HOARE AXIOMS
AND THE SEMANTICS OF CONTRCL STRUCTURES

€S-1977-10

Edmund Melson Clarke, Jr.
Department of Computer Science
Duke University
Durham, N. C. 27706

HOARE AXIOMS AND THE SEMANTICS OF CONTROL STRUCTURES

1. Introduction. A key trend in program verification has been the use of axioms

and rules of inference to specify the meanings of programming language constructs.
This approach was first suggested by C.A.R. Hoare in 1969. Although the most
complicated control structure in Hoare's original paper was the while statement,
there has been considerable success in extending his method to other language
features. Axioms have been proposed for the goto statement, functions, recursive
procedures with value and reference parameter passing, simple coroutines, and
concurrent programs. Recent work by Clarke [CL77] has shown, however, that there
are natural programming language control structures which are impossible to
adequately describe by means of Hoare axioms. Specifically, Clarke has shown
that there are control structures for which it is impossible to obtain axiom
systems which are sound and complete in the sense of Cook [CO75]. These con-
structs include procedures with procedure parameters under standard Algol 60
scope rules, recursive procedures with call by name parameter passing, and corou-
tines in a language with parameterless recursive procedures.

In this paper we show that Cook's notions of soundness and completeness are
natural properties which any adequate Hoare axiom system should possess. We also
outline how the incompleteness ;esults are obtained in the case of procedure para-
meters and suggest ways of modifying Algol 60 scope rules to obtain good axiomn
systems. Finally, we discuss the significance of incompleteness results for
Hoare axiom systems. Although Lipton and Snyder [LS77] have argued that these
results have negative implications for the success of program verification, we
believe that precisely the opposite is true. We argue that the incompleteness
theorems provide additional evidence for the importance of programming languages

with simple, clean control structures.

2. Background. The formulas in a Hoare axiom system are triples {P} S {Q}

‘where S is a statement of the programming language and P and Q are predicates
describing the initial and final states of the program S. The logical system in

which the predicates P and Q are expressed is called the assertion language (AL)

and is an applied version of first order predicate calculus. The triple {P} S {Q}
is true iff whenever P holds for the initial program state and S is executed,
then either S will fail to terminate or Q will be satisfied by the final program

state. We will call such triples partial correctness formulas.

The control structures of the programming language are specified by axioms
and rules of inference for the partial correctness formulas. A typical rule of

inference is _
{P A b} s {P}

{P} while b do S {PA~ b}

Proofs of correctness for programs are constructed by using these axioms together
with a proof system T for the assertion language. We write fﬁﬁ;T {Pr} s {qQ}

if the partial correctness formula {P} S {Q} is provable using the Hoare axiom
system H and the proof system T for the assertion language AL.

To discuss whether a particular Hoare axiom system H adequately describes
the programming language PL, it is necessary to have a definition of truth for
partial correctness formulas which is independent of the axiom system H. The
definition of truth requires two steps. First, we give an interpretation I for
the assertion language AL. The interpretation I specifies the primitive data
objects of our programming language; it consists of a set D (the domain of the
interpretation) and an assignment of predicates and functions on D to the predicate
and function symbols of AL. Typical interpretations might be the integers with

the standard functions and predicates of arithmetic, or linear lists with the
;-{‘

list processing functions car, cdr, etc.
Second, we provide an interpreter for the statements of the programming
language. There are many ways such an interpreter may be specified--in terms of

computation sequences (VDL) or as the least fixed point of a continuous functional

3
(denotational semantics). The net result is a function M[S](s)=s' which
associates with each statement S and state s a new state s'. Once the meaning
function M has been specified a formal definition may be given for partial

cOorrectness.

2.1 Definition: The partial correctness formula {P} S {Q} is true with respect

to interpretation I (kZI {P} S {Q}) iff for all states s and s', if predicate

P holds for state s under interpretation I and M[S](s)=s', then Q must hold for

s' under I also.

3. Soundness and Completeness. When can we be satisfied that a Hoare axiom

system H adequately describes the programming language PL? There are two possible
ways a Hoare axiom system may be inadequate. First, some theorem {P} S {Q}

which can be proven in the axiom system may fail to hol& for actual executions of
the program S, i.e. there is a terminating computation of S such that the initial
state satisfies P but the final state fails to satisfy Q. A way of preventing
this source of error is to adopt an operational or denotational semantics for the
programming language which is close to the way statements are actually executed.
We then show that every theorem, wﬁich can be proven using the axiom system, will
be true in the model of program execution that we have adopted. In the notation
of Section 2 we prove that for all P, Q, S, if i, {P} S {Q} then]tI {P} s {Q}.
Logicians call thig_prOperty soundness or consistency [HL74].

‘ A second source of inadequacy is that the axioms for the programming language
may not be sufficiently powerful to handle ali combinations of the control struc-
tures of the language. The question of when it is safe to stop looking for new
axioms is much more difficplt to answer than the question of soundness. One
solution is to prove a completeness theorem for the Hoare axiom system. We can
attempt to prove that every partial correctness formula which is true of the
execution model of the programming language is provable in the axiom system. In

general it is impossible to prove such completeness theorems; the proof system for

>
s A
»

the assertion language may itself fail to be complete. For example, when
dealing with the integers for any consistant axiomatizable proof system, there
will be predicates which are true of the integers but not provable within the
system. Also the assertion language may not be powerful_enough to express the
invariants of loops. This difficulty occurs if the assertion language is Pres-
burger arithmetic (integer arithmetic without multiplication). Note that both
of the above difficulties are faults of the underlying assertion language and
not of the Hoare axiom system.

How can we talk about the completeness of a Hoare axiom system independently
of its assertion language? Cook [CO75] gives a Hoare axiom system for a subset
of Algol including the while statement and nonrecursive procedures. He then
proves that if there is a complete proof system for the assertion language (e.g.
all true statements of the assertion language) and if the assertion language
satisfies a certain natural expressibility condition, then every true partial
correctness assertion will be provable. Extensions of Cook's work to other
language features are discussed by Gorelick ([G075], recursive procedures),
Owicki ([OW76], concurrent programs), Clarke ([CL77], procedures with procedure
parameters under various restrictions on scope of variables), and Cherniavsky

([CH77], loop languages).

To state Cook's expressibility condition we first introduce some additional

terminology. WP[S](Q) will denote the weakest precondition for partial correct—

ness corresponding to the statement S and postcondition Q. WP[S](Q) is charac-

terized by (i) [= {WP[S1(Q)} S {Q} and (ii) [= {P} s {Q} implies = P—WP[S](Q).

3.1 Definition: The assertion language AL is expressive with respect to inter-

prefation I iff for all statements S and postconditions Q, there is a formula of

AL which expresses WP[S](Q).

It is shown in [CO75] that expressibility insures the existence of invariants

5

for while loops and recursive procedures., Finally we give a formal definition

of Cook's notion of soundness and completeness for Hoare axionm s stems,
y

3.2 Definition: A Hoare axiom system H for a programming language PL is sound

and complete iff for all AL, T, and I such that (a) AL is expressive with respect

to I and (b) T is a complete proof system for AL with respect to I,

» APk s g &> b B2Y S 403

4. Incompleteness Results. In this section we consider the problem of obtaining

a sound and complete axiom system for an Algol-like language which allows proce-
dures as parameters of procedure calls. We outline a proof that it is impossible
to obtain such a system of axioms even if we disallow calls of the form "call P
(...,P,...)"l. We also discuss restrictions to the programming language which

allow one to obtain a good axiom system.

4.1 Theorem: It is impossible to obtain a system of Hoare-like axioms H which

is sound and complete in the sense of Cook for a programming language PL which
allows:
(1) procedures as parameters of procedure calls
(ii) recursion
(iii) static scope
(iv) global variables

(v) internal procedures as parameters of procedure calls
All of the features (i) - (v) are found in Algol 60 [NA63] and in Pascal
[WI73]. The proof of the theorem uses the following three facts:

Fact (1): If the assertion language AL contains equality and if the interpretation

I is finite (i.e. the domain of I is a finite set), then AL is expressive with

lCalls of this form are necessary if one wants to directly simulate the
Lambda calculus by parameter passage.

O

respect to I.

- To see that Fact (1) is true, note that WP[S](Q) may be viewed as the set
of states (initial assignments to the global variables of S) which either cause
S to run forever or get mapped by S into some state which satisfies Q. Since
the assertion 1anguage contains equality and the interpretation I is finite, this

set of initial assignments may be easily expressed.as a formula of AL.

Fact (2): The halting problem is undecidable for the programming language PL

with features (i) through (v) for all finite interpretations I.

This fact is the heart of the incompleteness result. Its proof is based on
the simulation of a claés of turing machines with undecidable halting problem by
Programs in the language PL operating under a finite interpretation. The Algol
60 execution rule, which states that procedure calls are elaborated in the environ-
ment of the procedure's declaration rather than in the environment of the proce-
dure call, allows the simulation program to access values normally buried in the

runtime stack without first popping the top of the stack.

Fact (3): Let I be a finite interpretation and let S range over programs in
/language PL, then the set of true partial correctness formulas {true} S {false}

cannot be effectively enumerated.

Fact (3) follows immediately from Fact (2), since the formula {true} S'{false}
holds iff S fails to halt for any initial state.

We now return to the proof of Theorem 4.1. Choose I to be a finite inter-
Pretation and let T be a decision procedure for the truth of formulas in AL relative
to I. By Fact (1) AL is expressive relative to I. If there were a sound and
complete Hoare axiom system H for PL programs, the true formulas {true} S {false}
could be enumerated simply by enumerating the theorems }—-H’T'{true} S {false}.

This, however, contradicts Fact (3).

In [CL77] we show that

by modifying any one of the five features of the language PL.

a sound and complete axiom System can be obtained

Thus if we change

from static Scope to dynamic scope, a complete set of axioms may be obtained for

(i) procedures with procedure parameters,

and (v) internal procedures

(ii) recursion, (iv) global variables,

as parameters; or if we disallow internal procedures

as parameters, a complete system may be obtained for (i) procedures with proce-

dure parameters, (ii) recursion,

These results are summarized in Figure 1.

Lan=

(iii) static scope, and (iv) global variables.

Lan- Lan- Lan- Lan- Lane
guage guage guage guage guage guage
1 2 3 4 5 6

(1) procedures inec. no proce- inc. inc, inc, ince

with procedure dure pa-

pParameters Tameters

(2) recursion inc. inc. non-recur= inc. inc, inc.

sive proce-
dures only
(3) global inc, - ince. ince. global ince inc.
variables variables
disallowed

(4) static inc. inc. inc, " inc. dynamic inc.

scope scope

(5) internal ince ince inc, | ince inc. internal

procedures procedures
not al-
lowed as
parameters

Sound and Com- no yes yes yes yes yes

plete Hoare-
like axiom
system?

Figure 1 THEOREM SUMMARY

8

5. Discussion. Perhaps the most important question to be answered is whether

a stronger form of expressibility would give completeness for the language PL

of Theorem 4.1. The result of Section 4 seems to require that any such notion

of expressibility be powerful enough to allow assertions about the status of the
runtime stack. Clint [CT75] suggests the use of stack-valued auxiliary wvariables
to prove properties of recursive programs. It seems likely that a notion.of
expressibility which allowed such variables would give completeness for recursive
Procedures with procedure parameters. However, the use of such auxiliary variables
is counter to the spirit of the high level programming languages. If a proof

of a recursive program can involve the use of stack-valued variables, why not
simply replace the recursive procedures themselves by stack operations? The
purpose of recursion in programming languages is to free the programmer from the
details of implementing recursive constructs.,

Additional incompleteness results including éall by name parameter passing
and coroutines with recursive procedures are discussed by Clarke [CL77] and by
Lipton and Snyder [LS77]. Lipton and Snyder also argue that there is an inverse
relationship between the "power™ of a programming language feature and the ease
with which programs using the feature can be verified. Although we believe that
this observation is correct, we do not believe that restricting a powerful lan-
guage feature such as procedure parameters or call by name will necessarily hamper
the programmer. For example, a typical application of procedure parameters is in
numerical integration where the integrand is a parameter of an integration pro-
cedure. Here, however, procedures are rarely recursive and the results described
in Section 4 may be applied. We believe that an important task of the language
designer is to find ways of restricting powerful language features so that

neither verifiability nor flexibility of use is sacrificed.

References.

[CH77]
[cL77]
[CK77]

[CO75]

[cT73]

(G075]
[H069]
[HL74]

[LS77]

[NAG63]
[OW76]

[WI71]

Cherniavsky, J. and S. Kamin. A Complete and Consistent Hoare Axiomatics
for a Simple Programming Language. Proceedings of the 4th POPL, 1977.

Clarke, E. M. Programming Language Constructs for Which it is Impossible
to Obtain Good Hoare-like Axiom Systems. Proceedings of the 4th POPL, 1977.

Clarke, E. M: Program Invariants as Fixed Points. 18th Annual Symposium
on Foundations of Computer Science, 1977.

Cook, S. A. Axiomatic and Interpretative Semantics for an Algol Fragment.
Technical Report No. 79, Department of Computer Science, University of
Toronto, 1975 (to be published in SCICOMP).

Clint, M. Program Proving: Coroutines. Acta Informatica g;'1973
Pp. 50-63.

Gorelick, G. A. A Complete Axiomatic System for Proving Assertions about
Recursive and Non-recursive Programs. Technical Report No. 75. Department
of Computer Science, University of Toronto, January 1975.

Hoare, C. A. R. An Axiomatic Approach to Computer Programming, CACM 12,
10(October 1969), pp. 322-329.

Hoare, C. A. R. and P. E. Lauer. Consistent and Complementary Formal
Theories of the Semantics of Programming Languages. Acta Informatica,
Vol. 3, pp. 135-154, 1974. :

Lipton, R, and L. Snyder. Completeness and Incompleteness of Hoare-like
Axiom System. Technical Report, Department of Computer Science, Yale
University, April, 1977.

Naur, P.(ed.) Revised Report on the Algorithmic Language Algol 60. CACM
6, 1(January, 1963), pp. 1-17.

Owicki, S. A Consistent and Complete Deductive System for the Verification
of Parallel Programs. 8th Annual Symposium on Theory of Computing, 1976.

Wirth, N. The Programming Language PASCAL. Acta Informatica 1, 1, 1971,
PP- 35-63. ;

