JAcH

Lffective Axiomatizations of Hoare Logics

Edmund M. Clarke, J r.l, Steven M. Ge'rman1’3, and Joseph Y. I—Ialpe.rnl’2

1. Aiken Computation Laboratory, Harvard University, Cambridge, M A02138
2. Laboratory for Computer Science, M.I.T., Cambridge, MA02139
3. Computer Systems Laboratory, Stanford University, Stanford, C A94305

Abstract: For a wide class of programming languages P and expressive
interpretations I, we show that there exist sound and relatively complete Hoare
logics for both partial correctness and termination assertions. In fact, under mild
assumptions on P and I we show that the assertions true in 1 are uniformly
decidable in the theory of I (Th(I)) iff the halting problem for P is decidable for
finite interpretations. Moreover the set of true termination assertions is
uniformly r.e. in Th(l) even if the halting problem for P is not decidable for
finite interpretations. Since total correctness assertions coincide with termination
assertions for deterministic programming languages, this last result unexpectedly
suggests that good axiom systems for total correctness may exist for a wider
spectrum of languages than is the case for partial correctness. :

The present paper is an expanded version of a paper with the same title [CGH82] given at
the Ninth Annual ACM Symposium on Principles of Programming Languages at
Albuquerque, New Mexico, in January, 1982. This research was supported in part by NSF
Grants MCS79-08365 and MCS80-10707, Advanced Research Projects Agency contract
N0039-82-C-0250, Rome Air Development Center contract F30602-80-C-0022, and a grant
from the National Science and Engineering Research Council of Canada.

Table of Contents
1. Introduction
1.1. Background
1.2. New Results of This Paper
1.3. Outline E
2. Basic Definitions
2.1. Interpretations and Valuations
2.2. Acceptable Programming Languages with Recursion
2.3. Partial Correctness and Termination
2.4. Expressiveness
2.5. Expressive-Herbrand and Expressive-Effective Interpretations
2.6. Strongly and Weakly Arithmetic Interpretations
3. Main Results
3.1. Statements of Theorems
3.2. Proof of Theorem 1
3.2.1. Construction of M; and M,
3.2.2. Construction of M3, M, and M
3.2.3. Proof of Lemma'1l
3.2.4. Remarks
3.3. Proof of Theorem 2
4. Conclusions and Open Problems

V=RV V- S - R S S A et

W LI W DD e e e
MP—'CDO‘-J_UJI\JOCD

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:

List of Figures
The program Q(Xx).
The program EQ(x,y,ans).
The program SUC(b,x,y,0fl).
The program HRBD(x,enc,d).
The program Q’(x)

21
23
24
27
29

1. Introduction

1.1. Background

Because Hoare Logic, or axiomatic semantics, is one of the most widely used approaches
to defining programming language semantics and proving properties of programs, it is
important to understand its limitations and their causes. The question of the existence of
good Hoare Axiom systems for programming languages was first raised by Clarke in
[C176/79], where it was shown that languages with certain features cannot have axiom
systems that are sound and relatively complete in the sense of Cook [Co78]; natural
examples of such features include: call by name parameter passing in the presence of
recursive procedures, functions, and global variables, and coroutines with local recursive

procedures that can access global variables.

The incompleteness results aré established by observing that if a programming language
P has a sound and relatively complete proof system for all expressive interpretations, then
the halting problem for P must be decidable for finite interpretations. Lipton [Li77]
considered a form of converse: If P is an acceptable programming language and the halting
problem is decidable for finite interpretations, then P has a sound and relatively completé
Hoare logic for expressive and effectively presented interpretations. The acceptability of
the programming language is a mild technical assumption which ensures that the language
is closed under certain reasonable programming constructs, and that given a program, it is
possible to effectively ascertain its step-by-step computation in interpretation I by asking

some quantifier-free questions about I.

Lipton actually proved a partial form of the converse. He showed that given a program
P and the effective presentation of I, it is possible to enumerate all the partial correctness
assertions of the form true{P}false which are true in I. From this it easily follows that we
can enumerate all true quantifier-free partial correctness assertions, since we can encode

quantifier-free tests into the programs. But it does not follow that we can enumerate all

first-order partial correctness assertions, since an acceptable programming language will

not in general allow first-order tests (cf. Section 2).

A number of other researchers ([Me78], [La80]) have since attempted to clarify Lipton’s
proof and to extend it to handle first-order pre- and post-conditions and a wider range of

acceptable programming languages.

1.2. New Results of This Paper

We consider acceptable programming languages which permit recursive procedure calls.
We also require, for technical reasons, that every element of the domain of I correspond to
some term in the assertion language. (These requirements seem quite reasonable; cf,

Sections 2 and 4.) Under these assumptions we are able to significantly extend the results
of [CI76/79] and [Li77):

1. We are able to eliminate the requirement that pre- and post-conditions be
quantifier-free and that the interpretation be effectively presented. Under the
assumption that the halting problem for P is decidable for finite interpretations,
we show that, for all expressive interpretations, P has a sound and relatively
complete Hoare axiom system for partial correctness assertions with arbitrary
first-order pre- and post-conditions.

2. We show, in fact, that the set of partial correctness assertions true in I is actually
(uniformly) decidable in the theory of I (Th(I)) provided that the halting
problem for P is decidable for finite interpretations. Lipton’s proof, on the
other hand, produces an enumeration procedure for partial correctness
assertions and, thus, shows only that the set of true partial correctness assertions
is r.e. in Th(I).

3. We extend the decidability result to termination assertions (which coincide with
total correctness assertions for deterministic programming languages). Here
even stronger results can be obtained. The set of true termination assertions is
(uniformly) decidable in Th(I) iff the halting problem for P is decidable for
finite interpretations. Moreover, the set of true termination assertions is
(uniformly) r.e. in Th(I) even if the halting problem for P is not decidable for
finite interpretations. '

This last result unexpectedly suggests that good axiom systems for total correctness may
exist for a wider spectrum of languages than is the case for partial correctness. In
particular, it may be possible to find a sound and relatively complete total correctness proof
system for a language with call by name parameter passing, recursive procedﬁres, functions,
and global variables, even though no correspoﬁding partial correctness proof system can

exist.

1.3. Outline

The paper is organized as follows. In section 2 we give precise definitions for all our
terms; in particular, we carefully specify the conditions that a programming language must
satisfy in order to be acceptable. In section 3 we state and prove our main results,
contrasting them with those of Lipton. As in Lipton’s paper, our results split into two cases
depending on whether there is for every program P € P a number M éuch that P never
accesses more than M elements of the doinain on any input. In case such a bound exists we
show that it is possible to enumerate the true termination assertions even if the halting
problem for P is not decidable. For partial correctness our proof in this case is similar to

Lipton’s.

In case some program can access an unbounded number of different program states, our
approach is different from that of Lipton. We show that if the interpretation I is
expressive, then it is possible to effectively find formulas which make I into a standard
model of arithmetic. (Lipton is able to prove the existence of a standard model of
arithmetic embedded within the interpretation, but is not able to find it effectively.) We
use the standard model of arithmetic to encode partial and total correctness formulas as
first-order formulas over 1. The oracle for Th(I) is then used to determine the truth of the

encoded partial correctness assertions (resp. termination assertions).

The paper concludes in section 4 with a statement of some open problems and a

discussion of the philosophical implications of our results.

2. Basic Definitions

2.1. Interpretations and Valuations

A type or signature is a set of function and predicate symbols, each with an associated
arity. (Constants are just function symbols of arity zero.) An interpretation 1 (over a type
2) consists of a domain, dom(I), and an assignment to each function (resp. predicate)
symbol of X a function (resp. predicate) over dom(l) of the appropriate arity. Th(I) is the

set of all first-order sentences (over) true in I.

In all that follows, we assume we are working over a fixed finite type 3, which contains
the binary predicate = (equality). Equality is always given its standard meaning in any
interpretation. For technical reasons, we also assume the constant a is an element of 3.
Throughout this paper, for ease of exposition we will take 3 = {a)b,f.g,A =}, where a and
b are constants, f is a unary funétion symbol, g is a binary function symbol, and Agisa
binary predicate symbol. We also assume a fixed set of variables, var = {x0:Xp.}. Fora
term t, let var(t) = {y € var| y appears in t}. Similarly, for a quantifier-free formula A, let

var(A) = {y € var| y appears in A}.

A literal is a formula involving only a predicate symbol or its negation. Thus, the literals

of type 2 are of the form tl:»tz, ""‘l(tl :tz), Ao(t'l,t2), or _'Ao(tl,tz).

For each interpretation I, a valuation over I is a mapping o: var — dom(I). We can
extend a valuation to a mapping o: Terms — dom(I) in the obvious way. To represent a
diverging computation we introduce one special valuation, L, such that L (x) is undefined
for all variables x. The valuation o[x/a] is identical to ¢ on all variables except x, and

o[x/a](x)=a.

2.2. Acceptable Programming Languages with Recursion

An acceptable programming language P must satisfy the four criteria given below.

1.For each program P € P we can effectively find finite subsets
cv(P) C var(P) C var satisfying certain constraints given below. Intuitively,
cv(P) corresponds to those variables whose values may get changed as we run
program P, while var(P) also includes input variables, output variables, and any
additional variables (such as those that appear in tests) upon whose values the
behavior of P depends. In each interpretation I we can also associate with each
P € P a set of trajectories, 9)(P), where each trajectory 7 € g1(P) is a finite
sequence of valuations (g,07,...) such that L, if it appears at all, only appears
as the last valuation. There is no trajectory of the form (.L). These trajectories
must also satisfy:

a. If y ¢ cv(P), then for all i, a;(y) = o¢(y). (This corresponds to our
intuition that the only variables which get changed as we run program P
are those in cv(P).)

b. If y € cv(P), then for i > 0, oy(y) = a, b, crj(x), f(crj(x)), or g(aj(x),crk(z)),
for some j, k < iand x, z € var(P).

c. If og(var(P)) = og(var(P)) then there is a trajectory
7 = (0g,07’....) € 71(P) such that oy(var(P)) = o;'(var(P)) for all i This
confirms the intuition that the computation of P depends only on the
variables in var(P).

2. The set of (codes of) programs in P is recursive, and we can effectively compute
the possible i steps of running a program P € P on any input by asking a finite
number of quantifier-free questions about I. (Note we are allowing boundedly
nondeterministic computations here). Intuitively, we can think of a tree which
defines all the possible computations of a program P, whose nodes are labelled
by literal formulas. By knowing which of the literals are true in I, we can
determine which computation path (or paths, in the nondeterministic case)
were taken by P. In particular, we can determine the values of the program
variables at the i step of the computation in terms of their initial values.

More formally, given a (code for) program P and i, we can effectively find some
finite set of literals, say Ay, ..., A with var(A;) C var(P) = {yy,...yp} such that
by knowing the truth value of A in Lo, we can effectively compute a finite
number of sets of terms {{t,,;..-.. mn}l m = 12,..} over {a,b,f,g,yq,...y,} which
represent the possible values of the variables in var(P) at the i step of any
trajectory in 9)(P) starting with o, Thatis, o is the i step of such a trajectory

iff, for some m, cr(yj) = oo(tmj) for j = 1...n, and a(x) = o(x) for x ¢ var(P).
We can also effectively compute which (if any) of the sets {tm1stmnt
represent output values; i.e. whether there is some trajectory (a,...,0;) in %(P)
with oi(y;) = oty forj = 1,..,n.

3.P is effectively closed under variable substitutions; that is, given P € P with
var(P) = {xil,...,xim} and any set of m variables {y;,...,y,} we can effectively
find a program P’ € P such that var(P’) = {y,....y,} and (00.01....) € 9y(P) iff
for some (o¢,07’,...) € 9;(P’) we have aj(xik) = 0j'(yy) fork = 1,...,m.

4. P is effectively closed under flowchart operations, subroutine calls, and runtime
checks.

To make this last notion precise, let P’ be the least set of programs containing P such
that if P, Q € P’ and A is a quantifier-free formula, then the following programs are all in
P’. (Note that the programs in P’ will not necessarily be in P. There will just be programs

in P which simulate them.)
1. basic assignmentsx :=a,x := b,x : =y, x : = f{y), x : = g(y,2),
2. P;Q,
3.if A then P clse Q,
4. while A do P,
5. run P until A,
6. after each step of P do Q.

7. begin local XipoeeoXi Pend .

The flowchart operations work in the standard fashion. Intuitively, run P until A inserts
a test for A before every statement of P, halting as soon as the test is satisfied, while after
each step of P do Q inserts the whole computation of Q between successive steps of

P. When we run begin local x; ,...x; ;P end, we first save the values of x; ,..x. (as given
- S

7

in the current state), initialize them all to a, run P, and then restore the original values of
XjporeosKi - We extend 7, cv, and var to P’ in a straightforward way, thus giving the programs
m

of P’ their formal semantics as trajectories. We leave details to Appendix 1.

Now we formally define P to be effecﬁvely closed under flowchart operations,
subroutine calls, and runtime checks if for all P € P’ and all interpretations I, we can
effectively find a Q € P which simulates P in 1. That is, cv(P) C cv(Q), var(P) C var(Q),
and for all T € 9y(P) (resp. 9;(Q)) with last(r) = L there exists a 7° € 9(Q) (resp. 77(P)),
such that first(r)(var(P)) = first(r’)(var(P)) and last(r)(var(P)) = last(7”)(var(P)) (where

given a trajectory T = (0¢,....0y), we define first(t) = opand last(t) = o).

Thus we only require of a program like after eachstep of P do Q that it can be
simulated by a program in P, possibly using some extra variables as flags. It is easy to see
that flowcharts, PASCAL, ALGOL, and almost any ALGOL-like language will all

constitute acceptable programming langu ages'.

Our definition of acceptable programming language seems to coincide with the rather
vague definition given in Lipton [Li77]. In any case, as we shall see below, it certainly gives
us languages which are sufficiently rich to contain all the programs required by Lipton to
prove his results. But for our stronger results, we seem to require that our programniing
languages be acceptable with recursion, which we define to mean acceptable and effectively

closed under (possibly recursive) procedure calls.

To make this precise, we use semantics similar to those of [Mi81]. Let plab =
{Zy, Z;, ...} be some set of program labels and let P” be the smallest language containing P,
plab, and closed under the programming constructs described above, such that if P € P”
and Z € plab, then uZ[P] is a program in P”. Essentially wZ[P] acts as a least fixed operator

and allows us to program recursive calls. We extend 7, cv, and var to P” in Appendix 1.

Finally, we define P to be effectively closed under recursive calls, (as well as flowchart

operations, subroutine calls, and runtime checks) if for every program P€P” and
interpretation I, there is a program Q € P which simulates P in [in the sense defined above,
(The observant reader will have noticed that we have not dealt with issues such as the copy
rule and naming conflicts between global and local variables. But since we only require
that every program P € P” with the semantics that we have given can be simulated by some

program in P whatever the semantics of P are, such problems will not concern us here.)

A program P is deterministic iff for all valuations o there is at most one trajectory
7 € 9)(P) with first(r) = ¢ and last(r) # L. The programming language P is deterministic
iff all programs P € P are.

2.3. Partial Correctness and Termination
We expand the type = to P by adding, for each P € P, a predicate symbol Ap of arity

2k, where k = |var(P)]. In any interpretation I, I k= Ap(u,v) iff for some trajectory
(0g.-...0%) € 91(P) with oy # L, we have oy(var(P)) = u and oyx(var(P)) = v. (Note we use
the letters u, v, w to indicate domain elements, while x, y, z denote variables. We use italics
for vectors. Thus u indicates a vector of domain elements, and x indicates a vector of
variables.) Ap defines the input-output semantics of program P, We say P Aalts on input u
(in interpretation 1) if there is a trajectory 7 € 91(P) such that first(r)(var(P)) = uand last(r)

L. Otherwise we say P diverges on input .

A (first-order) partial correctness (resp. termination) assertion is a triple U{P}V (resp.
U<P>V) where U and V are first-order formulas (over Z) and P € P. By definition

['= U{P}V iff Tk= vx,) (U(x) A Ap(x.p) = V(3))
[= WKP>V ff T vxapU(x) = Ap(x,y) A V(»)

Thus I = U{P}V (resp. UPV) iff, if U(u) then for all (resp. some) v which are possible
outputs of P on input u, we have I = V(v). Note that in the case of deterministic programs,

total correctness and termination coincide.

2.4. Expressiveness
An interpretation I is weakly éxpressive for P iff for every P € P there is a formula Bp (of
type Z) such that
L= Bp() iff T+= 3x(Ap(y)
Thus I = Bp(w) iff there is a halting computation of P on input u. Note that we do not

assume we can effectively find such a Bp; only that it exists.

In Dijkstra’s terminology [Di76], Bp corresponds to the weakest precondition of P with

respect to rue, or the negation of the weakest liberal precondition of P with respect to false.

2.5. Expressive-Herbrand and Expressive-Effective Interpretations
An interpretation I of type 2 is effectively presented if there is a tuple of integers pres()
= {NyomNaNp NelgN A0>’ where ngy,, is a code for dom(l), a recursive subset of N (the

integers), n,, N, € dom(l) are the interpretations of a and b, and ng, ng, and ny o 1€ codes
for recursive functions and predicates of the right arity which interpret f, g, and Ay

respectively.

1 is Herbrand definable iff for all i € dom(l), there is a term t in the Herbrand Universe
of {a,b,fg} such thatl =t = A

Finally, we say an interpretation I is expressive-Herbrand with respect to programming
language P iff it is weakly expressive for P and either Herbrand definable or finite. 1is

expressive-effective if it is weakly expressive and either effectively presented or finite.

2.6. Strongly and Weakly Arithmetic Interpretations
1 is said to be strongly arithmetic if there exist first-order formulas Z(x), S(x,y), A(X,y,2),
and M(x,y,z), and a bijection ¢: dom(I) — X such that

11e=2Z(u) iff (p_(u) ==

2. 1= S(uy) iff @) + 1= @)

10

3I=A(v,w) iff @) + @(v) = e(w)
4.1 =M(u,v,w) iff @)X @(v) = p(w)

Note we do not assume that we can find Z, S, A, M, or g effectively.

I is weakly arithmetic if there exist first-order formulas N(x), E(x,y), Z(x), S(x,),
A(x,y,2), and M(x,y,2) (with, respectively, k, 2k, k, 2k, 3k, and 3k free variables for some k)
such that E defines an equivalence relation on dom(I)k, and if [u] = {v € dom(l)kl I =
E(u,v)}, there is a bijection ¢: {[u]| I = N(u)} — X such that conditions 1-4 above hold
(when restricted to N) with [u] replacing u as the argument to . (Thus, for example,
condition 2 becomes

=N ANW AS,y) iff @(u) +1=e(]).)

Thus the natural numbers are embedded in a weakly arithmetic interpretation as
equivalence classes of domain elements, while in a strongly arithmetic interpretation, every

natural number corresponds to some distinct domain element.
3. Main Results

3.1. Statements of Theorems
With all these definitions in hand, we can now state our main theorems precisely:

Theorem 1. Let P be a deterministic, acceptable programming language with
recursion. Then the following are equivalent:

1. There is an effective procedure, which, for expressive-Herbrand
interpretations 1, will decide which first-order partial correctness (resp.
termination) assertions are true in I when given an oracle for Th(l). Thus
the set of first-order partial correctness (resp. termination) assertions true
in I is wuniformly recursive in Th(I) for expressive-Herbrand
interpretations L.

2. P has a decidable halting problem for finite interpretations; (i.e. there is
an effective procedure which, when given I with dom(I) finite, a program

11

P € P with |var(P)| = k,and u € dom(l)k, decides if P halts on input u in
domain 1.)

Moreover, even without the assumption that P has a decidable halting problem
for finite interpretations, we can show that the set of first-order termination
assertions true in I is uniformly r.e. in Th(I) for expressive-Herbrand L.

Similar techniques allow us to prove a variant of this theorem. By exchanging Herbrand
definability for effective presentation, we can drop the assumption that the programming
language allows recursive calls, but at the price of losing uniformity. We no longer get one
algorithm which works as soon as it is given an oracle for Th(I), but a different algorithm

for each interpretation.

Theorem 2: Let P be a deterministic, acceptable programming language. Then
the following are equivalent:

1. The set of first-order partial correctness (resp. termination) assertions true
in 1 is recursive in <pres(I),Th(I)> if I is expressive-effective.

2. P has a decidable halting problem for finite interpretations.

Moreover, the set of first-order termination assertions true in I is re. in
<pres(I),Th(I)> for expressive-effective interpretations I.

By way of contrast, Lipton showed (in [Li77]):

Theorem (Lipton): Let P be a deterministic, acceptable programming language.
Then the following are equivalent:

1. The true quantiﬁer—freé partial correctness assertions are uniformly r.e. in
<pres(I), Th(I)> for expressive-effective interpretations I.

2. P has a decidable halting problem for finite interpretations.
Lipton’s proof only showed how to enumerate the true partial correctness assertions of

the form true{P}false. However, note that

1= A{P}BiffI = true{if —A then w; P; if B then w}false

12

(where w is the program which always diverges). Moreover, if A and B are quantifier-free,
this modified program (or one Lhat simulates it) is in P. Thus it is easy to extend Lipton’s
proof to quantifier-free partial correctness assertions. But this trick does not extend to first-
order formulas. If A is first-order, then the program (if —=A then w) cannot in general be
simulated by a program in an acceptable prc;gramming language, since the simulating

program would violate condition 2 of Definition 2.2.

Theorem 1 uses the following lemma, which is interesting in its own right and again
generalizes one of Lipton’s results:
. Lemma I: 1f P is acceptable with recursion and 1 is expressive-Herbrand with
respect to P then either:;

1. Tis strongly arithmetic, or

2. vP€PAn(P reaches at most n_distinct valuations in any computation) (i.e.
for all r € 9Y(P), {o| o, € 7} has < n elements).

We will abbreviate condition 2 of the lemma by (+) since we refer to it so often below.

Lipton proved the same result with "acceptable with recursion” replaced by
"acceptable”, "expressive-Herbrand" replaced by "expressive-effective”, and "strongly
arithmetic” replaced by "weakly arithmetic”. However we can actually get a stfonger
result. Asa cérollary to the proof of Theorem 1, we will show that if I is strongly arithmetic
and expressive-Herbrand, we can effectively find the formulas which make I strongly
arithmetic. We will rederive Lipton’s result in the course of our proof of Lemma 1, and use

it in proving Theorem 2.

3.2. Proof of Theorem 1
The fact that (1) = (2) in the first half of Theorem 1 was proved by Clarke [C176/79].
The proof in fact goes through under much weaker hypotheses: P does not have to be

acceptable or deterministic. To prove the remainder of Theorem 1, we will describe five

13

effective procedures, M;, ..., Ms. When given an oracle for Th(I) of an expressive-
Herbrand interpretation I each of them outputs first-order partial correctness or
termination assertions, or their negations. They are all sound; that is, any assertion which is
output is true in 1. If I is strongly arithmetic, then M is complete for parﬁal correctness
assertions; that is, it outputs U{P}V or —U{P}V for each partial correctness triple,
depending on whether it is true or false in 1. Similarly, M, is complete for termination
assertions if T is strongly arithmetic. If P has a decidable halting problem for finite
interpretations and (1) holds, then M (resp. M) is complete for partial correctness (resp.
termination) assertions. Finally, M is similar to M, but it just enumerates all the true
termination assertions U<P>V if (1) holds (but not the negations of the false ones), and
does not require the assumption that P has a decidable halting problem for finite

interpretations.

Theorem 1 then follows from Lemma 1 (which we will prove below). To decide first-
order partial correctness assertions we run M; and Mj; in parallel. To decide first-order
termination assertions we run M, and M in parallel. To enumerate first-order termination
assertions without the assumption that P has a decidable halting problem for finite

interpretations, we run M, and M in parallel.

3.2.1. Construction of M, and M,

Consider the following set of axioms for arithmetic:

AX1. —(S(x) = 0)
AX2. S =Sy =x=y

AX3. x+0=x

AX4. x+S(y) = S(x+y)
AX5. xx0=10

AX6. xXS(y) = xXy + x
AX7. —(x<0)

AX8. x<S(y) = (x<y Vx=Y)
AX9. xXy Vx=yV yKX

14

Of course, these do not constitute a complete set of axioms for arithmeti.c. However, an
interpretation which satisfies these axioms has a "standard part” (cf. [SH67]), con;sisting of
those elements in the domain of the form Sk(O) for some integer k. In general there is no
first-order formula which defines the standard part, but under certain stronger hypotheses,

we will show that it can be defined.

First we inductively define an encoding of Herbrand terms of type = :

rai=>0
hi=1
rf1 = 2
rgn=3

rfit)1 = <rfa,ren
rg(t,u)1 = <rg1<rt1,rumnd

where <> denotes the pairing function <x,y> = %(x+y)(x+y+1) + x.

Let H be a binary predicate symbol (whose intended meaning is H(u,d) iff u is the
encoding of a Herbrand term equal to d) and consider the following encoding axiom:

(Enc) vx,dHxd=x=rai1Ad=avx=rbi1Ad=b)v
Ay, d'(Pr(x,r f1,y) AH(y,d) Ad = f(d)) v
(3y,d,dy,21,25(Pr(x,rg1,y) A (Pr(y,z,25) A H(z,.d))
A H(zy,dp) A d = g(dy,d,)]

where Pr(z,x,y) = y<z Ax<z A (z = (X +y)x+y+1) +x)

We now show H "works right" on standard elements:

Lemma 2: If 1 satisfies AX1-9 and Enc, then I &= H(Sk(O),d) iff k is the encoding of a

Herbrand term whose value in I is d.

Proof: We begin by showing that the nonstandard elements, if there are any, come after
all of the standard elements in the ordering <. That is, if u is standard and v nonstandard,
I'= u<v. This in turn is proved using induction on k to show that if v is nonstandard, then

[= --(v(Sk(O)). The desired result then follows immediately by AX9. The base case of the

15

induction is just AX7, and the inductive step follows using AXS, the inductive hypothesis,

and the fact that we cannot have v= Sk(O) since v is nonstandard.
Now we prove our result by induction on k; we write k* as an abbreviation for SK(O).

The base cases k=0 or k=1 follow directly from the definition. (Note the last two
disjuncts in Enc cannot hold if k=0 or 1, since if k=0 or 1 and m=rf1 or rg1, then for all
u € dom(I) we must have I = —Pr(k*,m*,u)).

Inductive case: Let us assume that the lemma is true for all k'<k. Assume k=rf(t;)7 for
some term ty, and let k; =rt;7, k;<k. (The case where k encodes a term of the form g(t;.ty)
is similar and will be left to the reader.) By our encoding of Herbrand terms, k=<rfi.kp,
and so I = Pr(k*,2* k;*). By the inductive assumption, I = H(k;*,t;). Hence, by axiom
Enc it follows that I = H(k*,f(t;)) as required.

Conversely, assume that I = H(k*,d). By Enc, we can assume without loss of generality
that there are v,d;€dom(I) such that I = Pr(k*2*,v) A H(v,d)) A d=f(d;). (Theother case
is similar). Since I k= Pr(k*,2*,v) implies I = v<k*, v must be a standard element, say k;*,
where ki<k. It then follows from the inductive assumption that k; encodes a Herbrand
term t; such that I &= t;=d;. Since k=<2k;> and I = d=f(d;), we conclude thaf k
encodes the term f{t;) which has value d. 8

Now we show how to use H to define the standard part in a nonstandard model of

arithmetic.

Lemma 3: If 1 satisfies AX1-9, Enc, and is Herbrand definable, then Std(x) =
3dvz(H(z,d) = x < z) defines the standard part of L.

Proof: Suppose u is standard. Because dom(l) is infinite (this is forced by AX1 and
AX?2) and I is Herbrand definable, there exists an element d all of whose encodings are

greater than u. For this d, | = vz(H(z,d) = u<z), because if H(w,d), either w is standard, in

16

which case by Lemma 2 it encodes d, or it is nonstandard. In either case, w must be greater
than u. Thus I = Std(u). On the other hand, if u is nonstandard, then for every d € dom(l),
there exists a standard encoding w of d such that I = H(w,d) A —(u<w). Therefore,
I = —=Std(u). 1 '

Finally we need

Lemma 4: Suppose we can effectively find formulas Z'(x), S’(x,y), A’(xy,z), and
M’(x,y,z) (of type =) which make I strongly arithmetic. Then, for each P € P, we can
effectively find a formula Ay’ of type 2 which is equivalent to Ap in L.

Proof: See Appendix 2. &

Now we can define M to decide partial correctness assertions. It systematically guesses
formulas Z'(x), S’(x,y), L'(x.y), A’(x,y,z), M’(x,y,z), and H'(x,y) and checks (by consulting
its oracle for Th(I)) that Z' defines a unique element of [(i.e. [= IX(Z'(x) A Vy(Z'(y) =
y=x)), §’, A’ and M’ define functions (i.e. I = vx3y(S'(x,y) A Vz(S'(X,z) = y=2)), etc.),
and that AX1-9 and Enc hold in I when written in terms of these formulas. (For example,
AX2 becomes (S’(x,z) A S’(y,z)) = x=y.) Now using these formulas, we can define Std(x)
as in Lemma 3, and check if I = vx(Std(x)). If not, then M ; continues guessing. But if
vx(Std(x)) does hold in I, then we have effectively found the formulas which make I
strongly arithmetic, and the hypotheses of Lemma 4 are satisfied. Then for every pair of
first-order formulas U, V and every program P € P, M constructs the formula PCyp v:

V) (U(x) A Ap'(xy) = V()
By consulting the oracle for Th(I),. M can tell if this formula is true in 1. If so, M ; outputs
U{P}V; otherwise it outputs = U{P}V.

From Lemma 4, it follows immediately that M is sound. And if I is strongly arithmetic,
M will eventually find first-order formulas Z’, S’, L', A’, M’, and H* which satisfy all the

conditions, and hence will also be complete. (Here we are using the fact that the formula H

17

is definable in strongly arithmetic domains. The construction is straightforward but
technical, using encoding of sequences much as in the proof of Lemma 4, and is omitted
here.)

For total correctness assertions, M , proceeds just as M, but instead of using PCyy p v, it
Uses TU,P,V: _
vxaU(x) = Ap'(xp) A VO) 8

Note that in constructing M, and M, we did not need the full strength of the
assumption that I is strongly arithmetic. We could have weakened it to "I is weakly
arithmetic and there is a formula H which satisfies (Enc)". In this case, we would also have
to guess a formula N(x) for natural number, and formula E(x,y) for equivalence. AX1-9
would also have to be appropriately modified to restrict everything to N. For example,
AX?2 would read: '

NG A NO) AN = [S(6y) A S(x.2) = E(2)]
We also would also have to include axioms to check that E is an equivalence relation, and
that N, S, and Z interact correctly. Thus we would also have to check that the following

two formulas held in I:

E(x.0) A (E(xy) = E) A (B(xp) A E3y2) = E(x,2),
(Z(x) = NG) A (N(X) A S(x)) = NG

With these new hypotheses, we could prove slight variants of Lemmas 2, 3, and 4 which

would suffice to prove our theorem. We omit details here.

3.2.2. Construction of M3, M, and M

We extend the techniques of [Li77] to the first-order case.

Given an interpretation I, an integer M, a program P € P with var(P) = x = <Xi1’""xik>’
and u = <uy,...,uy> € dom(D)¥, we make the following definitions:

1. Upy(x) = {terms of depth < M over {f,g,a,b,x}}.

18

2. Iyj(u) = {values obtained by substituting u; for x i in the terms of Up (0}

3.Ky; = {K]| K is an interpretation of type %, dom(K) has size < N where _
N=1+|Up(x)|, and there is a distinguished element A € dom(K)}

4. Py is the program which acts just like P except that on input u it halts at any
valuation o such that o(y) ¢ Iy(w) for some y € cv(P). Py is just

run P until _'[Ayecv(P)(vteUM(x)y:t)]'

Ify € var(P), 7 = (0¢,01,...) € 91(P), and o (y) is the k™ distinct valuation in r, then it is
straightforward to show using condition 1 on acceptable programming languages and

induction on k that o (y) € [(a¢(x)). From this observation we get

Lemma 5: (Lipton [Li77]) If (1) holds in I, then there exists an M such that for all y €
var(P), all r € 93(P), and all n, we have on(y) € Ing(a(x)).

We say that I is isomorphic to <K ,c> on Ipm(w) (where K € Ky and ¢ € dom(K)k) iff there
~ exists a bijection ¥: Iy (u) — dom(K) - {A} such that

1. \b(l.li = Ci’ fori =].,...,k.

2. 1= Ag(ty,ty) for ty, ty € I((u) iff K 1= Ap(P(t) ¥(ty)).

3.1fty € Iyg(w) and f(t,) ¢ Iy(u), then K = f¥(tP)=A. Similarly for g,

4.1 ty, f(t)) € Iyy(u), then K = f(¥(t1)) = Y(fty). Similarly for g,

Note that there are only finitely many non-isomorphic pairs <K,c> for a given
M. Moreover, for each such pair we can find a first-order formula A¢k e>(x) such that

I'= A (@) iff Lisisomorphic to <K,c> on Iy(u)

Call a pair <K,¢> diverging if P\ diverges when run in interpretation K on input ¢. Call
a pair cleanly halting if Py halts with output d when run in interpretation K on input ¢, and

nod;=A. Let X¢K o> be the term in Upy(x) corresponding to d (i.e. when we substitute ¢ in

19
for xin x¢g ., we get d).

It is easy to check that if <K,c> is diverging and I k= A(K,o(“)’ then P diverges in I on
input u. If<K,c> is cleanly halting and I = A¢k »(w) then I = Ap(uuck) (Where uey o
is the result of substituting u for x in the term xck). Thus we define two first-order
sentences, the first of which says U{P}V is true, while the second says U{P}V is false:

PCy\upv: YXU) = (Vek o divergingB <k, (¥ V

V(K e cleanly halting{A<k, (0 A YOk >M)]
FPC'\pu,v: 3IMUM) A Vek o> cleanly halting(A<k, () A 7V(X¢g)]

M ; proceeds as follows. For each M, U, P, and V, it constructs the sentences PC'yg yyp,y
and FPC'y(py y. This can be done effectively. By assumption the halting problem is
decidable for finite interpretations so we can effectively find all the diverging pairs <K,c>.
We remark that we are using the fact that proagrams are deterministié here: a program
either diverges or halts on a given input‘(but cf. Remark 3.2.4). (Note we do not need the
halting problem to be decidable to recursively enumerate the cleanly halting pairs. By
condition 2 of acceptable programming language we can simply simulate Py, on input ¢ in
interpretation K simultaneously for each pair <K,c>. Eventually we will find all the cleanly
halting pairs, although we will not know when we have found all of them) If (by
consulting its oracle for Th(I)) M; discovers that PC'\y ypy .(resp. FPC’y\q pyy) holds in I
for any M, it outputs U{P}V (resp. "U{P}V). The procedure is sound by the comments
above, and complete if (1) holds for [by Lemma 5.

M, is identical to M; but replaces PC’y; y p y and FPC’'yp iy y by

Tmupv: YXUG) = Vi o cleanty halting(A<k () A V(xcg)]
FT'\ up,v: 3IXUM) A (Vg o> divergingB<k,o(¥) V
V(K. ¢> cleanly halting(A<k, () A V(X)]

Finally, for M, note that we do not need the assumption that the halting problem is
decidable for finite interpretations to compute Tymupv since we only need the cleanly

halting pairs <K,¢> and not the diverging pairs. Thus M starts simulating Py on input c in

20

interpretation K simultaneously for each pair <K,c>. Every so often it discovers that
another pair <K, ¢> is cleanly halting, Let J be those pairs which it has so far discovered to

be cleanly halting. M s checks if

[E= VUG) = Vg oey(Bek o0 A Vixg o))
If so, it outputs U<P>V. By the same arguments as above M is sound, and it is complete if
(t) holds in I. Note that we cannot effectively find all the pairs <K,c> which are diverging,

but we do not need them to enumerate the true termination assertions.

3.2.3. Proof of Lemma 1

Assume that (1) does not hold for I. Then there is some program P € P which has no
bound on the number of distinct valuations it goes through in any com putation: ie. for all
M there exists 7 € 9j(P), 7 = (o, 0, ...) such that {oil o; € 7} has at least M distinct
elements. We show how to define programs whose weakest preconditions (the Bp of
Definition 2.4) define the formulas necessary to make [arithmetic. Our initial steps are
much like those of Lipton. We use his technique for representing integers in [and show
how to write programs that perform arithmetic operations on this notion of integer.
However, we go much further than Lipton in that we use these primitive programs to write
more complicated programs, and ultimately to construct a program which translates the

encoding of a Herbrand term into its corresponding value,

The programming details are themselves interesting. It turns out that under this
representation of integers we can compute a predecessor function, but no successor
function. But we can compute a bounded successor function, and that is sufficient for our

needs.

In the constructions below, we assume for ease of exposition that P = P”, so that
programs like after each step of P do Q really are in P. In general, of course, we would

have to replace the programs below by the programs in P which simulate them,

Suppose var(P) = x. As a notational convenience we will write P(x) to indicate this.

21

We then use P(x) to denote the result of substituting x for x”in P. Occasionally when we
write R(y) for some program R, we may omit some of the variables in var(R) which are just
local variables; thus in general y will just consist of those variables on whose value the

program R depends.

We first construct a program Q(x) such that if we run Q(x) on any input, x takes on the
same values as when we run P(x) on the same input, but without repetition; i.e. if
T = (0g,0p,..) €9(P)and 7’ = (0, 07, ...) € 93(Q) with oy = op then {¢;(x)| >0}
= {oi(x)]i>0} and if o{(x) = o' (x) for i<j, then oy ’(x) = o;(x) for all k, i<k<j.
Essentially this is done by keeping track of the initial and current values of x, and then

running a copy P with input the initial value and looking for the next new value it reaches
after the current value (see [Li77] for more details). The code for Q(x) is given in

Figure 3-1.

begin local init, x’, y;

init 1= x;

s i oo

after each step of P(x”) do R(x,x’,y,init);
end

where R(x,x",y,init) is the program

if x # x’then begin
y = init,
run PO until (y = x’v y = x);
if y= xthen x:= x’,

end

| Figure 3-1: The program Q(x).

The pair u = (u,u;) will represent the integer k iff u, is the k™ distinct value reached

by Q on input #;. We write [u] = k to indicate that the pair u = (4;,u,) represents k.

Choose two Herbrand terms tt and ff which get distinct values in I, to represent true and

Jalse respectively. Then using Q it is straightforward to write programs which meet the

22
following specifications.

(1) CHECKINT(x): halts with x unchanged if x represents an integer; otherwise
CHECKINT will diverge.

(2) EQ(x,y,ans): if x and y do not both represent integers, EQ will diverge. Otherwise
EQ will terminate with x, y unchanged and

ans = tt if [x] =[]
ff otherwise.

(3) LESS(x,y,ans): if x and y do not both represent integers, LESS will diverge.
Otherwise LESS will terminate with x, y unchanged and

ans = tt if [x]<[y]
ff otherwise

(4) NUM;(x,ans): if x does not correspond to the integer K, NUM, will diverge.
Otherwise, NUM will terminate with x unchanged and

ans =tt if[x] =k
ff otherwise

The idea for computing EQ(x,y,ans) is to compute the successive values reached by Q
starting from x; and y; and check that we reach x, and y, at the same time. (Recall that we
assume x is of the form x;, x, and likewise y.) We give the code in Figure 3-2: the codes

for CHECKINT, LESS, and NUM;, are similar and will not be given.

In more detail, the program works as follows. The initial calls to CHECKINT check
that x and y are integers, and diverge otherwise. The while loop then uses
ONEMORESTEP(x,,z) to compute the successive values reached by Q; z is the next value
reached by Q after it reaches y when started on x. We get ONEMORESTEPQ(x,y,2) by
running Q starting from x until we reach y. At this point Q*(y,zflag) sets flag to tt; we then

continue running Q for one more step.

23

CHECKINT(x);
CHECKINT(y);
begin local u, v, u’, v’,
u.= xXp,
V=Yg
while u = x, V v # y, do begin
ui=u;
vi=wv o
ONEMORESTEPQ(x;,u’,u);
ONEMORESTEPQ(y,,v’,v);
end;
if u= x, A v=y,thenans := ttelse ans:= ff,
end ‘
ONEMORESTEPQ(x,,2) computes zsuch that [x,z] = [xy] + L

begin local flag;

flag : = fT;

= X,

run Q*(,zflag) until (flag = tt A y = 2);
end

where Q*(y,z,flag) is after each step of Q(z) do (if z = y then flag : = tt).
Figure 3-2: The program EQ(x,y,ans).

In general, it does not seem possible to construct a program SUC(x,y) which will
compute a y such that] = [x] + 1. If[x] =k it may be the case that only k distinct
elements of dom(I) are reachable from x; by the program Q. The program
ONEMORESTEPQ above only worked because at the point when it was called we were
guaranteed that a "next” element existed. However, it is possible to generalize this idea
and construct a "bounded" successor program, as well as the bounded addition and

multiplication programs described below.

(4) SUC(b,x,y,0fl): if b, x, and y do not all initially represent integers, SUC will diverge.

Otherwise SUC will terminate with b, x unchanged and

24

D] =[x+ 1,0fl =ff if[x]<[5]
ofl =it if [6] < [x]

(6) ADD(b,x,y,zcfl): if b, x, y do not all initially represent integers, ADD will diverge.
Otherwise, ADD will terminate with b, x, y unchanged and

[= [x] + Dl ofl = ff if[x] + [y] < [8];
ofl =tt if[6]<[x] +]

(7) MULT(b, x, y,}z,bﬂ): similar to (6) above except that

[2] = [X D], oftl = ff if[x] X [y] < [8]
ofl = tt if [6] < [x] X [].

The code for SUC(b,x,y,0fl) is given in Figure 3-3. The idea is to initialize y to & and
then increase y (using ONEMORESTEPQ) until x < y. The code for ADD and MULT is .

straightforward to write using SUC and is omitted here. It is, however, important to ensure

that no intermediate integer value ever exceed the value determined by 4.

begin local ans, y”;
LESS(x,b,ans); .
if ans = ff then ofl : = tt else begin
ypi=by /trecall y = (y;,p)*/
yy:= by
while ans = ffdo begin
yi=ya
ONEMORESTEPQ(y,.y".y,);
LESS(x,y,ans);
end; '
end;
end

Figure 3-3: The program SUC(b,x,y,ofl).

By slightly modifying the programs written above so that they compute predicates

instead of functions (e.g. we would modify ADD so that it halts on input x,y,z iff

[z] = [x] + [¥]) and taking weakest preconditions we could already define formulas N, Z,

25

E, S, L, A, and M which satisfy Definition 2.6. We note that none of the above programs
required recursive calls. Thus.it follows that if (1) does not hold, P is an acceptable
programmmg language (but not necessarily acceptable with recursion), and I is expressive-
Herbrand or expressive-effective with respect to P, then I is weakly arithmetic. This is
exactly Lipton’s result. But we require more; we need a formula H which satisfies the

axiom (Enc).

We get H by using the programs defined above to construct a program HRBD which
relates the encoding of a Herbrand term as an integer to its corresponding value. We use
the encoding of Herbrand terms described in 3.2.1. The formal specification for HRBD is

given below.

(8) HRBD(x,enc,d): if x does not represent an integer, HRBD will-fail to terminate.
Otherwise, HRBD will terminate with x unchanged and

enc = tt,d = h(inI) if[x]encodes Herbrand term h,
enc = ff if [x] does not encode a Herbrand term

Thus, for example, if [x] = rfla)1 (= (2,0) = 5), then after the execution of
HRBD(x,enc,d), we will have enc = ttand d = Ra).

Note that a true pairing function cannot be programmed using the above techniques.
Given only x and y, it is not in general possible to compute z with [z] = <[u],bP, since the
value to be computed will be larger than both of the input values. The corresponding
projection functié)n, on the other hand, is relatively easy to compute and is sufficient for

programming HRBD. Thus we need a program PR which satisfies

(9) PR(z,x,p): if z does not represent an integer, then PR diverges. Otherwise, PR will
terminate with the final value of z unchanged and the final values of x and y will satisfy the

relationship

[= %@ + DD @ + D1 + D) + [

26

The program for PR simply tests all [x], [y] < [2] until it finds [x], [] which satisfy this
relationship. It uses the identity 1+2+...+(n+m) = %(n+m)(n+m+ 1) to ensure that
no intermediate value for the right choice [x] and [y] exceeds the initial value of [z]. The

code for PR will not be given; the code for HRBD is given in Figure 3-4.

A straightforward modification of HRBD(x,enc,d) gives us HRBD’(x,d) which halts iff
d is equal to the Herbrand term encoded by x. Now, by taking weakest preconditions, we
can already show that I is weakly arithmetic and has a formula H which satisfies Enc. As
we remarked in 3.2.1, this would already be enough to enable us to define the procedures
M and M, and prove our main theorem. However, with a little more work, we can show

that I is strongly arithmetic.

List the terms in the Herbrand universe (of {a,b,f,g}) in order of increasing encoding:

a, b, f{a), f(b), g(a,a),

Using this list, we can define a bijection @: dom(I) — X. For u € dom(l), ¢(u) = m iff,
if t is the first term on the list such that I =t = u, then m different values are taken on by

the terms on the list before t. For example, suppose that in I we have a = f(a), but a, b, and
f(b) are all distinct. Then ¢(a) = 0, p(b) = 1, p(f(b)) = 2.

Since I is Herbrand definable (by assumption) and has an infinite domain (otherwise (1)

would hold), ¢ is indeed a bijection.

We can also use this list and our old way of looking at tuples in dom(]) as integers, to
define a new way of looking at tuples in dom(I) as integers. We want [v] = miff, for some

u, @(u) = m and [v] encodes u. We use the notation [] to contrast with the [v] used before.

Define [v] = m, if, for some k:
Lid=k

2. k is the encoding of some Herbrand term t (i.e. rt1 = k),

27

pH[begin
local init, ans, fid, arg, arg’, arg”, d’;
init := X, -
enc : = tt;
NUMFa'I(x,aﬂS);
ifans = ttthend:= a
else begin
NUMpp+(x,ans);
ifans = ttthend := b
else begin
PR(x.fidarg);
NUM[(fid, ans);
if ans = tt then begin
X .= arg;
H;
d:= fld);
x .= init,
end;
else begin
NUMp¢+(fid,ans);
if ans = tt then begin
PR(arg, arg’, arg™);
x .= arg’
H;
d’ i=.d;
if enc = tt then begin
x:=arg”
H;
d:= g(d', d);
end;
X .= init;
end; ‘
else enc : = fT;
end;
end;
end;
end]

Figure 3-4: The program HRBD(x.enc,d).

28

3.thereis no term t’ with rt' 1< k such that [=t = t,

4. the Herbrand terms t’ with rt’1 < k take on m distinct values in L

If the conditions above do not hold, then [v] is undefined.

Consider the example give above where we have a = f(a), but a, b, and fib) are all
distinct. Itis easy to check thatra1=0,rb1 = 1,rf{a)1 = 5,rfb) 1 = 8. Thus, if [v,]
=0,[v]=11[v)] =2[v;] = 5[v,] =8, then [vol = 0, [v/] = 1, [v,] is undefined, [v;] is
undefined (since there is a Herbrand term, namely a, with ra1<rf(a)1 but I =a = f(a) by

assumption), and v = 2.

We would like to define programs SUC’, ADD’, and MULT’ which meet the following

specifications:
1. SUC(v;,v)) halts iff [v]+1 = [v,].
2. ADD'(v;,v,,v3) halts iff [v;] + [v,] = [vs].

3. MULT'(v,v,,v3) halts iff [v,] % [v5] = [v3].

Suppose we could define these programs. Note that indeed (u) = m iff for some v, [v]
encodes a Herbrand term equal to u, and [v] = m. Thus it follows that e(uy) + p(uy =
¢(us) iff there exists v;, v,, and v; such that [vd encodes u; for i = 1,2,3 and [v;] + [v,] =
[vs]. Similar statements hold for successor and multiplication. Thus we can define Z(x) via
X = a (since g(a) = 0) and formulas S, A, and M which make I strongly arithmetic by
using weakest preconditions. For example, if Woppy and Wypppe are the weakest

preconditions with respect to true of ADD’ and HRBD' respectively, then we define A as

Alugupug) iff 3v,,vv3 (A= 12 3WHRBD (VW) A WaApp(v.v2,v5))
Similar definitions can be made for S and M, and thus I is strongly arithmetic,

All that remains is to show how to define SUC’, ADD’, and MULT”. In orderto do this,

29

we need a program Q'(x) such that on input vy, if x successively takes values vy, v, v, ...,
then [vy,v] = i If we look at the definition of [], we see that this means that x goes
through the encodings of Herbrand terms without repeating values. Thus, the definition of

Q’ bears much the same relationship to Q as Q does to P. We give the code for Q(x)in
Figure 3-5.

begin local init, x’;

init .= x;

X=X .

after each step of Q(x”) do R’(x,x’,init);
end

where R’(x,x’,init) is
begin local y,,y,,y’enc.enc’,d,d’.e.e’;
if x # x’then begin
/*check if x’encodes a Herbrand term*/
HRBD(x’enc’,d");
if enc = tt A d # d’ then begin

HRBD(x,enc,d);
yp o= init,

Yy .= init;

e:= a;

/*check if d’, the Herbrand term encoded by x’, has

occurred previously in the list of Herb rand terms*/
while e = d vV e = d’ do begin

yi= Yy
ONEMORESTEPQ(y.y"y));
HRBD(y,enc,e’);
if enc = ttthene := ¢’;
end;
ify = xthenx := x’;
end;

end;
end

Figure 3-5: The program Q’(x)

Now by simply replacing the Q in SUC, ADD, and MULT above by Q’, and making

30
very minor modifications, we can easily define SUC’, ADD’, and MULT".

This completes the proof of Lemma 1, and with it the proof of Theorem 1. 1

3.2.4. Remarks

We have used two of our hypotheses on P -- that P is deterministic and that P allows
recursive procedure calls -- in a weak way. In particular, note that as long as Lemma 1
holds, the construction of M;, M,, and Mj is unaffected even if P has nondeterministic
programs. For M;and M, to work in the presence of nondeterministic programs, we need
to strengthen the hypothesis Ithat "P has a decidable halting problem for finite
interpretations” to "P has a decidable input-output relation for finite interpretations'; i.e.
if [is finite, then for all P € P, we can decide for which u, v € dom(I) we have I = Ap(u,v).

Note that the two hypotheses are equivalent if P is deterministic.

It is only in the proof of Lemma 1 that we really needed determinism, because we
needed to know that if (1) does not hold, then there is a deterministic program P which goes
through unboundedly many valuations on any given input. But once the presence of one
such program is guaranteed, the programming language could certainly have other

nondeterministic programs.

Similarly, the only place in which we used recursive calls was in the construction of the
program HRBD of the previous section, which in turn was necessary to show that I was
strongly arithmetic. We could remove this condition by insisting, for example, that thelje
be some program P € P and some x € var(P) such that if we run P on some input 4, x takes
on every value in dom(I). In particular, under our assumption that I is Herbrand definable,
having a deterministic program which would generate all the Herbrand terms would be a

sufficient condition to remove both of these hypotheses on P.

It is also worth noting that our decision procedures for partial correctness and

termination also extend to decision procedures for the full first-order dynamic logic (cf.

31

[Pr76,Ha79]) of any acceptable programming language with recursion.

3.3. Proof of Theorem 2

By the comments made in the proof of Lemmé 1, since I is expressive-effective, I is
either weakly arithmetic or (1) holds. If (}) holds, then the procedures M3, M, and M
defined above work perfectly well in this case too. If I is weakly arithmetic, we show below
that given the formulas N, Z, S, A, M, and E which make I weakly arithmetic, we can use

them to effectively check if a given partial correctness or termination assertion holds for I,

Since I is expressive-effective, and hence effectively presented, it follows that Ap defines
an r.e. subset of dom(l)zk - ¥ (where k = |var(P)]). Thus by a well-known result of
recursive function theory (cf. [Sh67]), given (the code for) P, we can effectively find a first-
order formula Ap* of number theory (i.e. over the type {0,+ ,X,S}) such that X= Ap*(u,v)
iff I = Ap(u,v). Similarly, we can effectively translate any formula U of type 2 to a
formula U* of number theory such that N = U*(u,v) iff [= U(y,v). To see this, note that
since all the functions and predicates of I are recursive by assumption, (and thus definable
by a first order formula of number theory by the result in [Sh67] referred to above) we can
easily translate any quantifier-free formula. Using the fact that dom(l) is recursive and thus
also definable, we can restrict the quantificatiers to range over dom(I) in X and thereby
translate any first-order formula. For example, a formula such as vXT of type Z would be

translated to Vx(x € dom(I) = T*).

Ndw note that

[=U{P}V iff Xi=vu,U*() A Ap*(w,y) = V*(v)
[= UKV iff Xi= Yu(U*(u) = IAp*(u) A V¥(1)

Thus we can effectively translate partial correctness and termination assertions to sentences
of number theory. But by a straightforward syntactic translation using N, Z, S, A, M, and
E, we can effectively translate any sentence B of number theory to a sentence B’ of type 2

such that

32

I =Biff N=B.
The translation is a generalization of that used in 3.2.1 above to translate AX1-9, By using

the N predicate we can essentially view I as a standard model of arithmetic.

Thus, to decide if I = U{P}V (resp. I = U<P>V) we translate U{P}V (resp. IKP>V) to a
sentence of first-order number theory as described above, translate this sentence back to a
first-order sentence of type X, and then consult the oracle for Th(I) to see if this sentence is
true. Note this procedure is not uniform in I. In contrast to Theorem 1, we have no

effective way of finding the formulas N, Z, S, A, M, and E; all we know is that they exist. &

4. Conclusions and Open Problems

We believe that this paper raises a number of open questions of both technical and
philosophical interest. Perhaps the most important technical question concerns to what
extent the various hypotheses that we used in Theorem 1 can be eliminated or replaced by
weaker conditions. In particular, the hypotheses that the programming language be
deterministic and allow recursive calls do not appear to be essential (cf. 3.24), and we
conjecture that our results can be extended to a wider class of languages. On the other
hand, the assumption of Herbrand definability, or something like it, does appear to be
necessary. (We shall return to this point below.) In any case, both Herbrand definability
and effective presentability seem to be very natural conditions. The first limits the values
of the domain to those which can be effectively described, while the second limits the

interpretations to those which can be effectively described.

A second open question concerns the relationship between an axiomatization of the
kind given by Floyd and Hoare (consisting of a finite number of axiom schemes), and a
decision procedure of the sort provided by Theorems 1 and 2 ie. a nondeteiministic_,
recursive computation which checks the truth of certain formulas in the interpretation.
One trivial observation is that any such computation can be axiomatized by a formal system

in which formulas describe the state of the computation and the "rules of inference"

33

correspond to state transitions. Clearly such a formal axiom system would not cbmpare

with the familiar syntactic axiom systems in elegance or understandability.

On the other hand, there are many applications in which the form of the axiomatization
is of secondary importance. For example, the quantifier-free theory of linear inequalities
(i.e. the quantifier-free theory of the symbols {0,1,+,-<,=}) has many applications in
program verification. A first order axiom system is a useful representation of this theory
for purposes of logical analysis, but for deciding the truth of formulas in an automatic
theorem prover, a representation based on an efficient algorithm for deciding linear

inequalities (such as the Simplex Algorithm) may be preferred.

Of course, it would be important and interesting to understand if and when the
existence of a decision procedure such as we have given implies the existence of a more

syntactic, "natural” axiomatization.

Recall that our proof procedure splits into two cases. In the first case, where our
interpretations were essentially finite (or, more precisely, satisfied (1)), we simulated the
program’s behavior on finite interpretations. In the second case we used the power of
expressiveness to enable us to find formulas which made the interpretation strongly
arithmetic, and then made use of the encoding power of arithmetic. Our main usé of
arithmetic was in encoding the behavior of the program as a first-order formula (cf. Lemma
4). This was necessary in our model because of our abstract notion of acceptable
programming language. For many concrete programming languages, we believe that an
axiomatic description of the control features could replace this use of arithmetic, leaving us

with a system that is more natural.

However, for sufficiently rich programming languages, some encoding seems to be
necessary. The various assumptions that we and other researchers have made -- in our case
that the interpretation is expressive and Herbrand definable or effectively presented; in the

case of, say, [Ha], that is (weakly) arithmetic and that there is a definable predicate which

34

encodes finite sequences of domain elements as on element -- can all be viewed as ways of
ensuring that the interpretation has sufficient encoding power to admit an axiomatization.
Indeed, our results show that these hypotheses are equivalent in many cases, and the results
of [CI76/79] and [BCT82] suggest that they are often necessary. In contrast, the work of
Cook and Gorelick [Co75/78, Go75] shows that encoding of control structures is

unnecessary when reasoning about programming languages which include recursive

procedures.

If a programming language requires an unnatural use of encoding in order to get an
axiomatization, then it is perhaps too powerful to reason about effectively. The arguments
given in Section 3 can also be used to show that a sound and relatively complete partial
correctness proof system can be obtained for any acceptable programming language
provided that we consider only unbounded expressive interpretations. This is precisely |
because of the encoding power available in such interpretations under the hypotheses of
expressiveness and Herbrand definability. Although it is difficult to define the notion of
"natural” axiomatization precisely, it seems that a natural axiomatization shoulcf not make
use of such encoding. We believe the incompleteness results of [CI176/79], which depend
only on finite interpretations, show that certain programming language features cannot
have natural axiomatizations. In fact, we would argue that finite interpretations are often
more useful than infinite interpretations for judging whether an axiomatization is natural,
since they preclude the possibility that domain elements can be used to encode complicated
run-time data structures such as the run-time stack or linked lists of activation records.
Moreover, all of the standard partial correctness rules (e.g. the assignment axiom, the while

statement rule, etc.) work just as well for finite interpretations as for infinite ones.

Our results show that expressiveness is a very powerful hypothesis. Although
expressiveness has been assumed by many previous researchers (cf. [Co75/78],
[C176/79],...) to get a complete axiomatization, the use they have made of this assumption

(e.g. to guarantee the existence of loop invariant) seems more natural than the way we have

35

used it here. This suggests that perhaps the hypothesis of expressiveness could be
weakened or restricted in some way. We note that such a weakening would not affect the

incompleteness results of [CI76/79].

Yet a third question concerns the relationship between the uninterpreted case
considered in [MH80] and [MM82], and the interpreted case discussed here. In [MH280]
and [MMS82], complete axiomatizations for termination assertions are given which do not
require that the interpretations satisfy any restrictions such as expressiveness. However, the
termination assertions prdvable in these systems are exactly those which are valid in all
interpretations. Thus, in these systems we cannot prove that a given program terminates in
a given interpretation, if its termination depends on facts about the interpretation. It is
interesting to note that termination assertions were shown (in [MH80]) to be somewhat

more tractable than partial correctness assertions in the uninterpreted case.

This leads us to our last point: the relationship between partial correctness and
termination, and our ability to find good axiom systems for complicated programming
languages. One conclusion we can draw is that under the assumption that the halting
problem is decidable for finite interpretations, partial correctness and termination seem to
have essentially the same complexity. However, for more complicated deterministic
programming languages such as those discussed in [C176/79] which do not have a decidable
halting problem for finite interpretations, termination assertions, and hence total
correctness assert_ions, are effectively axiomatizable, while partial correctness assertions are
not. This suggests the possibility of a total correctness proof system which, unlike most
currently available, does not require the establishment of partial correctness as an essential

first step.

Acknowledgment: We would like to thank an anonymous referee for his careful reading of

the paper, and for finding some technical errors in the proof of Theorem 2.

36
Appendix 1
The semantics of P’:

Given a trajectory v = (cr'o,...,crk), define first(r) = o and last(7) = o, and for

trajectories v and 7, define

I

TQ°T] = (0'0,...,0'1(,0'1’,...) ifTO = (00,...,Uk), Ty = (00’,0‘1’,...), and Ok
undefined, otherwise.

0‘0,

LIftisaterm, cv(x := t) = {x}; var(x : = t) = {x} U var(t);
Tix :=t) = {(o,0[x/u])] o % L, o(t) = u € dom(I)}.

2.cv(P;Q) = cv(P) U cv(Q); var(P;Q) = var(P) U var(Q);
9N(P;Q) = {rgeml 7 € 7(P), 71 € TQ)}

3. cv(if A then P else Q) = cv(P) U cv(Q);
var(if A then P else Q) = var(P) U var(Q) U var(A);
9;(if A then P else Q) =
{7| (Lfirst() = A, 7 € ?f'[(P)), or (Lfirst(r) = —A, 7 € 3(Q))}

4. cv(while A do P) = cv(P); var(while A do P) = var(P) U var(A)
gi(while A do P) = U;55(W); where W' = o, Witl -
if A then P; W' else SKIP. SKIP i is the program which has no effect: o 1(SKIP)
= {(0)| o # L}, and w is the diverging program: J(w) = {(o, L) o = .L}

5.cv(run P until A) = cv(P); var(run P until A) = var(P) U var(A);
Ji(run P until A) =
{r €9(P) = (0¢,01...), and for all i, Loj = =A} U {7] 7 = (0@,...,0¢), Tis a
prefix of some 7’ € 93(P), if i Ck then L,g; = —A, and oy = L or 1,0 k= A}.

6. cv(after each step of P do Q) = cv(P) U cv(Q);
var(alter each step of P do Q) = var(P) U var(Q);
If var(P) N cv(Q) # @, then J(after each step of P do Q) = . (We consider
after each step of P do Q syntactically incorrect unless var(P) N cv(Q) = @
thus we do not allow the computation of Q to affect the variables of P) If
var(P) N cv(Q) = @, gj(after each step of Pdo Q) = {7| r = (0¢,01....) such
that for some subsequence o; 0 < iy < <o . Ve have

37
a op = G'io
b. last(7) = Oy

) €9(Q)

c. if Uij+l #1, (Uij"'l""'oij-l-l
d. for some (o(,07’,....0") € 91(P), we have either k=k’ or (k<k’ and oy =
1), and aj’(var(P)) — aij(var(P)) for all j<k.

7. cv(begin local xi'l,...,xim; P end) = cv(P);
var(begin local XijyreXi P end) = var(P);
gi(begin local X;,..x; ; P end) = {(ogopere(lasi(r),o)l o7 =
cro[xil/a_...,xim/a], r € 91(P), and oy = laSt('T)[Kil/ ao(xil),...,xim/ og(xim)]}.
(Thus the local variables x; wesXij are set 10 the constant value a when the
block is entered, and reset to their previous values when the block is exited.)

Note that the programs in P’ still satisfy constraints 1 and 2 above.

The semantics of P”":

1. cv(Z) = var(Z) = @ for all Z € plab;
7(Z) = 9(w) = {(0, L)|o # L} for all Z € plab.

2. cv(pZ[P]) = var(uZ[P]) = var(P); _ ,
7(nZ[P]) = U;>Ji(P"), where PY=, and P'*t! = P[Z/P}] (i.e. we syntactically
replace all free Eccurrenpes (where free and bound occurrence have the familiar
meaning) of Z in P by P'). Essentially, uZ[P] acts as a least fixed point operator.
Note that 9j(while A do P od) = gy(nZ[if A then P;Z else SKIP])

38

Appendix 2

Proof of Lemma 4: Because 1 is strongly arithmetic, we may use the formulasZ’, S’, A’
and M’ to treat the elements of dom(I) as integers. Thus we will be able to encode formulas
of type X and sequences of domain elements by one domain element. The formula
Ap’(u,v) will be of the form |

3c,¢ [Trajp(c,?) A Trseq(c,u) A Term(u,tl,lvl) A A Term(ut,, vl
where Trajp, Trseq, and Term are formulas of type 2. Our intention is that Trajp(c,2) will
be true in I iff P has a trajectory such that ¢ encodes terms for the values of variables in the
final valuation under the assumption that ¢ encodes a set of literal formulas true in I and
the initial valuation (cf. part 2 of the definition of acceptable programming language).
Trseq(c,u) will be true iff ¢ encodes a finite set of literal formulas true in T and the valuation
defined by x;=u;. Henceforth, we will simply call this the valuation . Term(ut,v;) will be
true iff the value of the term encoded by t; in I and the valuation u is vi. By these
comments and the assumptions that P is an acceptable programming langu age and that Z’,
S’, A’, and M’ make I strongly arithmetic, one can see that Ap'(u,v) will define the relation

Ap(u,v), provided we can construct the necessary subformulas.

By part 2 of the definition of an acceptable language, if we are given a code for a
program P, we may assume that we can effectively find a recursive relation which
represents the trajectories of P. Thus if we have a set of formulas of type 2 which makes I

strongly arithmetic, we can effectively construct the formula Trajp(c,?) of type 2.

For the definition of Term and Trseq, we have to discuss some techniques for encoding
formulas of X as integers. In a strongly arithmetic domain, we can represent finite
sequences of integers by using the predicates Length(s,x), which holds iff s represents a
sequence of length x, and Select(s,i,y), which holds iff y is the i element of the sequence
represented by s. (Further details are left as an exercise to the interested reader.) For ease

of notation, we introduce the terms |x| to stand for the length of x, and x[i] to stand for the

39

if" element of x (provided that x is a sequence with at least i elements). As above, we will
write <u,v> for the value which encodes a pair of elements u and v; we also use <ﬁ,v,w) as
an abbreviation for <u,{v,w>>. It is clear that formulas with these termns can be rewritten
over X by the addition of new bound variables. We will encode a term t as a sequence
ny,....0, such that each element ny is either an integer ral or rb1 corresponding to one of
the constant symbols of Z, an encoding of a pair <rvar1,i> where rvar1 =4, corresponding
to the variable x; in var(P), a pair <rf1,i> i<k, or a triple <rg1,i,j> i,j<k. In the case that n is
a pair <rf1,i>, the subsequence nj,...,n; encodes the term f{t;) where t; is the term encoded

by ny,...,n;; similarly for g. Thus the complete sequence ny,...,ng encodes the term t.

With these conventions, we can define the formula Term(w,t,y), which checks whether y
is equal to the value of the term encoded by t in valuation ». The idea is to check whether
there is a sequence w ending with y such that for all i<|w|, w[i] is equal to the value of the
term encoded by the subsequence t[1],..,t[i]. (Note this is not the same encoding of terms
that we used in Lemmas 1-3; this lemma does not depend on [being Herbrand definable.)

Term(u,t,y) =
Iw(w] =1t A vi(i<|w| =
((t[i]=ra1 A wli]=a)
V (tfi]=rb1 A w[i]=b)
V (t[i]=<rvar1,1> A wli]=u,)
YV s
V (t[i]=<rvar1,n> A wli]=u,)
Vv 3j (i A t[i]=<rf1> A wli]=f(w[j])
V 33,k (<A k<A t[i] =<rg1,k> A wli] =g(wljl,wlkD))
Aw[lwll=y)

Trseq(c,u) must check that every element of the sequence ¢ of literal formulas is true in I
and u. Thus, we define Trseq in terms of Trlit(lit,«), where lit is the encoding of a single

literal:
Trseq(c,u) = V i (i<|c| = Trlit(c[i],»))

Trlit uses Term to find the values of the terms appearing in the (encoding of the) literal

40

formula, and then checks the truth value of the appropriate predicate symbol. In ordér to
do the encoding, we first assign an integer to each predicate symbol appearing in X and to
its negation: r=1=0,r~=1=1, rA,1=3, F=Ag1=4. Since both A and = are binary
predicates, we can encode a literal formula by a triple representing the code for the
predicate symbol (which will also indicate whether or not it is negated), and the encodings
of the two terms which are its arguments. For example, the literal ~(a==g(a,b)) is encoded
as <r—= T,m,,mg, 1>, where m, and My, b) are encodings of a and g(a,b) as described
above; i.e. m, is an integer representing the sequence (ral) and Mg(apb) represents the
sequence (ra1,rb1,<rg1,1,2>). Thus

Trlit(lit,u) =
Av),v9,Wq,Wo (Term(u,v;,w;) A Term(U,V5,Wp)
At =<r=1,v1,v,> A wy=w,)
V(Iit=<r-1=1vy,vy> A (W1 =w,))
V(lit:‘(rAO-l,Vl,Vz) A AU(W].’WZ))
V(lit=<r_'A0_l,V1,V2> A —IAU(WI’WZ))D

This completes our encoding. 1

References

[BCTS2

[C176/79]

[CGHS2]

[Co78]

[Di76]

[Go75]

[Ha79]
[Ho69]

[Lag0]

[LOS0]

41

J. Bergstra, A. Chmielinska, J. Tiuryn, Hoare’s logic is incomplete when
it does not have to be, in "IBM Workshop on Logics of Programs™ (ed.
D. Kozen), Lecture Notes in Computer Science, 131, Springer-Verlag,
N.Y., 1982, pp. 9-23.

E.M. Clarke, Programming language constructs for which it is
impossible to obtain good Hoare axiom systems, JA CM 261, January,

1979, pp. 129-147. Ph.D. Thesis, Cornell, 1976.

E. M. Clarke, S.M. German, and J.Y. Halpern, On effective
axiomatizations of Hoare Logics, in "Proceedings of™ the Ninth Annual
ACM Symposium on Principles of Programming”, 19 82, pp. 309-321.

S.A. Cook, Soundness and completeness of an axiom system for
program verification, SIAM Journal on Computirig 7:1, pp. 70-90,

" February, 1978.

E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

G. A. Gorelick, A complete axiom system for proving assertions about
recursive and nonrecursive programs, University of Toronto TR-75,
1975.

D. Harel, First-Order Dynamic Logic, Lecture Notes in Computer
Science, 68, Springer-Verlag, N.Y., 1979.

C.A. R.Hoare, An axiomatic approach to computer programming.
CACM 12:10, October, 1969, pp. 322-329.

H. Langmaack, Proof of a theorem of Lipton on Hoare Logic and
applications. Institut fur Informatik und Praktische Mathematik bericht
8003, June, 1980.

H. Langmaack and E. R. Olderog. Present day Hoare-like systems for
programming languages with procedures: power, lim its, and most likely
extensions, in "Proceedings of the 7th Conference on Automata,
Languages, and Programming", Nordwijkerhout 1980, Eds: J. W. de
Bakker, J. van Leeuwen, LNCS 25, pp. 363-373, June, 1980.

[Li77]

[Me78]

[MHS0]

[MM82]

[Pr76]

[Sh67]

42

R.J. Lipton, A necessary and sufficient condition for the existence of
Hoare logics, in "Proceedings of the 18th IEEE Symposium on
Foundations of Computer Science", pp. 1-6, October, 1977.

A. R. Meyer, Notes on Lipton’s generalization of the theorems of Cook
and Clarke on expressiveness, privately circulated notes,

A. R. Meyer and J. Y. Halpern, Axiomatic definitions of programming
languages: a theoretical assessment, in "Proceedings of the 7th ACM
Symposium on Principles of Programming Languages"”, pp. 202-212,
January, 1980 (to appear in JACM).

A.R. Meyer and J.C. Mitchell, Axiomatic definability and
completeness for Recursive Programs, in "Proceedings of the 9th ACM
Symposium on the Principles of Programming Languages", pp. 337-346,
January, 1980.

V.R. Pratt, Semantical considerations of Floyd-Hoare logic, in
"Proceedings of the 17;h IEEE Symposium on Foundations of
Computer Science”, pp. 109-121, October, 1976.

LR, Shoenﬁeld,. Mathematical logic, Addison Wesley, 1967,

