummy, Xl,...Xn;
diverge: proc; while true do null end: end diverge;
sim: proc(I:back);
begin new top;
up: proc{end_of queuve, next to last:);

begin

119

If. top'< O

then ﬁegin
end of queue := top;
negt;tq_}ast = 1;
end;

else begin

~call back(end of gqueue, next to
last:);

If next_to last=1

then begin
top := —top;
next to last=0;

end;

end;
- end up;-
If I=1 then “Il" else

If I=2 then "12" else

If I;K then "IK" else null;

end;

. end sim;

T:=13

~call sim{I: diverge);

end;
where "Ij" is described by the three cases below.
(a) If Ij is "j:enqueue A;" then replace by:

Ibegin

If I=1 then top := -A; else top := A;
I := I+1;

Call sim(I: up);

1290

return;
end;
() 1f Ij_is "j :dequeue x" then replace by
bégin.
call back (x: dummy);
X 1= —X;

1

I+1;
end; |

(¢) 1f Ij is “If xp = x_ then go to nﬁ then replace by
-begin

Ifx =1x
P m

then I := n elgse I := i+1;
end; . B
Note that I must have range of values 1 S_I <K+l IF [@ < K+ 1
then it is necessary to represent I by Il, 12...1d when Il, 12,...Id
is the binary representation of I. This also eliminates the need for
the arithmetic operation I = I+l. The variables X)-+-X represent the
program ﬁariables of the program P which is being simulated.

Now we return to the proof of the main theorem of this section.
Suppoge tﬁat we had a sound, complete.Hoare-like proof system H for
programs‘of the type described ét the beginning of this section. Then for
all L, Lg, and], if
1) T is a éomple'te proof system for LA’ and § and

2} LA is ‘expressive relative to L. and '§, then we should have

P 8 @ =h, e a ¥/,

L, relative to @ . Secondly note that L

121

We show that this leads to a contradiction. Choose fi to be a finite
interpretation with @] > 2.

First observe that T may be chosen in a particularly simple
manner; in fact, there is a decisjon procedure for truth of formﬁlas in

is expressive relative to

A A

LE and ﬁ. © This was shown by proposition 5.2.4 of section 2 since &
is finites Thus both hypothesis 1) and 2) are satisfied. From the
definition of partial correctness, we see that {true} A {falsel/d

iff A .diverges for the initial values of its global variables. By the

main lemma above, we conclude that the set of program A such that

Fh'{true} A {false} /¢ tholds is not‘r.e. On the other hand if we had

. l:a{true} A {false}l/ped b, | {true} A {false} /¢

Then we could enumerate those programs A such that ha {true}l A {falsel /¢
holds (simply enumerate all possible proofs and use the decision
procedure for T to check applications of the rule of consequence). This,

however, is a contradiction.

5.6 Coroutines

A coroutine will have the form:
coroutine; Ql;' Q2; end

Ql is the main-routine; execution begins in Ql and also terminates in

Ql (the requirement that execution terminate in Ql is not necessary but
simplifies the axiom for coroutines). Otherwise 'Ql and Q, behave in
identical manners. If an "exit" statement is encountered in Ql’ the

next statement to be executed will be the statement following the last

"resume" statement executed in 02. Similarly, the execution of a "resume"
Statement in 02 causes execution to be restarted following the last exit

statement executed in Ql. If the "exit" ("resume™) statement occurs within

! 122

a call on a recursive procedure then execution must be restarted in the cor-
rect activation of the procedure. A simple example of @oroutines is given

below:
coroutine;

begin
while x-y.< z do
X = %42
¥y o= y+2
exit;
end;
endg
begin
while true do
y = y-13
resume;
y = y-2
resume;
end;
end;
end;
Noté that if x and ¥ afe zero initially, then when the coronutine

terminates y =];/51.

5.7 Semantics of Coroutines

M[A] (s)(r) 1is defined as before except for M[coroutine 5.7
Q3 Q, end] (s)(7) which is defined in terms cf two mutually recursive

procedures Cl and C2 {(one for each zcroutines) as follows:

123

M[coroutine Ql; Q2 end] (s)(x) = Cl[Ql,7n QQ,.W, 3] where

Cl[Rl,-nl, R,>Tyo s] 1is defined by cases On.Rl

: i
(1) begin new x; A eniy Ri + Cllbegin A %:-end; R, nl, R2, LY 5']
where i is the index of the first unused progran identifier and

st = slxt « e 1.
0 i
(2) begin q: proc(x); K end A end; Ri =+ Cl[begin A %r end;

R}, n’,;Rz, Tys s] where 1 is the index of the first unused procedure

name and @' = ﬂl[qi + ((i), K]

1 .
(3) begin A end: Ri f C1[a; Ri, T, 5 Rz, My 5]
() eéexit; Ri > C2[Ri, LD R., Tys s]

(5)-(8) cases corresponding to assignment, conditional, while, and
procedure call -- see gsection 2.

(9) A (i.e. R, is the eméty string) + s

The definition of C2[Rl""1’ RQ: Ty s] is the dual of the definition
given above except that C2R , ﬂl,./&, Tys 51 = CLLR,, wl,.l\, s s1.
Thus execution of the coroutine always terminates in Ql. Note also that
the semantics given above do not allow for nested coroutines. The
_semantics could be modifie& to handle this case,but nesting of coroutines
is unnecessary in drder to il;ustrate the problem that we are interested

in here.

5.8 Axioms for Coroutines (no recursion)

In this section we give a."good" set of axioms for coroutines
(nonrecgrsive procedures only) and describe a technique for éroving
correctness of coroutines which is based on the éddition of “auxilliary
variasles". This téchnique was suggested in part S. Owicki. It is
different from the techngiue described by Clint [CL73] in that the auxil-

liary wvariables represent program counters

124

(therefore have boundedmagnitude) rather than arbitrary stacks.

Axioms for Coroutines:

c1.

Cc2.

3,

Cl.

{p'} exit (R'}} {P A b} Q {R}

{Rf} resume {P'} } {P' A b} Q, {R'}

{pA b} coroutine Q3 Q, end {R}

provided no variable free in b is global to Q, -

{pr} exit {0}
{P A c} exit {QAc}

provided that C does not contain any free variables that are
changed by Q,- (Here we assume that "exit" occurs in statement

[} s - ™
Ql of "coroutine Ql’ Q2 end ?

{F} resume {0}
fr Ac} resume {Q A ¢}

provided that € does not contain any free variables that are
changed by Ql' (Here we assume that "resume" occurs in statement

Q2 of "coroutiQF Ql; 02 end") ,

Let AV 'be a set of variables such that x_e AV =>x appears in
'8' only in assigoment vy := E, with y € AV, Then if P and Q
are assertions which do not contain free any variables from AV and
if S is obtained from S' by deleting all assignments to

variables in AV, then

£P] st {q} (This axiom was taken
{P} S {Q} from [oW76].)

125

We illustrate the above axioms with an example. We show that

{x=0 A y=0} R {y = [2/31} where R is the coroutine given at the
beginning of section 7. Our strategy in carrying out the proof will be
to introduce auxilliary variables which distinguish the various "exit"
and "resume" statements from each other and then use axiom C4 to delete
these unnecessary variables as the last step of the prpof.

Thus we will actually prove

{x=0 A y=0}
- i= 03
3 =03
coroutine;
Begin
while x-y<2z do
X ¥ x¥2;
y = y+2;
i=1;
exit,
end;
\end;
-Begin

while true do

y = y-1;
j o= 1;
resume;
y = y-23
3= 2
resune:

end;

126

end;
{y = Tz/37}
Choose - P = {x=0 A y=0 A i=0 A j=0}, b = {j=0}
R={y =Tlz/31}
P o= {(x=2 A y=2 A §=0) V (x=4y-8 A §=1) V (x=4y-6 A 5=2)}
R = {(x=uy-2 A j=1) V (x=ty N j=2)} ‘

The invariant for the while loop of the first routine is

I, = {(x=0 A y=0 A 5=0) V(x=ty-2 Ax-y <zhAj=1)¥

(x=4y A x-y < z+1 A j=2)}.

The invariant for the while loop of the second routine is

12 = {(x=2 A y=2 A §=2) V {x=ty-6 A §=2)}. 1t is easily checked using-
axioms C2-C4 togetﬁer with the axioms for the assigpment statement and

the while statement that

{P'}exit{R'}P'{P} Q {R}

{R'} resume {P'} F {P'A b} Q, {R'}

N\
The desired conclusion then follows by Axiom Cl.
The technqiue of adding auxilliary variables is easily formalized (the
pattern should be clear from the above example). Thus, in general, we

are able to prove:

Theorem 5.8.1

Consider the language described in sections 5.6 and 5.7 including the
coroutine statement but requiring that procedures be non-recursive.
Let H" be the Hoare-like axiom system consisting of axioms H1-HS

. together with C1-C4. If T, LA’ L and @ satisfy the conditions

E’

127

A) T 1is a complete proof system for L, and a and

B) LA is expressive relative to LE and 8, then

lza{p} a {Q}=> }-H,T {r} a {Q}.

5.9 C(Coroutines and Recursion:

We show that it is impossible to obtain a sound-complete system of
Hoare-like axioms for a programming language allowing both coroutines and
recursion provided that we do not assume a étrongér type of expressibility
than that defined inm section 2. (We will argue in section 10 that the
notion of expressibility introduced in section 2 is the natural one. We
wiil examine the consequences of adopting a Stronéer definition of

expressibility.)

Lemma 5.9.1.

Consider the programming language described in section 7 with
cprdutines and recursive procedures, then the halting problem for programs
in sueh ablanguage is undecidable even under a finite interpretation §.

The proof of the lemma is similar to the proof of the main lemma of
section 5.5;_howev;b this time we reduce to the halting problem for a
two stack machine rather than a queue machine. The simulation program
will be a coroutine with one of its component routines controlling each
of the two stacks. Each stack is represented by the successive
activations of a recursive procedure local to one of the routines. Thus,
stack entries are maintained by a variable.local to the recursive
procedure, deletion from a stack is equivalent to a procedure return, and
additions to a stack are accomplished by recursive calls of the procedure.

The simulation routine is given in outline form below:

128

Prog counter := 1;
Coroutine
bggin
stack 1: proc(empty);
' new top, progress;
progress := 1;.

while progress=1 do

if prog_pbunter

if prog_counter

I
if phog_counter =

end;
end stack 1,
call stack 1 (1);
-end;
 begin
stack_2: proc (empty);
new top, progress;
progress := 1;
while progress=1 do

if prog_counter =

if prog_counter =

if prog_ﬁbunter
end;
end stack 2;
call stack 2 (1);

end;

1°°°° K K

1 then "Il“ else
2 then “12“ else

K then “Ik" else NULL;

1 then "Ii“ else
2 then "Ig" else

X then “Iﬁ“ else null;

. where "I " “,"Ii",...“I*" are encodings of the program for the two

129

‘stack machine being simulated. Thus, for examﬁle, in the procedure STACKQI
we have the following cases:
(1) if I; is PUSH X ON STACK 1, "I," will be
begin
top = X;
Prog counter := prog counter + 1;
call stack (0);
- end;
(2) if Ij is POP}(PR?M STACK 1, “Ij" will be
begin
if empty = 1 then null;
else begin
prog_counter=prog_pounter +1;
b4 =Itop; |
progress := 0,
end;
ggd;
(3) if I, is PUSH X ON STACK 2 or POP X FROM STACK 2 "I." will simply
be
begin
exit;
end;
A similar encoding Ii,...Iﬁ for the copy_of the program within procedure
stack 2 may be given. Statements of the form "prog_counter := prog counter+l”
may be eliminated by introducing a fixed number of new variables to

represent the binary representation of "prog-counter'.

130

The remainder of the proof that it is'impossible to obtain a
sound-complete set of Hoare-like axioms for coroutines with recursive
procedures is almost identical to the proof given in section 4 for

recursive procedures with procedure parameters and will be omitted.

5.10 .Discussion of Results and QOpen Problems:

A number of open problems are suggested by the above results. First
we-conéider the problem of obtaining Hoare-like axioms for recursive
procedures with procedure parameters. The pfoof that no good set of
axioms can exist in the general case depends heavily on the fact that
procedures can access global variables--if global variables are disallowed
ar made read-only is it-possible to obtain a complete set of axioms?
Similarly, if we changed from static scope to dynamic scope or allowed

only the names of external procedures to occur as actual procedure parameters,

would the problem of proving correctness be simplified?

In the case of caroutines and recursion the most important question
seems to be whether a stronger form of expressibility might give completeness.
The result of seé;ion 5.8, seems to require that any such notion of express-
ibility be powerful enough to allow assertions about the status of the
run-time stack(s). Clint [CE?S] suggests the usg of stack-valued
auxilliary variables to prove properties of coroutines which involve recursion.
It seems likély that a notion of éxpressibility which allowed such variables
appears counter to the spirit of the axiomatic correctness. If a proof
of a recursive program can involve the use 6f stack valued variables, why
not simply replace the recursive procedures themselves by stack cperations.
The purpose of recursion in programming languages is to free the programmer
from the details of implementing recursive constructs via stacks. FPurther

evidence for the naturalness of the notion of expressibility that we have

131

used is the fact that with either a) coroutines and non-recursive
procedures or b) recursive procedures and no coroutines, we can obtain
sound, complete sets of axioms under this notion of expressibility.

_ We note that the main application of procedures with procedure
parameters is in numerical agalfsis (where on might wish to make the
integrand a parameter of an integration procedure.) Here, however,
procedures are rarely recursive:-and hence can be handled by the techniques
of section 5,3, Similarly coroutines are most frequently used in I/0 routines
which do not involve recursion and which can be handled by the metﬁods of
section 57(if appropria%e I/0 axioms are introduced).

Finally we note that the technique of section 5.4 and 5.8 may be applied
to a number of other programming language features including a) call
by name with functions and global_variables, b) pointer variables with
retention, é) pointer variables with recursion, and d). label variables
with retention. All of these features appear to be inherently difficult

to prove correct.

[cL72]
[cL73]

[co?s]

[DET3]
[DE?S]
[DET54]

[DIT73]

[DOT4]

[FL6T]
[FOT5]

[co75]

[H069]

[HOT1]

(HOTY]

- 132

REFERENCES

Clint, M. and C. A. R. Hoare. Program Proving: Jumps and Functions.
Acta Informatica, Vol. 1, pp. 214-22h, 1972.

Clint, M. Program Proving: Coroutines. Acta Informatica, Vol. 2,
pp. 50-63, 1973.

Cook, 8. A. Axiomatic and Interpretative Semanties for an Algol
Fragment. Technical Report 79, Department of Computer Science,
University of Toronto, 1975 (to be published in SCICOMP).

deBakker, J. W. ahd L. G. L. Th. Meertens. On the Completeness of
the Inductive Assertion Method. Mathematical Centre, December 1973.

deBakker, J. E. Fixed Point Semantics and Dijkstra's Fundamental
Invariance Theorem. Mathematical Centre, January 1975.

deBakker, J. W. Flow of Control in the Proof Theory of Structured
Programming. Mathematical Centre and Free University, 1975.

Dijkstra, E. E. A Simple Axiomatic Basis for Programming Language
Constructs. ZLecture notes from the International Summer School
on Structured Programming and Programmed Structures, Munich,
Germany, 1973.

Donahue, James. Mathematical Semantics as a Complementary Definition
for Axiomatically Defined Programming Langusge Constructs, in
Donahue, et al., Three Approaches to Reliable Software: Language
Design, Dyadic Specification, Complementary Semantics. Technical
Report CSRG-L45, Computer Systems Research Group, University of
Toronto, December, 197h.

Floyd, R. W. Assigning Meaning to Programs in Schwartz, J. T., ed.
Mathematical Aspects of Computer Science Proc. Symposia in
Applied Mathematics 19, pp. 19-32, Amer. Math. Soc., 1967.

Fokkinga, M. C. Inductive Assertion Patterns for Recursive Procedures.
Techn. University Delft Report, 1973. '

Gorelick, G. A Complete Axiomatlie System for Proving Assertions
about Recursive and Non-recursive Programs. Technical Report
No. 75, Department of Computer Science, University of Teoronto,
January 1975.

Hoare, C. A. R. An Axiomatic Approach to Computer Programming.
CACM 12, 10 (October 1969), pp. 322-329.

Hoare, C. A. R. Procedures and Parameters: An Axiomatic Approach.
Symposium on Semantics of Algorithmic Languages, E. Engeler, E4.,
Springer-Verlag, Berlin, pp. 102-116, 1971.

Hoare, C. A. R, and P. E. Lauer. Consistent and Compementary Formal
Theories of the Semantics of Programming Languages. Acta
Informatica, Vol. 3, pp. 135-15L, 197h,

[Jo7s)

[MATO]

(MCT3]

[MITB]

fow76]

{sctol

fscT1]

[WATé]

133

Jones, N. D. and S. 5. Muchnick. Even Simple Programs Are Hard To
Analyze. TR-T4-6, Department of Computer Science, The University
of Kansas, November, 1974, (to be published in JACM).

Manna, Z. and A. Pnuefi. Formalization of Properties of Functional
Programs. JACM 17, No. 3, pp. 555-569, 1970.

McGowan, Clement and Jayadeo Misra. A Mathematical Basis for Dijkstra-
Hoare Semantics. Technical Report No. T3-73, Center for Computer
and Information Sciences, Brown University, November, 1973.

Milner, R. Models of L. C. F. AIM-186/CS-332. Computer Science
Department, Stanford University, 1973.

Owicki, S. A Consistent and Complete Deductive System for the
Verification of Parallel Programs. &8th Annual Symposium on
Theory of Computing, 1976. '

Secott, -D. Oufline of a Mathematical Theory of Computation. Pro~-
ceedings of Fourth Annual Princeton Conference on Information
Science and Systems. Princeton, pp. 169-176, 1970.

Scott, D. - The Lattice of Flow Diagrams. E. Engeler (ed.), Semantics
of Algorithmic Languages, Springer Notes in Mathematies, Vol. 188,
PP. 311-366, 1971.

Wand, M. A New Incompleteness Result for Hoare's System. &th
Annual Symposium on Theory of Computing, 1976.

