
A Tool for Integrating Abstract

Interpretation, Model Checking, and

Deductive Verification

Subash Shankar
City University of New York (CUNY)

Sep 19, 2014

Static Analysis Techniques

• Abstract Interpretation: An approximation of program seman-

tics based on mappings between concrete and abstract lattices

⇒ symbolic evaluation in abstract domain

/ Usefulness of [nondeterministic, lossy] abstract program de-

pendent on abstractions

/ Loops require unrolling, with loss of precision (or an indeter-

minate fixed point computation)

• Deductive Verification: The formal semantics of a program,

viewed as a predicate transformer from a postcondition to a pre-

condition

/ Loops require the manual identification of a loop invariant

/ Automation limited by theorem prover limitations

• Model Checking and CEGAR: Iteration over abstraction-model

checking-refinement cycle to automatically prove program cor-

rectness

/ State space explosion

/ Success limited by choice of predicate abstractions

Static Analysis Techniques

• Abstract Interpretation: An approximation of program semantics

based on mappings between concrete and abstract lattices

⇒ symbolic evaluation in abstract domain

/ Usefulness of [nondeterministic, lossy] abstract program de-

pendent on abstractions

/ Loops require unrolling, with loss of precision (or an indeter-

minate fixed point computation)

• Deductive Verification: The formal semantics of a program,

viewed as a predicate transformer from a postcondition to a pre-

condition

/ Loops require the manual identification of a loop invariant

/ Automation limited by theorem prover limitations































































































Frama-C

• Model Checking and CEGAR: Iteration over abstraction-model

checking-refinement cycle to automatically prove program correct-

ness

/ State space explosion

/ Success limited by choice of predicate abstractions































SATABS

Frama-C Architecture

depends of

registers in

AST Manipulations

Abstract Interpretation Lattices

Utilities

Memory States

Extended Cil API

Lexing, Parsing, Typing, Linking
Extended Cil Kernel

Extended Cil AST

Project

Plug−in 1 Plug−in nPlug−in 2

Plug−in
types m

Plug−in
types 1

Plug−in
types 2

Db
Frama−C Plugins

Frama−C Kernel

Extended Cil

Dynamic

(From Frama-C Developer Manual)

Plugins:

• Interfaces to abstract syntax tree (AST),
C intermediate language (CIL) extended
with ANSI C Specification Language
(ACSL) annotations, AI lattices, etc. pro-

vided by kernel
• Plugins used for either analysis (≥ 1 AST)

or source-to-source transformation (> 1
AST)

• Statically-linked kernel-integrated plugins
include value (abstract interpretation) and
wp (weakest preconditions)

• Extensible through user-written plugins,

typically linked dynamically
• Common plugin interface allows for in-

formation sharing, along with a central
mechanism for combining plugin results.

• All programmed in OCAML

TOOL DEMO

Integrating AI, WP, and CMC

(Ongoing and Future Research)

BUT individual analyzers often won’t work on given examples . . .

⇒ Integrate analyses:

• Loose coupling:

• Use core Frama-C to improve CMC results. Examples:

1. Value analysis to filter initial states for model checking

2. Frama-C to slice out irrelevant paths before CMC

3. Use WP/AI to pick “good” initial abstractions?

• Use CMC to improve deductive verification results.

• Tight Coupling: Develop a rigorous software analysis/verification

mechanism and/or use cases that exploit the differing benefits of

multiple analysis techniques.

Thank you for listening

And most of all, Thanks Ed!

Questions?

Frama-C: downloadable from www.frama-c.com

CMC Plugin: email subash.shankar@hunter.cuny.edu

www.frama-c.com
subash.shankar@hunter.cuny.edu

	Static Analysis Techniques
	Static Analysis Techniques
	Frama-C Architecture
	
	Integrating AI, WP, and CMC (Ongoing and Future Research)
	

