
Model Checking IV
Symbolic Model Checking

Edmund M. Clarke, Jr.
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Breakthrough!

Ken McMillan implemented a version of the CTL model checking
algorithm using OBDDs in the fall of 1987.

Subsequently, we were able to handle much larger concurrent systems!!

I J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and
Computation, 98(2):pages 142–170, 1992.

I J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L.
Dill. Symbolic model checking for sequential circuit verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits,
13(4):401–424, 1994.

Representing Transition Relations

How to represent state-transition graphs with Ordered Binary Decision
Diagrams:

Assume that system behavior is determined by n boolean state variables
v1, v2, . . . , vn.

The Transition relation N will be given as a boolean formula in terms of
the state variables:

N(v1, . . . , vn, v
′
1, . . . , v

′
n)

where v1, . . . vn represents the current state and v′1, . . . , v
′
n represents the

next state.

Now convert N to a OBDD!!

Symbolic Model Checking

Check takes a CTL formula as its argument and returns the OBDD for
the set of states that satisfy the formula:

If f is an atomic proposition vi, then Check(f) is simply the OBDD for
vi.

Formulas of the form f ∨ g and ¬f are handled using the standard
OBDD algorithms for these connectives.

EX f , E[f U g], and EG f are handled by auxiliary procedures:

Check(EX f) = CheckEX (Check(f))
Check(E[f U g]) = CheckEU(Check(f),Check(g))
Check(EG f) = CheckEG (Check(f))

AX f , A[f U g] and AG f are rewritten in terms of above operators.

Symbolic Model Checking (Cont.)

CheckEX is simple since EX f is true in a state if it has a successor in
which f is true.

CheckEX (f(v̄)) = ∃v̄′
[
f(v̄′) ∧R(v̄, v̄′)

]
.

Given OBDDs for f and R, the OBDD for

∃v̄′
[
f(v̄′) ∧R(v̄, v̄′)

]
.

is computed as described in the first lecture.

Symbolic Model Checking (Cont.)

CheckEU(f(v̄), g(v̄)) is given by

lfpZ(v̄)
[
g(v̄) ∨

(
f(v̄) ∧ CheckEX (Z(v̄))

)]
.

The function Lfp is used to compute the sequence of approximations
Z0, Z1,

This sequence converges to E[f U g] in a finite number of steps.

The OBDD for Zi+1 is computed from the OBDDs for f , g, and Zi.

Since OBDDs are a canonical form for boolean functions, convergence is
easy to detect.

When Zi = Zi+1, Lfp terminates. The state set for E[f U g] is given by
the OBDD for Zi.

Symbolic Model Checking (Cont.)

CheckEG is similar. In this case, the procedure is based on the greatest
fixpoint characterization for the CTL operator EG:

CheckEG (f(v̄)) = gfpZ(v̄)
[
f(v̄) ∧ CheckEX (Z(v̄))

]
Given the OBDD for f , the function Gfp is used to compute the OBDD
for EG f .

CTL with Fairness Constraints

A fairness constraint can be an arbitrary formula of CTL.

Let H = {h1, . . . , hn} be a set of such fairness constraints.

A path p is fair with respect to H if each hi ∈ H holds infinitely often
on p.

The path quantifiers in CTL formulas are restricted to fair paths.

EG with Fairness Constraints

Consider the formula EG f with the set of fairness constraints H.

This formula will be true at a state s if there is a path p starting at s
such that

I f holds globally on p, and

I each formula in H holds infinitely often on p.

The operator EG (Cont.)

Let S be the largest set of states with the following two properties:

1. all of the states in S satisfy f , and

2. for all fairness constraints hk ∈ H and all states s ∈ S
I there is a non-empty sequence of states from s to a state in S

satisfying hk, and
I all states in the sequence satisfy the formula f .

It can be shown that each state in S is the beginning of a path on
which f is always true.

Furthermore, every formula in H holds infinitely often on this path.

The operator EG (Cont.)

It follows that EG f can be expressed as a greatest fixed point of a
predicate transformer:

EG f = gfpS
[
f ∧

n∧
k=1

EX(E[f U S ∧ hk])
]

This formula can be used to compute the set of states that satisfy EG f .

Other Operators

Checking the formulas EX f and E[f U g] under fairness constraints is
simpler.

The set of all states which are the start of some fair computation is

fair = EG true.

Hence,
EX(f) = EX(f ∧ fair),
E[f U g] = E[f U g ∧ fair]

Remaining CTL operators can be expressed in terms of EX, EG, and EU.
For example,

A[f U g] ≡ ¬E[¬g U ¬f ∧ ¬g] ∧ ¬EG¬g

ω-automata

There are many types of ω-automata. However, we will only consider
deterministic Büchi automata.

A finite Büchi automaton is a 5-tuple

M = 〈K, p0,Σ,∆, A〉,

where

I K is a finite set of states

I p0 ∈ K is the initial state

I Σ is a finite alphabet

I ∆ ⊆ K × Σ×K is the transition relation

I A ⊆ K is the acceptance set.

M is deterministic if for all p, q1, q2 ∈ K and σ ∈ Σ, if
〈p, σ, q1〉, 〈p, σ, q2〉 ∈ ∆ then q1 = q2.

Language Acceptance

An infinite sequence of states p0p1p2 . . . ∈ Kω is a path in M if there
exists an infinite sequence a0a1a2 . . . ∈ Σω such that
∀i ≥ 0 : 〈si, ai, si+1〉 ∈ ∆.

Let p = p0p1p2 . . . ∈ Kω be a path in M . The infinitary set of p is the
set of states that occur infintely often on p.

A sequence a0a1a2 . . . ∈ Σω is accepted by M if there is a corresponding
path p = p0p1p2 . . . ∈ Kω such that the infinitary set of p contains at
least one element of A.

The set of sequences accepted by an automaton M is called the language
of M and is denoted L(M).

Büchi Automata Examples

The alphabet for these examples is the set Σ = {p, q, r}. States in the
acceptance set are shaded.

This automaton accepts infinite length strings with the property that
every occurrence of p is eventually followed by an occurrence of q.

Büchi Automata Examples (cont.)

This automaton accepts infinite length strings with the property that p
occurs almost always in the string.

Product Construction

Let M and M ′ be two Büchi automata over the same alphabet Σ.

Consider the Kripke structure

K(M,M ′) = (AP,K ×K ′, 〈p0, p
′
0〉, L,R),

where

I AP = {q, q′} is the set of atomic propositions

I 〈s, s′〉 |= q iff s ∈ A
I 〈s, s′〉 |= q′ iff s′ ∈ A′

I 〈s, s′〉R〈r, r′〉 iff ∃a ∈ Σ : 〈s, a, r〉 ∈ ∆ and 〈s′, a, r〉 ∈ ∆′.

Checking Containment

It is possible to show that, if M ′ is deterministic,

L(M) ⊆ L(M ′)⇔ K(M,M ′) |= A[GF q ⇒ GF q′]

The above formula is in CTL∗ but not in CTL. However, it belongs to a
class of formulas which can be checked in polynomial time.

In fact, A[GF q ⇒ GF q′] is equivalent to AGAF q′ under the fairness
constraint “infinitely often q”.

Checking this formula with the given fairness constraint can be handled
by the technique described previously.

