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Breakthrough!

Ken McMillan implemented a version of the CTL model checking
algorithm using OBDDs in the fall of 1987.

Subsequently, we were able to handle much larger concurrent systems!!

» J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang.
Symbolic model checking: 102° states and beyond. Information and
Computation, 98(2):pages 142-170, 1992.

» J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L.
Dill. Symbolic model checking for sequential circuit verification.

IEEE Transactions on Computer-Aided Design of Integrated Circuits,
13(4):401-424, 1994.



Representing Transition Relations

How to represent state-transition graphs with Ordered Binary Decision
Diagrams:

Assume that system behavior is determined by n boolean state variables
V1,0V2y...,Un.

The Transition relation NV will be given as a boolean formula in terms of
the state variables:

N(vi, .oy U, V1, 0))

where vq, ... v, represents the current state and v, ..., v), represents the
next state.

Now convert N to a OBDD!!



Symbolic Model Checking

Check takes a CTL formula as its argument and returns the OBDD for
the set of states that satisfy the formula:

If f is an atomic proposition v;, then Check(f) is simply the OBDD for
V;.

Formulas of the form f Vv g and —f are handled using the standard
OBDD algorithms for these connectives.

EX f, E[f Ug], and EG f are handled by auxiliary procedures:

Check(EX f) = CheckEX(Check(f))
Check(E[f U g]) = CheckEU(Check(f), Check(g))
Check(EG f) = CheckEG(Check(f))

AX f, A[f Ug] and AG f are rewritten in terms of above operators.



Symbolic Model Checking (Cont.)

CheckEX is simple since EX f is true in a state if it has a successor in
which f is true.

CheckEX(f(v)) = 30" [f(¥') A R(v,7")].

Given OBDDs for f and R, the OBDD for
I’ [f(¥') A R(v,7")].

is computed as described in the first lecture.



Symbolic Model Checking (Cont.)

CheckEU(f(v),g(v)) is given by

Ifp Z(v) [g(v) V (f(v) A CheckEX(Z(v)))].
The function Lfp is used to compute the sequence of approximations
Zoy L1y
This sequence converges to E[f U g] in a finite number of steps.
The OBDD for Z; 41 is computed from the OBDDs for f, g, and Z;.

Since OBDDs are a canonical form for boolean functions, convergence is
easy to detect.

When Z; = Z; 1, Lfp terminates. The state set for E[f U g] is given by
the OBDD for Z;.



Symbolic Model Checking (Cont.)

CheckEG is similar. In this case, the procedure is based on the greatest
fixpoint characterization for the CTL operator EG:

CheckEG(f(v)) = gfp Z(v) [ f(v) A CheckEX(Z(v))]

Given the OBDD for f, the function Gfp is used to compute the OBDD
for EG f.



CTL with Fairness Constraints

A fairness constraint can be an arbitrary formula of CTL.
Let H = {hy,...,h,} be a set of such fairness constraints.

A path p is fair with respect to H if each h; € H holds infinitely often
on p.

The path quantifiers in CTL formulas are restricted to fair paths.



EG with Fairness Constraints

Consider the formula EG f with the set of fairness constraints H.

This formula will be true at a state s if there is a path p starting at s
such that

» f holds globally on p, and
» each formula in H holds infinitely often on p.



The operator EG (Cont.)

Let S be the largest set of states with the following two properties:
1. all of the states in S satisfy f, and

2. for all fairness constraints hy € H and all states s € S

> there is a non-empty sequence of states from s to a state in §
satisfying hy, and
> all states in the sequence satisfy the formula f.

It can be shown that each state in S is the beginning of a path on
which f is always true.

Furthermore, every formula in H holds infinitely often on this path.



The operator EG (Cont.)

It follows that EG f can be expressed as a greatest fixed point of a
predicate transformer:

EGf=gfpS[fA /\ EX(E[fUSA M)

k=1

This formula can be used to compute the set of states that satisfy EG f.



Other Operators

Checking the formulas EX f and E[f U g] under fairness constraints is
simpler.

The set of all states which are the start of some fair computation is

fair = EG true.

Hence,
EX(f) = EX(f A fair),
E[f Ug]=E[f U g A fair]

Remaining CTL operators can be expressed in terms of EX, EG, and EU.
For example,

A[fUg]=—-E[~gU~fA~g] A -EG—g



w-automata

There are many types of w-automata. However, we will only consider
deterministic Biichi automata.

A finite Blichi automaton is a b-tuple
M= <Kap07E,A7A>a

where
» K is a finite set of states
> po € K is the initial state
» X is a finite alphabet
» A C K x X x K is the transition relation
» A C K is the acceptance set.

M is deterministic if for all p,q1,q2 € K and 0 € &, if
<p7 a, Q1>, <p7 a, q2> € A then q1 = q2.



Language Acceptance

An infinite sequence of states pop1p2 ... € K“ is a path in M if there
exists an infinite sequence agaias ... € 3“ such that
Vi Z 0: <5i,a¢,51‘+1> € A.

Let p = pop1p2 ... € K“ be a path in M. The infinitary set of p is the
set of states that occur infintely often on p.

A sequence agajas ... € X¥ is accepted by M if there is a corresponding
path p = pop1p2 ... € K¥ such that the infinitary set of p contains at
least one element of A.

The set of sequences accepted by an automaton M is called the language
of M and is denoted L(M).



Biichi Automata Examples

The alphabet for these examples is the set ¥ = {p, ¢, r}. States in the
acceptance set are shaded.

This automaton accepts infinite length strings with the property that
every occurrence of p is eventually followed by an occurrence of g.



Biichi Automata Examples (cont.)

This automaton accepts infinite length strings with the property that p
occurs almost always in the string.



Product Construction

Let M and M’ be two Biichi automata over the same alphabet X.

Consider the Kripke structure
K(M,M'") = (AP,K x K', (po,py), L, R),

where
» AP = {q, ¢’} is the set of atomic propositions
> (s,8YEqiffse A
> (s,8YE=q iffs e A
> (s,s)R(r,r’") iff Ja € X : (s,a,7) € A and (s',a,7) € A



Checking Containment,

It is possible to show that, if M’ is deterministic,
L(M)C LM< K(M,M') & AGF ¢ = GF ¢]
The above formula is in CTL* but not in CTL. However, it belongs to a

class of formulas which can be checked in polynomial time.

In fact, A[GF ¢ = GF ¢'] is equivalent to AG AF ¢’ under the fairness
constraint “infinitely often ¢".

Checking this formula with the given fairness constraint can be handled
by the technique described previously.



