Reasoning About Procedures as Parameters

S. M. German*
Harvard University

E. M. Clarke, Jr.
LCarncgie-Mcllon University

J.Y. Hatpern
IBM Research, San Jose

1. Introduction

Inf2] it was shown that for sufficicntly complex Algol-like languages there cannot be a Hoare axiom
system which is sound and relatively complete in the sense of Cook [4]. The incompleteness exists whenever a
programming language contains (or can simulate) the following combination of features: (i) procedures with
procedures passed as parameters, (i) recursion, (iii) use of non-local variables, (iv) static scoping, and (v) local
procedure declarations. Morcover, if any one of the features (i), (i), (iv), or (v} is dropped from Algol, a sound and
relatively complete axiomatization can be obtained for the resulting languages {called L2, 1.3, LS, and L6 in [2]). It has
long been conjectured that the same is truc for the language 1.4 which results when feature (iif), use of non-focal

variables, is dropped.

The languages 1.2, L3, L3, and L6 arc relatively easy to axiomatize, since they all have the finite range
property. Informally, this property is that for each program, there is a bound on the number of distinct procedure
environments, or associations between procedure names and bodics, that can be reached. However, L4 docs not have
the finite range property. Intuition suggests that some new reasoning methods are needed for such programs, This
intuition is supported by [9], where a precise characterization is given for the class of Hoare axiom systems bascd on

copy rules, and it is shown that none of these axiom systems can deal adequately with infinite range.

The main new results in this paper are an axiom system for reasoning about programs with infinite range
and a new technique for constructing relative complceteness proofs for languages with procedure parameters. We also
present a new way of formalizing the scmantics of programs with free procedure names. Many of the techniques
introduced in this paper are of general use beyond the immediate problem of the language L4, In the course of the
relative completencss proof, we develop results of independent interest concerning the existence in general
programming languages of interpreter programs, i.e., fixed programs capable of simulating any program in the

language.

*Current Address: GTE Laboratories, Inc., 40 Sylvan Road, Waltham, Ma 02254
This research was supported by NSF Grant MCS-82-16706.

207

For a bricf preview of our approach to reasoning about programs with infinite range, let us consider a
small cxample of a formula in our logic. We retain the idea of using partial correctness
assertions {U}S{V}. where U and V arc first order, for specifying and reasoning about statements. To
specify a procedure p with a procedurc parameter r, we construct more complicated formulas containing partial
correctness assertions, to describe how the semantics of 1 affects the semantics of p(r). For instance, et p be

the procedure
proc p(x:r); begin r(x); r{x) end

which calls the formal procedure r twice on the variable parameter x. For an arithmetic domain, p satisfics the

formula
Vevdy=ye riodly=yy' vt = {x=xg} pxin) {x=x,v3))

Inwitively, this formula says that for all procedures r and domain values v, if the
call r(y) multiptics y by v, then for the same procedure r and value v, the
call p(x:r) multiplics x by v,

At this point, one might wonder whether this approach is sufficient to specify all procedures. Indeed, the
essence of the relative completeness proof for our axiom system is that'in L4, the necessary facts about procedures can

always be expressed by an appropriate formula of our logic.

A different approach to axiomatizing procedures as parameters, based on the use of higher order logic in
the assertion language, has been developed in [10, 5). in both of these papers, the axiom system is assumed to include
as axioms all of the formulac valid in a certain higher order theory refated to the interpretation. In contrast, our axiom
system includes as axioms only the first order theory of the interpretation. Also, in {10, 5, the notion of expressivencss
used in establishing relative completeness takes a more general form, involving higher order formulas, while we use
the familiar notion of expressiveness as in [4]. It has been conjectured that the two notions of expressivencss are

equivalent; this problem is under study [6}.

2. Programming Language
A statement has one of the forms:

statement> = x := e | S;S, | if b then § else S, | 5 or S,
| begin var x; S end | begin E; S end | p(x:D)
The statement S1 or 82 makes a nondeterministic choice and exccutes one of the statements.
In begin E; S end, E is a procedure environment; ie., a set of procedure declarations. We somcetimes

abbreviate thisas E [S.In p(x:), X isalist of variable identifiersand ¥ is a list of procedure identificrs. We
often abbreviate begin E; Send o E | S.

208

A set of procedure declarations has the form
proc p (X,:7)); B,
proc pm(i‘mzfm): Bm
and introduces possibly mutually recursive declarations of p...p . The p, arccalled declared procedure names;

the 1, arc formal procedure names. B, s the body of procedure p;.

An occurrence of an identifier in a statement may be either free or bound in the usual sense. Note that we

allow free procedure identifiers to appear in statements. A program A is a statement with no free procedures.

A declaration proc p(X:); B s said to have no global variables if all the free variables of Barein X An
environment (statement, program) has no global variables if all its declarations have no frec variables. Note that such

an cnvironment (statcment, program) may have free procedures.

We are primarily concerned with programs which have no global variables. For historical reasons [2] this
language is ofien called 14, In L4, the only variables that can be accessed or changed by a procedure call are the
actual variable parameters in the call. This property will help us to get a sound and relatively complete axiom system
for 14

3. Semantics of statements

Let ! be a given first order interpretation. A program state is a mapping from the set of program
variables to dom{I). The meaning of a statement is a binary relation on states. Given procedure environment E, we
associate with each statement A itsmeaningin 1 and E via the function "%i,E‘ We define ./ﬂa!‘E first for

statements without procedure calls or procedure declarations by induction on structure of the statement:
JﬂaLE(error) = @
Jl’bLE(x:=c) = {(s3{l{e)/xP) | s isastate}
Mo pApAY = {(65)] T tsD € M (A)and ts) € Mo (AN}
Moy (A or Ay = Sy AU Moy (A
JI’(:LE(ifbthcn A, else /\2) = {(s5) ¢ /n:l'E(Al) | Lsk=b} U {(s5) € J“:LE(Az) | Ls b= = b}

J%!‘E(begin varx;Aend) = {(55)] J@uw)e ALLE(A), u = sfl@@/x)], s =u[s(x)/x]}

{where a isa fixed constant)

We give meaning to statements with procedure declarations and procedure calls by first converting them

to statements without procedure declarations and calls, by using an auxiliary function Approx‘fg. Informally, Approx‘[‘2

209

gives the gt approximation to the fixed-point meaning of a recursively defined procedure in procedure

environment B, We define Approxt. by induction on k and the structure of statements:

L. Approx;k.; (error) = error
2, Approx‘é (x;=¢) = x1=¢
3. Approxf; (A:A,) = Approx (A J:Approxfi(A,)
4. Approx % (A, or A)) = Approx ‘f;(/\l) or Approx f.;(Az)
5. Approx & (if b then A g!se A,) = if b then Approx L) else Approx & (A)
6. Approx 11‘ (begin var x; A end) = begin var x; Approx ’1‘;(/\) end
renaming the bound variable x if it appears frecin E (sce below).

7. Approx§ (E | A) = Approx§) g+ (A)
renaming bound variablesin - E’ if necessary (see below),
8. Approxfs (p(RQ) =
error if k=0 and p isdeclaredin E
Approx ‘f;'l ({x/x,q/@"B)f k>0 and thedeclaration procp(X:g"): B¢ E

E, | p(%:q) otherwise, where E, is defined below.

If E consists of the declarations proc pi(ii:r'i) ; Bi, i=1, ..., n, then EK consists of the
declarations proc pi(fi:i;);Approx'é(pi(}'izfi)}. Note Approxjé(pi(ii:i’i)) = ApproxEI(Bi) if k > 0, so this
inductive definition is indeed well defined.

In clause 6 if the bound variable x appears frecin E, then we have to rename the x to some fresh
variable x' to avoid capturing the free variable in E. Thus we would get

begin var x’; Approx K1 ([x'/x]A) end

Similarly, in clause 7, if some procedure identifier declared in B alrcady appears in E, we have to rename the
identifiersin E' (and all their bound occurrences in - A) to avoid naming conflicts.

Note that if A is a program, then Approx}‘z(A) = Approx}‘a(A) (ie., Approx‘é(A) is independent

of E),and Approxé(A) docs not contain any procedure declarations or procedure calls,

Given a procedure environment E and statement A, let E* = E U {p(x:P); error | p appears

210

free in (£ | A)}. Notc Eﬁ‘iA is a program, since it has no frec procedure identificrs. To complete our
scmantics, we define, for any statement A,

Mo, (A) = U, Approxf (E | A)

We next define two statements A, and A, 1o be equivalent, written A= Ay, if ./ﬂ:l p{A) =

Mby - (A;) for all interpretations 1 and procedure environments E. Similarly, we write A; < A, if Mo
(Al)g./l%w{/‘xz) for all interpretations 1 and procedure environments E.

The following lemma will be used throughout the paper.

Lemmal:

(@}if p(X: 7 Bek then
Elpy:=E|[x/7.7/3B
() EAjA, = E]A)E]|A)
() ElajorA, =E[A; or EJA,
(d EJif b then A; else A, =il b then EJA clse E|A,
(e} If x docsnotappearfrecin A, then
E| beginvar x; A end = beginvar x; E|A end
(If E.E, do notcontain distinct declarations for the same procedure identifier, then
EIE,JA) = (B, U E)|A
{g) Ifnone ofthe proceduresdeclaredin E appearfrecin A, then
ElA = A
(h) If A and A’ areidentical up to renaming of bound varaiblés,

A = A

From Lemma I, we immediately get the following:

Corollary: Every statement is equivalent to one in a normal form, where EJA occursonlyif A isa

procedure cail,

211

4. Syntax and Semantics of Formulas

To define the set of formulas used in our axiom system, we begin by fixing a first order type T which
determines the finite sct of constant, predicate, and function symbols that can appcear in programs and first-order
formulas. We permit three distinct kinds of variables:grdinary variables (x), environment variables (v), and procedure
variables {r). The syntactic distinction between ordinary and environment variables is that ordinary variables, like the
variables in most Hoare axiom systems, may appcar in both programs and first-order formulas; cnvironment variables
arc a new class of variables which may appear only in first-order formulas. Procedure variables may appear only in

programs, subject to these restrictions on the use of variables, a formula has the form
formula> = U | {U} S {V} | {H,....H} [(H, —H)| VvH | ViH

where U and V arcfirstorder, S isanystatement, H and Hl,..‘,Hn arc formulas, v is an environment

variableand 1 is a procedure variable. Arbitrary nestingof (H, — H,), VvH, and VrH, is permitted.

In order to give meaning to formulas we need an interpretation I, which gives meaning to the symbols
in X in the usual way, an cnvironment valuation ¢ which assigns an clement of dom(I) to each environment

variable, and a procedure ¢nvironment E.

LE ok=U iffforalls, I sk= U(wherel, sk Uis defined in the usual way)

LE obk={U}A{V} iff forallss” Lsk=Uand(ss) ¢ .ALLE {A)implies s’ k= V,
LEok{H,. . H} iff (EokHi=1..n

I,E,o%ﬁHl—»Hz iff LE, o= H, implics I,E,UI=H2.

LE ok VvH iff foralld e dom(l): IEo[d/v]k=H.

LE ok VrH iff foral procedure declarations proc r'(%,q); B LE U {proc r(x:q); B} = H[r'/1].

where 1’ is a fresh variable which does not appear in E and has the same type as r.

Finally, we define [= HiffforallE,0: LEgk=H.

Note that the meaning of a frec environment variable in a formula is the same wherever it appears. In
contrast, the meaning of a program variable is “local” to cach partial correctness assertion in which it appears, since it

is effectively universally quantified. For example, consider the following two formulas

M {True}y: =y {x = 3} — {True} y: = y {False}

() {True} y: = y{v =3} — {True} y : = y {False}

where x and y are ordinary variables and v is an environment variable. Formula 1 is valid, because the
antecedent {True} y : = y {x = 3} is false: it is not the case that for all initial values of x and Y, ¥: =
y sets x to 3. Formula2 is not valid (in any interpretations with more than onc domain element), because v is
quantified over the whole formula. For ¢(v) = 3, the antecedent is true but the consequent is false, giving a

212
countercxample to {2).

5. Axiom System

Consider the following collection of axiom schemes and rules of inference,

Axiom schemes
AX 1. {Truc} error {False}
AX 2. {Ufe/x]} x: = ¢ {U}

AX 3 {{UF A {VE (VE AL {W]] — (U A A, (W)

AX4.{{U ADFA {VL{U A =b} A, {V}} — {U}f b then A, else A,{V}

AX 5. {{UF A, V1 {U} A, {VH = (U} A or A, {V}

AX 6. {U} A[x' / x] {V} — {U} begin var x; A end {V}, where x' does not appearin U,V, or A,

AX7.{U, 52U {U}A{VL VoV = {UJA{V}}

AXS {UA VI — {dyUyA{d yV} if v isanordinary variable not free in A,

AX9 {UTA{VI—{UAQIA{V A Q} ifnovariable freein Q isalsofreein A,

AX10.fUY AV} —= {U} A’ {V} provided A=A viatherulesof Lemmal.
AX 112,V vH - H[v' /]

AX 116,V tH — Hfr' 7 rlwhere v is an environment variable, and r s a procedure variable.

AX 12 {U} A {V}— {Ux} A w {V »} where 7 is an injective mapping on the sct of ordinary variables.
AXI3ZH—-H&C
provided C is a first order formula whose only free variables are environment variablesand H& Cis

defined. We define H & C by induction. For cases 3-6 below, H & C is defined on the left side of
the equivalence if all of the formutas on the right side are defined.

1. H&C isnotdefinedif H isa first order formuia.

2. {U3A{VI&C={UACIA{V AL

3. {H, ... H}&C={H&C ..., H &C}.

4 H—Hj}&C=H&C—~H&C

5. {VvH)&CE Vv (H[v'/v] & C) where v’ is not freein H, C.

5. (Vimac= Vr@H&0O.

213

AX14. {H,...H}->H 1I<i<n

AX 15a. (Hl — (H2—+ H3))—4 (Hl U HZ—-) H3)
AX15b. ((Hj UH) > H)— (H —(H,— H))
AX16a. H= (2 — H)

AX16b, (@—-oH)y—H
AX17. {Hl—+H2, Hy— H4}—v{HlU H3—> H, U H.}
AX 18. {Hl_'HZ' Hy— H3}~4{Hl—b H3}

Rules of Inference

RL H,(H,—H,)

H,

R2. H1 — H2

E|H —E|H,

where E | H s the result of replacing every p.c.a. {U} A {V} in H by {U}E|A{V}
subject to the usual conditions about renaming bound variables to avoid capture of free variables
in E.

R3. H-{U}A {V}

H-{dvura{dvv}

Ré. H—H, .. H=H

H-{H, ... H}

RS H-H

{H-» Vv, H—~ VY rH?}

provided v and r arenotfreein H.

214

Ré. Suppusc E consists of the declarations proc pi(:‘c‘i : rﬁ); Bi'i =1,n

and py,p donot appear frecin H H,, IS L

H= (Y r o = Ul o, @R Vhi= Lo} = {VET(H — {UIBIVDi=1aD

Ho{V E v (H - {UE| p & :R{V].i=1n}

Roughly speaking R6, the recursion rule, says that whenever we can infer something about a call p;()?i:r‘i) from
some hypotheses H;, we can infer the same thing about the associated body B, {again from the hypothesis H)

then from the hypothesis H, we can draw the same conclusion about the declared call E| pi(ifzf;).

Severai of the rules, such as R3, R4, RS, and R6, involve a formula H which appears in both the
antecedent and consequent of the rule. In all of these rules, the role of H s to allow the rule to be applied relative

to some chosen set of assumptions. Rule R4, for instance, could have been stated in a less general form as

R4
Hy ..., H
{H,H}
which says that if all of the Hi arc valid formulas, then {Hl' ..., H n} is valid, However, it is sometimes

necessary to make more general deductions of the form: if each of the H; is a valid consequence of H, then so
is {H, ... H}

6. Soundness of R3

In this section we show that the axiom schemes and ruies of inference presented in the previous section are
sound; ie,if Th(l) — H then I k= H for any interpretation 1 and formula H (where Th(l) is the set
of all first-order formulas valid in I). We will concentrate on proving the soundness of the recursion rule R here,
leaving the soundness of the rest of the system to the full paper. We must show that whenever the antecedent
of R6 is valid, then the conclusion is also valid. So suppose that

OI=H- (Vg — {U p &) {Vhi=L oo} = {VEg M - (UIB{VDi=1,nD
We want to show that for all environments F and valuations o that

() LEo=H -V EyH, ~{Up&DIVDi=1, ..., 0}
So suppose

() IF,¢ =H
{otherwise the result is immediate). Thus we must show

215

@) L¥o E{YETH (U} p D IVDi=L ... a}

We can supposc without loss of gencrality that p,p,. donotappcarin F (othcrwise we could just rename
these bound variables). Let F, = F U {proc p(%:T); Approx 3(E|p, (T:F)i=1,n}. We will show by

inductionon m thatforall m

@ 1F o ={VEFH - (U} p&p) {Vi=1 ... n}

By a straightforward argument we can show that no matter how the procedures in F are declared in F - we have

Aoy {EIDER) = Uy Moy (57

Thus (4) suffices to prove (3). Proving (4) for m = 0 s trivial, since in FO. we have proc pi()Ti:r‘i): error. Assume
(4) holds for m = N - 1. We now show it holds for m = N.It clearly suffices to show, for all choices
of F and o that

(5 LFyo F={H, = {U}pE:e{V}i=1, ... n}
Without loss of generality, we can assume

6) LFgo={H,H}
Under this assumption, we must show

() LFyo =Ulp iV,

Using our inductive hypothesis (4) for m = N-1, the validity of (0), assumption (2), and the fact that free (H) N
{pl, ...,pn} =g, weget

) LFyp o= {VreM - {U}B{V])i=1 ...,n}
From (6) and the fact that free H, ... JHY nodpy o pn} = @, we get
) LFy,oF={H, ... H}
Using (8) and (9), we can conclude
(10) LFy,.e={U}B{V}
We will now show
Ay Moy B2y Gn)

(7) follows immediately from (10) and (11), so the proof of (11) will complete the inductive step of our proof. The

218

proof of (11) fotlows from the following chain of containments:

Jﬂva {p; (520D
=y (Approx 3 (E | p, (5:F)))
= Jﬁ;wN_l (/\ppmxg (E | P, ()Ti:r;))) (since Fy , F only differ on procedures declared in - E)
= J&B“,N‘l {Approx g‘l (E] 18)) (by definition of Approx)

< Jﬂ’l 5 (B)
TNAL

i 1

‘The last containment follows by induction on N followed by a subinduction on the structure of Bi. ‘The only

difficulty occurs if Bi is of the form pk(Yzq) where Py isdeclarcd in - E. Note that

Mo, OUTD) = og . (F/7 TR (Approx BE o Gar)

(sincein Fy ., we have the declaration proe p, (X;:F)), (Approx %“ (E | p, (K :FM
Thus we must show

Hoyys,, (APPrOXET (E (B, Moy (T/K /5] (Approx 5 B | p, ()

This fast incquality follows from the more general
(12) Moy (Approx” (E | S@INE Mg (7/%,3/5)) (Approx 5! (B SGxL)

{12} is proved by induction on N and a subinduction on the structure of S. We leave details to the reader. {3

7. Reiative Completeness

In this scction, we outline a proof of the relative completencess of the axiom system. The proof uses some
interesting new ideas to deal with statements having free procedure names. The following discussion, however, is
intended only to give an informal overview of the completeness proof. A more precise account appears in the final

version of the paper and in [71

First we nced the following definitions. An interpretation 1 is Herbrand definable if every element
of dom(l) is represented by a term involving only the constant and function symbols of I In a fixed
interpretation I, the strongest postcondition of a program A with respect to a {first order)
precondition U, SP{AU), isthesctofall final states A can reach when started in a state satisfying U:

SPAD) = {s’ | T sLs=U A (55) € M, (AD}

An interpretation I is expressive for a programming language L if for cvery program A ¢ L and

precondition U, SP(A,U) can be expressed by a first order formula using only the symbols of L

Our main result is

217

Relative Completencss: Let [be Herbrand definable and expressive for 14, andlet A ¢ 14, Then
I B {U} A {V} implics Th(l) + {U} A {V}: ic., if a partial correctness assertion is truc in an

interpretation 1, then it can be proved in our system using the first order theory of 1 as axioms,

In contrast, the relative completeness results obtained in [10, 5] depend on a more gencral notion of
expressiveness with respect to preconditions in a higher order logic and require that a certain higher order theory of

the interpretation be added as axioms.

The completencess proof uscs the fact that in a language which docs not permit non-local use of variables, a
procedure call p{X:f} does not depend on any variables other than the ones in £ Without this
restriction, p(X:f) could depend on variables global to the body of p, global to procedures free in the body

of p, orglobal to any of the procedures in F.

Onc of the central idcas of the proof is that the act of passing a procedure parameter may be regarded as
passing an input-output relation on a sct of variables: in the call p(:r), where r hastype KX), r is a relation
on X When r Thashighertype r(X:§), r isstill an input-output rclation on ¥, but one which depends on
the relations corresponding to its procedure parameters in . We wish to show that thesc relations can be

represented by formulas in our logic. Returning to the example formula mentioned in the introduction,

Vivdy=y rm{y=y, vk = {x=xptp o) {x=x,v?})
observe how the environment variable v, appearing in the postconditions of the calls 1(y) and p(x:r), is used
to express the relationship between the scmantics of r{y) and p{x:n). The formula states that

if r(y) multipics y by v, then p(x:r) muliiplies x by v

. In order to prove relative completeness, we
must show that the logic can express all of the necessary relations of this sort. We will return to this problem and

make it more precise later,

Another problem related to expressiveness is the question of when we can assume that the strongest
postcondition of a statement is expressible in the first order assertion language. Roughly speaking, most relative

completeness proofs proceed by showing the following is provable in the axiom system:
@ = {U} A {SPA, U3}

for any statement A and precondition U. From H {U} A {SP(A,U)} and rule of consequence one can
prove that if 1 = {U} A {V}, then Th(I) — {U} A {V} for it must be the case that if &= U A
V, then 1 &= SP(AU) D V. Thischain of reasoning depends on the assumption of expressiveness, which
was used implicitly in writing (2).

However, the usual notion of expressiveness is that SP(A,U) can be expressed for any program A. By
definition, a program does not have free procedure names; hence expressiveness does not immediately guarantee that
onecan express SP(A,U) for'an arbitrary statement A which may have free procedure names. Thus, our relative
completeness proof cannot proceed directly by proving a lemma of the same form as (2). Roughly, if A isa

218

statement with free procedures, we will be able wo show = H — {U} A [SPAU)}, where H s a suitably
chosen set of hypothesis about the free proceduresin A, and A is a program {with no free procedurcs), which in

some sense simulates A, We proceed by using some of the propertics of the Herbrand definable interpretations,

icmma2 8] If ! is an interpretation which is Herbrand definable and the programming language

is 14 {or more generally, any "acceptable programming language with recursion” in the sense of [3]) then cither

I. I isfinite or

2. there are programs in the language which simulate arithmetic in - dom (1).

One can usc this fact about Herbrand definable domains to prove the existence of interpreter programs.
Roughly speaking. an interpreter program receives as inputs a number of ordinary variables containing an encoding of
an arbitrary relation to be computed, and a number of other variables to which the relation is to be applied. The
interpreter then modifics the second set of variables according to the relation. Using interpreter programs, we can
transform any 1.4 program into a program without procedures passed as parameters by adding additional ordinary
variables to pass values which encode the procedures. Specifically, onc can show that for any
satement A in L4, there is another statement A* having the following propertics, In place of cach formal
procedurc name r freein A, A* hasa new group of free ordinary variables, r*. The r* variables arc distinct

from all other variables. If A s a statement whose only free procedure names arc the formals r ,r., then

P Ty
the rclational semantics of A in an environment where 6 is bound to Bi is the same as the scmantics
of A* provided rf is initially set to the encoding of the relation corresponding to procedure r, Fora

program A, A{A) = M{A*).

As it happens, there is a way to construct A* so that if A has no non-local use of variabies, then
neither does A*. Thismeansthatif A isin 14 and theonly procedures freein A are formals, then A® isa
program of L4, Consequently, if I is cxpressive then SP(A*U) isexpressiblein [forsuch A.

Using A* we can carry out the relative completeness proof without the expressiveness problems of

formula (2). For cach statement A whose frce procedures are the formals fp wvoo I and declared
procedures Py, ...,p,, Wwecanshow that the following is provable in the axiom system
3 b {Rr < R, PL P (U A {SPEE | A*}

where E is any environment such that (E | A)* is a program, and Rl’ ceny Rn and Pr ceny Pk are
formulas of the logic which describe fp oo Iy andpy, ..., Py, Tespectively, Intuitively, R, hasthe form R,
(ri,rp, and says that the semantics of n is a subset of the relation encoded by ¥ For r. oftype ri(:‘c), R, is
just {% = x0}r (D) {SP((®* £ = x0}. For higher types, a more complex formula is defined by induction; e. g.,
for rj(i: r) where r, hastype r(%), Rj is

Vo iR (r,) — (X = x0} 1, (: 1) {SPR: 1)".% = X0)})

Similarly, Pi is a formula which says that the scmantics of P, is a subset of the semantics determined by the

219

environment E and the relations for r,,r cncoded by r}, ...,y ‘The formulas R; and P, give the

general representation in our logic of the meaning of procedures, as alluded to carlier.

In the full paper, we show that (3) is provable, by induction on the structure of statements. For a

program A, (3)gives
— {Ul A {SPA*U)}

from which the desired result follows because
I k= SP(A*U) = SP(AU).

Hence, if k= {U}A{V}], then 'Th(l)+- {U} A {V}.

8. Conclusion
We have presented a sound and relatively complete axiom system for the language 14, Such an axiom
system has been sought by a number of other rescarchers since the appearance of [CL79]. But because of the infinite

range problem, no completely satisfactory axiomatization has been previously given,

In order to deal with infinite range, we introduce a class of generalized partial correctness assertions, which
permit implication between partial correctness asscrtions, universal quantification over procedure names, and
universal quantification over environment variables. These assertions cnable us to relate the semantics of a procedure
with the semantics of procedures passed to it as parameters. By using these asscrtions we are able to provide a new
principle for reasoning about procedures with procedure parameters; this principle is incorporated in our recursion
rule.

Many of the techniques introduced in this paper appear to have application beyond L4. We belicve that
the ideas used in our recursion rule may be helpful with other languages which have infinite range [1]. Moreover, the
way that we have structured the inductive argument in the relative completeness proof is new and may also be useful
in this respect. Finally, in the course of the relative completeness proof we have derived some new results of
independent interest about the power of acceptablc programming languages and the existence of expressive
interpretations.

9. Acknowledgment
We want to thank Magdalena Muller for her infinite paticnee in typing this document,

10. References

1. de Bakker, J. W., Klop, . W., Meyer, J.-J. Ch. Corrcctness of programs with function procedures. Tech. Rept. IW
170/81, Mathematisch Centrum, Amsterdam, 1981.

220

2. Clarke, K. M. "Programiming language constructs for which it is impossible to obtain good Hoare-like axioms.”
JACM 26 (1979), 129-147.

3. Clarke, E. M., Jr., German, S., and Halpern, J. Y, "Effective axiomatization of Hoare logics.” JACM 30(1983),
612-636.

4. Cook, S. A, "Soundness and completeness of an axiom system for program verification.” SIAM J, Comput. 7
(1978), 70-%0.

5. Damm, W. and Josko, B. A sound and relatively complete Hoarc-logic for a language with higher type procedures,
Yech, Rept. Bericht No. 77, Lehrstuhl fur Informatik 1, RWTH Aachen, April, 1982,

6. Damm, W. and Josko, B. persenal communication.
7. German, 8. Relative completencss proofs for languages with infinite range,
8. German, S. and Halpern, 1. On the power of acceptable programming languages with recursion.

9. Oldcrog, E.-R. "Sound and complete Hoare-like calculi based on copy rules.” Acta Informatica 16 (1981),
161-197.

10. Olderog, E.-R. "Hoare-style proof and formal computations.” Jahrestagugn, IFB 50 GI-11(1981), 65-71.

