PATHOLOGITAL INTERACTION
OF
PROGRAMMING LANGUAGE FEATURES

CS-1976-15
Edmund Melson Clarke, Jr.

Department of Computer Science
Duke University
Durham, N. C. 27706

September 1976

PATHOLOGICAL INTERACTION OF PROGRAMMING LANGUAGE FEATURES

1.1 “Introduction

Drug interaction is a frequently encountered phenomenon in
pharmacology. Two drugs, each of which has beneficial effects,
may interact when administered together and creaté a serious
pathological condition. 1In this paper we describe a similar
phenomenon which may be observed in axiomatic treatments of
programming language semantics. We show that there are combinations

of programming language constructs for which it is impossible to

to obtain a "good" axiom system, even though each construct by
itself possesses a "good" axiom. Such pathological interactions
are of obvious interest in the design of programming languages
whose programs can be naturally proved correct.

In this paper we examine the interaction between recursion
and parallelism at a very elementary level. Specifically, we
consider a block structured programming language which allows both

parameterless recursive procedures and coroutines. If procedures

are not allowed to be recursive, there is a simple method for
proving correctness of coroutines based on the addition of auxiliary
variables (CL73, OW75). Likewise if the coroutine'éonstruct is
disallowed, a "good" system of axioms for parameterless recursive
procedures may be obtained (HO71, GO75, DO76). We prove, however,
that if both recursive procedures and coroutines are allowed, then
in a certain well defined sense it is impossible to obtain a good
axiom system.

Additional combinations of programming language features for

which it is impossible to obtain good systems of axioms are

discussed in Section 6.

1.2 Outline of Paper

In Section 2 we introduce S. Cook's notion of an expressible

assertion language and specify precisely what is meant by the

phrase "good Hoare-like axiom system." 1In Sections 3 and 4 good
Hoare-like axiom systems are given for parameterless recursive
procedures and for the coroutine construct. Section 5 contains
the proof that it is impossible to obtain a good Hoare-like axiom
system for a programming language which allows both recursive
procedures and coroutines. The paper concludes with a discussion

of the results and remaining open problems,

2.1 Good Hoare-like Axiom Systems

Many different formalisms have been proposed for proving Algol
like ?rograms correct. Of these probably the most widely referenced
is the axiomatic approach of C.A.R. Hoare (HO69). The formulas in
Hoare's system are triples of the form {P} S {Q} where S is a
statement in the programming language and P and O are predicates
in the language of the first order predicate calculus (the assertion

language) . The partial correctness formula {P} S {0} is true iff

whenever P holds for the initial values of the program variables
and S is executed, then either S will fail to terminate or 0O will
be satisfied by the final values of the program variables. A
typical rule of inference is

{rAb} s {p}
P} while b do S [PAvDb}

The axioms and inference rules are designed to capture the meanings

of the individual statements of the programming language. Proofs

of correctness for programs are constructed by using these axioms
together with a proof system for the assertion language.

What is a "good" Hoare-like axiom? One property a good axiom
system should have is soundness (HO74, DO76). A deduction system
is souhd iff every theorem is indeed true. Another property is

completeness (CO75), which means that every true statement is

provable. From logic we know that if the deduction system for the
assertion language is axiomatizable and if a sufficiently rich
interpretation (such as number theory) is used for the assertion
language, then for any (sound) Hoare-like axiom system there will be
assertions {P} S {0} which are true but not provable within the
system. The question is whether this incompleteness reflects some
inherent complexity of the programming lanquage constructs or
whether it is due entirely to the incompleteness of the assertion
language.

How can we talk about the completeness of a Hoare-like axiom
system independently of its assertion language? One way of
answering this question was proposed by S. Cook (CO75). He gives
a Hoare-like axiom system for a subset of Algol including the
while stétement and non-recursive procedures. He proves that if
there is a complete proof system for the assertion language (e.g. all
true statements of the assertion language) and if the assertion
language satisfies a certain. natural expressibility condition, then
every true partial correctness assertion will be provable. Gorelick
(GO75) extends Cook's work to recursive procedures.

A more detailed discussion of these ideas follows in Section 2.2.

2.2 Assertion Languages, Expression Lanquages, and Expressibility

As in (CO74) we distinquish two logical systems involved in

program correctness: the assertion language Lp in which predicates

describing a program's behavior are described and the expression

language LE in which the terms forming the right hand sides of
assignment statements and the unquantified boolean expressions of
conditionals and while statements are described. Both L, and Lg
are first order languages with equality, with LA being an extension

of LE.

An interpretation I for LA consists of a set D (the domain of

the interpretation) and an assignment of functions on D to the
function symbols of L, and predicates on D £o the predicate symbols
of LA' Once an interpretation I has bzen specified, meanings may
be assigned to the variable free terms and closed formulas of Ly

Let I be an interpretation with domain D. Meanings of

programming language statements are specified by a meaning function

M= MI which associates with a statement S, state s, and environment
1 a new state s'. The state gives the element of D associated with
each variable name. The environment 7 iﬁdicates which procedure
declarations are accessible.

Partial correctness assertions will have the form {P} A {Q}/E
‘where S is a program statement, P and O are formulas of LA' and

E is a set of procedure declarations.

2.2.1 Definition: (P} A {Q}/E is true with respect to I

(Fﬁ;{P} s {0}/E) iff Y s,s‘[I{P(s)# = true A M{Si(s,n) = s'~+
I{O(s')i = trué]-where 1 is the environment corresponding to E,

i.e. m(g) = "qg:proc; K end" iff "q:proc; K end: € E.

5

To discuss the completeness of an axiom system independently
of its assertion language we first introduce Cook's notion of

expressibility.

2.2.2 Definition: L, is expressive with respect to LE and I iff

for all statements S, environments 7w, and formulas Q in LA there

is a formula of L, which expresses the weakest precondition

wp(S,m,0) corresponding to S, w, and Q. (Formally wp(S,n,0) can
be defined by:

wp(S,m,Q) = {s|M{s}(s,m)+ or MiS}(s,n) € Q0).

If LA is expressive with respect to LE and I, then invariants
of while loops and recursive procedures will be expressible by
formulas of L,. Although some choices of Ly» Lp, and I do not give
expressibility, it is possible to argue that realistic choices for
LA' LE' and I do give expressibility. 1If L, and L, are both the
full language of number theory and I is an interpretation in which
the symbols of number theory receive ﬁheir usual meanings, then La
is expressive with respect to L, and I. Also, if the domain of I

E

is finite, expressibility is assured.

2.2.3 Lemma: 1If Lpr L are first order languages with equality
and the domain of I is finite, then Ly is expressive with respect
to LE and I.

If H is a Hoare-like axiom system and T is a proof system
for the assertion language LA (relative to I), then a proof in the
system (H,T) will consist of a sequence of partial correctness
assertions {P} s {0}/E and formulas of L, each of which is either

an axiom (of H or T) or follows from previous formulas by a rule

of inference (of H or T). If {P} S {Q}/E occurs as a line in such

R —

a proof, then we write }E-T {P} S {0} /E.
r

2.2.4 Definition: A Hoare-like axiom system H for a programming

language PL is sound and complete (in the sense of Cooke) iff for

all L _, LE' and I, such that (a) LA is expressive with respect to

LE and I and (b) T is a complete proof system for L

A with respect

(7 s (01/E &> by o (B} S (Q)/E.

3.1 Parameterless Recursive Procedures

A procedure declaration will have the form "g:proc; K end".

A procedure call will have the form "call gq". For simplicity we

require that procedures be declared before they are used. We
assume a semantics for procedure calls which is based on the copy
rule of Algol 60, i.e. the execution of a procedure call results
in the insertion of the procedure body at the point in the program
where the call occurs. (Identifier conflicts caused by this
substitution are eliminated by systematically changing the
identifiers in effect at the point of the call). The above
conventions may be made precise by introducing a formal operational
specification of the semantics of procedures (CK76). An example
of a procedure declaration is:
| F:proc;
If i=0 v i=1 then x:=x+l
else begin new m; m:=i;
i:=m~-1l; call F;
i:=m-2; call F;
end;

end

3.2 Axioms for Recursive Procedures

This section contains a "good" set of axioms for parameterless
recursive procedures. The axioms are similar to those in (HO71),
(GO75) , and (DO76) except that the Algol 60 static scope rule is
used for both variable identifiers and procedure identifiers (also
see axioms Al-A8 in Appendix I).

The first axiom Rl is an induction axiom which allows proofs
to be constructed using induction on depth of recursion.

Rl. {pP} call r {0}J/E = {P} K(r){0}/E, r a dummy procedure name
1P} call q {0}/E v {q:proc; K(q); end)

provided that E does not contain a procedure "g:proc; K' end"

which is different from "g:proc; K end”.

Axioms R2 and R3 enable an induction hypothesis to be adapted
to a specific procedure call. Before stating these axioms we
definé what it means for a variable to be inactive with respect to

a procedure call

3.2.1 Definition: Let the procedure g have declaration "g:proc;

K end". A variable y is active with respect to q if y is either
global to K or is active with respect to some global procedure
called from within K. If y is not active with respect to "call g"
then y is said to be inactive (with respect to that particular call).
Simiarly, a term of the assertion language LA is inactive if it

contains only inactive variables. A substitution O is inactive

with respect to "call q" provided that it is a substitution of
inactive terms for inactive variables.

R2, {P} call g {0}/E
{Pol call q {0c)/E

provided that the substitution o is inactive with respect to q.

R3. (P} call g {0}/E
{PATY call q (QAT}/E

provided that no variables which occur free in T are active
in q.

We illustrate the axioms by proving
{x=0 A i=ij} call F {x = f(io)}/E,

where E contains the declaration of the procedure F described in

th Fibonacci number. In order to

Section 3.1 and f(j) is the j
make the induction work, it is necessary to prove a slightly more
general result; we prove:
{x=xy A 1=io} call F {x=x0+f(io)}/E. (1)
By axiom Rl it is sufficient to show that
{x=x4 A i=ij}
if i=0 A i=1 then x:=x+1
else begin new m; m:=i; (2)
i:=m-1; call R;
i:=m-2; call R;
end
{x=x0+f(i0)}/E
is provable if we first assume

{x=x,. A i=i0} call R {x=x0+f(i0)}/E. (3)

0
By the axiom for the conditional we must show
{x=x_, A i=i, A (i=0 v i=1)} x:=x+1 {x:=x +f(i.))}/E
0 0 0 0
(4)
and

{x-xo A i=i° A i>l}

begin new m; m:=i;

i:=m-1; call R; ~(5)

i:=m-2; call R;
end
{x=x0+f(10)}/E
are provable. Step (4) follows from the fact that f(0)=f(1l)=1.
Step (5) will follow from the fact that f(i0)=f(io-l)+f(io—2) and
the axioms for assignment, composition of statements and block
structure, if we can first prove
{x=x0 A 1=10-1 Am =10} call R {x=x0+f(10—1) A m =10}/E

(6)
and

{x=x0+f(10~1] A 1=10—2 A m =io} call r {x=x0+f(10-l)+f(10-2)}/E.
(7)
To obtain (6) we use axioms R2 and R3. From the induction assumption

(3) and axiom R2 with o= 3’0"l we obtain
*o

{x=x0 A i=io—1} call R {x=x0+f(i0—l)}/E. (8)

By axiom R3 with T={m'=io} we get
= =1 .= { - s _ : o

{x=xy A i=ip-1 A m 10} call R {x Xgtf(iy-1) A m'=i }/E.
A similar argument may be used to derive (7) and complete the proof.

Gorelick (GO75) generalizes the argument used above to apply
to arbitrary recursive procedures. Although Gorelick's original
proof implicitly assumes dynamic scope of variables, it is possible
to modify the proof so that it applies the more common static scope
rules assumed above. If Lp is the language described in Section 3.1

including parameterless recursive procedures and block structure

with static scope, then:

3.2.2 Theorem: The Hoare-like axiom system Hp consisting of axioms

Al-A8 together with R1-R3 is sound and complete (in the sense of Cook)

10

for proving assertions of the form {P} A {Q}/E where A is a

program in Lpe

4.1 Coroutines

A coroutine will have the form:

coroutine Ql' Q2 end

Ql is the main routine; execution begins in Ql and also terminates

in Q; (the requirement that execution terminate in 0, is not

absolutely necessary but simplifies the axiom for coroutines).
Otherwise Ql and Q2 behave in identical manners. If an "exit"
statement is encountered in Ql' the next statement to be executed
will be the statement following the last "resume" statement in
02. Similarly, the execution of a "resume" statement in 02
causes execution to be restarted following the last "exit"
statement executed in Ql' If the "exit" ("resume") statement
occurs within a call on a recursive procedure, then execution
must be restarted in the correct activation of the procedure.
Nesting of coroutine statements is not allowed.
A formal operational specification of the semantics for
coroutines is given in (CK76). A simple example of a coroutine is:
- coroutine
while y#z do
y:=y+1l; x:=x+y; exit;
end,
while true do

y:=y=2; resume;

y:=y+l; resume;

end

end

11

This example illustrates the use of "exit" and "resume" statements
within while loops. Note that if x and y are 1 initially, then

A : : 2
the coroutine will terminate with y=2z".

4.2 Axioms for Coroutines (Recursive procedures not allowed)

In this section we give a "good" set of aﬁiOms for coroutines?t
and describe a technique for proving correctness of corcutines
which is based on the addition of "auxiliary variables®. This
technique was suggested to the author by Susan Owicki. It is
different from the technique described by Clint (CL73), in that
the auxiliary variables represent program counters (and therefore
have bounded magnitude) rather than arbitrary stacks.

Cl. (Coroutines)
(P'} exit (R} b {PAD) O, (R)

{R'} resume {P'}F {P'ADb} Q5 {R'}
{PAb} coroutine Q,, 0y end {R}

provided no variable free in b is global to Ql; (This axiom
is a modification of the one in (CL73).)

C2. (Exit)

{P'} exit {Rr'}
{BPYACY exit IRTAC]

provided that C does not contain any free variables that are
changed by Qz. (Here we assume that "exit" occurs in statement

Ol of "coroutine 01, Q2 end").

1A1though there are serious problems in extending coroutine axioms

to handle recursive procedures, non-recursive procedures may be
handled in a straightforward manner. For simplicity, we assume

in this section that all procedures have been disallowed. Thus, the
environment component E is omitted from partial correctness assertions.

12

C3. (Resume)

{R'} resume {P'}
{R"AC} resume {P"AC}

provided that C does not contain any free variables that are
changed in Ql. (Here we assume that "resume" occurs in

statement Q2 of 'coroutine 0 end") .

1’ 2
C4. (Auxiliary variables)
Let AV be a set of variables such that xe& AV=»x appears in S'
only in assignments y:=e with yeAV. If P and Q are assertions
which do not contain any free variables from AV and if S is
obtained from S' by deleting all assignments to variables in

AV, then

{r} s' {0}
{r}. s {0}

(This axiom is essentially the same as the auxiliary variable

axiom in (OW76).)

We illustrate the axicms with an example. We show that
{X=1 A y=1 A z=zo} A {x=z§} where A = "coroutine 0,. 0, end"
is the coroutine given in Section 4.1. Our strategy in carrying
out the proof will be to introduce auxiliary variables to distinguish
the various "exit" and "resume" statements from each other and then
us< axiom C4 to delete these unnecessary variables as the last step
of the proof. Axiom C2 enables us to adapt the general exit
assumption {P'} exit {R'} to a specific occurrence of an exit
statement in 0;. A similar comment applies to axiom C3 for the
resume statement. We prove

{x=1 A y=1 A z=z}

i:=0; j:=0;

coroutine

13

while y#z do
yi=y+l; x:=x+1;
i:=1; exit;
end,
while true do
Y:=y=2; j:=1; resume;

y:=y+l; j:=2; resume;

end
end
Choose P = {x=1 A y=1 A z=z A i=0 A j=0}
b = {j=0}
R = {xesl)

P! ={(x=3 A y=2 A §=0 A y<z,) v (x=yZ+2y+1 A j=1 A y<z,-1) v
(x=y%-y+1 A 3=1 A ysz)}
R' ={(x=y2+3y+3 A j=1 A yszo—2) v (x=y2 A 3=2 A ygzo)}
The invariant for the while 100p.of the first routine is
INV) = {(x=1 A y=1 A §=0 A y<zg) v (x=y“+3y+3 A j=1 A ysz -2) v
(x=y? A 3=2 A ygz())
The invariant for the while loop of the second routine is
INV, = {(x=3 A y=2 A 3=0 A y<z,) v (x=y’-y+1 A j=2 A ysz,)
By using axioms C2-C4 together with the axioms for the assignment
statement and the while statement, it is possible to prove that
a) {P'} exit {R'}}\ {PAb} 0, {r}
and
b) {R'} resume {P'}Y¥ {P'Ab} Q2 {rR'}
both hold. For example, to prove b) we assume {R'} resume {P')}
and prove {P'Ab} Q, {R'}. 1In order to prove {P'Ab} Q, {R'}, we

show that

c)

d)

e)

Steps c¢) and e) are easily verified.

while axiom and the sequence of assertions below:

dl)
dz2)
d3)
d4)
das)

P'Ab » INV2

{1nv,)}

while true do
y:=y-2; j:=1; resume;

y:=y+l; j:=2; resume;

end

{INVyAvtrue}

INVZAmtrue + R' are true.

{INV_Atrue} y:y-2; j=1 {R'Aj=1}

2

{R'Aj=1} resume {P'Aj=1}
{P'Aj=1} y:=y+1l; j=2 {R'Aj=2}
{R'Aj=2} resume {P'Aj=2}

P'Aj=2 + INV

2

14

Step d) follows from the

Al assignment
C3 resume
Al assignment
C3 resume

arithmetic

Once a) and b) have been established, the desired conclusion

follows immediately by axiom Cl.

The technique of adding auxiliary variables is easily formalized.

(The pattern should be clear from the above example.) If L, is the

programming language described in Section 4.1 including the

coroutine statement but disallowing recursive procedures, then we

can prove the following general theorem.

4.2.1 Theorem:

The Hoare-like axiom system Hc consisting of axioms

Al-A8 together with Cl1-C4, is sound and complete (in the sense of

Cook) for proving assertions of the form {P} A {Q} where A is a

program in Lc.

15

5.1 Coroutines and Recursion

We show that it is impossible to obtain a sound-complete
system of Hoare-like axioms for a programming language allowing
both coroutines and recursion provided that we do not assume a
stronger type of expressibility than that defined in Section 2.2.
(We will argue in Section 6 that the notion of expressibility
introduced in Section 2.2 is the natural one. We will also examine
the consequences of adopting a stronger notion of expressibility.)
Let L be the programming language with the features described in

Sections 3.1 and 4.1 including both recursive procedures and the

coroutine statement.

5.1.1 Lemma: The Halting problem for programs in the language L

e,
is undecidable for all finite interpretations I with |I|>2.

-Befére we outline the proof, note that the lemma is not true
for fiowchart schemes or while schemes since in each of these cases
if |I|<® the program may be viewed as a finite state machine and
we may test for termination (at least theoretically) by watching the
execution sequence of the program to see if any program state is
repeated. This is not the case for a language which allows both
recursiQe procedures and coroutines. We will show how to simulate
a two stack machine by means of a program in the language Lc,r‘
Since the Halting problem is undecidable for two stack machines, the
desired result will follow. The simulation program will be a
coroutine with one of its component routines controlling each of
the two stacks. Each stack is represented by the successive
activations of a recursive procedure local to one of the routines.
Thus, stack entries are maintained by a variable "top" local to

the recursive procedure, deletion from a stack is equivalent to a

16

procedure return, and additions to a stack are accompolished by
recursive calls of the procedure. The simulation routine is
given in outline form below:
Prog_counter:=1;
Coroutine
begin
stack_l:proc;

new top, progress;

progress:=1;

while progress=1 do

if prog_counter=1l then QINSTIP else

if prog_counter=2 then "INST," else

L]

if prog_counter=K then “INSTK“ else NULL;

end;
end stack_1;
call stack_1l
end,
begin
stack_ 2:proc;
new top, progress;
progress:=1;
while progress=1 do
if prog_counter=1 then 'INSTI‘ else

if prog_counter=2 then ”INST§" else

. B
-

if prog_counter=K then "INST;' else null;

end;

17

end stack 2;
call stack_2;
end;

end;

*"
1
program for the two stack machine being simulated. Thus, for

where “INSTl“,..."INSTK“,"INST ,...“INSTE" are encodings of the
example, in the procedure STACK_l we have the following cases:
(1) if INSTj is PUSH X ON STACK_1, "INSTj" will be
begin
top=x;
prog_counter:=prog_counter+l;
call stack 1;
end;
(2) 1f INST, is POP X FROM STACK 1, “INSTj" will be
begin
prog_counter:=prog_counter+l;
:=top;
progress:=0;
end;
(3) if INSTj is PUSH X ON STACK_2 or POP X FROM STACK 2, "INSTj"
will simply be
“begin
exit;
end;
A similar encoding INST;,...INSTE for the copy of the program
within procedure stack: 2 may be given. Statements of the form
"prOg_pounter:=prog_pounter+l“ may be eliminated by introducing a

fixed number of new variables to represent the binary representation

18
of "prog_counter".

5.1.2 Theorem: It is impossible to obtain a system of Hoare-like

axioms H for the programming language Lc 3 which is sound and
L

complete in the sense of Cook.
Proof: Suppose that there were a sound, complete Hoare-like axiom
system H for programs in Lc r Thus for all LA, LE, and I, if

r

and I, and (b) L, is

(a) T is a complete proof system for L A

A
expressive relative to L_ and I, then

E
5 (°) s (0l/E&=> by (P) s {ol/E
This leads to a contradiction. Choose I to be a finite
interpretation with |[I]|22. Observe that T may be chosen in a
particularly simple manner; in fact there is a decision procedure
for the truth of formulas in L, relative to I. Note also that

A

L, is expressive relative to L, and I. This was shown by

A E
Lemma 2.2.3, since I is finite. Thus both hypothesis (a) and (b)
are satisfied. From the definition of pariial correctness, we
see that {true} s {falsel/¢ holds iff S diverges for the initial
values of its global variables. By the lemma above, we conclude
that the set of programs S such that F=i {true} s {falsel/¢
holds ié not recursively enumerable. On the other hand, since

F=& {true} s {false} S {falsel}l/¢ <p Fﬁ}T {true} s {falsel}/¢
we can enumberate those programs S such that F—I {true} s {falsel}/¢
holds (simply enumerate all possible proofs and use the decision

procedure for T to check applications of the rule of consequence).

This, however, is a contradiction.

19

6.1 Discussion of Results and Open Problems

Theorem 5.1.2 shows how two well behaved programming
language constructs may interact so that it is impossible to
obtain an axiom system for the resulting language which is both
sound and complete. A natural question is whether a more powerful
notion of expressibility might give completeness. 1In the case of
coroutines and recurgion, the result of section 5.1 seems to
require that any such notion of expressibility be powerful
enough to allow assertions about the status of the run-time stack(s).

Clint (CL73) suggests the use of stack-valued auxiliary
variables to prove properties of coroutines which involve recursion.
It seems likely that a notion of expressibility which allowed such
variables would give completeness. However, the use of such
auxiliary variables appears counter to the spirit of high level
programming languages. If a proof of a recursive procedure can
involve the use of stack valued variables, why not simply replace
the recursive procedures themselves by stack operations? The
purpose of recursion in programming languages is to free the
programmer from the details of implementing recursive constructs
via stacks.

Finally we note that the technique of Section 5.1 may be
applied to a number of other programming language features
including (a). procedures with procedure parameters if we allow
global variables, internal procedures as parameters, and recursion,
(b) call by name parameter passing with functions and global
variables, (c) unrestricted pointer variables with recursion and
(d) label variables with retention. All of these features appear

to be inherently difficult to prove correct and (one micht argue)

20

should be avoided in the design of programming languages

suitable for program verification.

(CK76)

(CL75)

(CO75)

(DE73)

(DO74)

(GO75)

(HO69)

(HO71)

(HO74)

(J074)

REFERENCES

Clarke, Jr., E.M. Programming Language Constructs for Which
it is Impossible to Obtain Good Hoare-like Axioms.
Technical. Report No. 76-287, Computer Science Department,
Cornell University, August 1976.

Clint, M. Program Proving: Coroutines, Acta Informatica,
VO].. 2' ppo 50-63, 19730

Cook, S.A. Axiomatic and Interpretative Semantics for an
Algol Fragment. Technical Report 79, Computer Science
Department, University of Toronto, 1975 (to be published
in scicomp).

deBakker, J.W. and L.G.L.Th. Meertens. On the Completeness
of the Inductive Assertion Method. Mathematical Centre,
December 1973.

Donahue, James. Mathematical Semantics as a Complementary
Definition for Axiomatically Defined Programming Language
Constructs, in Donahue et al., Three Approaches to
Reliable Software: Language Design, Dyadic Specification,
Complementary Semantics. Technical Report CSRG-45,
Computer Systems Research Group, University of Toronto,
December 1974.

Gorelick, G. A Complete Axiomatic System for Proving
Assertions about Recursive and Non-recursive Programs.
Technical Report No. 75, Computer Science Department,
University of Toronto, January 1975.

Hoare, C.A.R. An Axiomatic Approach to Computer Programming.
CACM 12, 10 (October 1969), pp. 322-329.

Hoare, C.A.R. Procedures and Parameters: An Axiomatic
Approach. Symposium on Semantics of Algorithmic
Languages, E. Engeler, Ed., Springer-Verlag, Berlin,
pp. 102-116, 1971.

Hoare, C.A.R. and P.E. Lauer. Consistent and Complementary
Formal Theories of the Semantics of Programming
Languages. Acta Informatica, Vol. 3, pp. 135-154, 1974.

Jones, N.D. and S.S. Muchnick, Even Simple Programs Are
Hard to Analyze. TR-74-6, Computer Science Department,
University of Kansas, November 1974 (to be published in
JACM) .

(MA70) Manna, Z. and A. Pneuli, Formalization of Properties of
Functional Programs. JACM 17, No. 3, pp. 555-569, 1970.

(OW76) Owicki, S. A Consistert and Complete Deductive System for
the Verification of Parallel Programs. 8th Annual
Symposjum on Theory of Computing, 1976.

(WA76) Wand, M, A New Incompleteness PResult for Hoare's System.
8th Annual Symposium on Theory of Computing, 1576.

APPENDIX

Basic Set of Axioms (Axioms for Block Structure with Static

Scope, etc.)

Al. {Unxizeo} begin A §£ end {V}/E

X
{U} begin new x; A end {V]/E

where i is the index of the first program identifier not

appearing in A, E, or U.

A2. {U} begin A gi end {V}/E v {q :proc; K gi'end}

q q
iU} begin g:proc; K end; A; end {V}/E

where i is the index of the first procedure identifier not

appearing in K, A, or E.

A3. {u} a {v}/El

{u} A.{V}/Ez

provided E1£;E2 and E2 does not contain the declarations of

two different procedures with the same name.

a4, (a) _{u} a {V}/E
{U} begin A end [VJ/E

(b) {u} A, {vi/E, {V} begin A, end {w}/E

{U} begin A, A, end {wW}/E

A5-A8. Usual axioms for assignment conditional, while and

consequence (see (HO69)). Note of course that each of

these axioms must be modified to make explicit the set E

of procedure declarations.

