Model Checking IIT
Basic Fixpoint Theorems

Edmund M. Clarke, Jr.
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213



Predicate Transformers

Let M = (S, R, L) be an arbitrary finite Kripke structure.

Pred(S) is the lattice of predicates over S. Each predicate is identified
with the set of states that make it true. The ordering is set inclusion.

Thus, the least element in the lattice is the empty set, denoted by Flalse,
and the greatest element in the lattice is the set of all states, denoted by
True.

A functional F': Pred(S) — Pred(S) is called a predicate transformer.

» E. M. Clarke and E. A. Emerson. Synthesis of synchronization
skeletons for branching time temporal logic. In Logic of Programs:
Workshop, Yorktown Heights, NY, May 1981, volume 131 of Lecture
Notes in Computer Science. Springer-Verlag, 1981.



Monotonicity and Continuity

Let 7 : Pred(S) — Pred(S) be a predicate transformer, then
1. 7 is monotonic provided that P C @ implies 7[P] C 7[Q];
2. 7 is U-continuous provided that P, C P, C ... implies

T[U; B = U;T[R);
3. T is N-continuous provided that P, O P, D ... implies
T[N By = N7 Ry



Basic Fixpoint Theorems

If 7 is monotonic, then it has a least fixpoint, Ifp Z [7(Z)], and a
greatest fixpoint, gfp Z [7(Z)].

Ifp Z [7(Z)] = n{Z | 7(Z) = Z} whenever T is monotonic.

Ifp Z [7(Z)] = U;T"(False) whenever 7 is also U-continuous;

gfp Z [1(Z)] = U{Z | 7(Z) = Z} whenever T is monotonic.

gfp Z [7(Z)] = ni7"(True) whenever 7 is also M-continuous.



Some Useful Lemmas

Let M be a finite Kripke structure and let 7 be a monotonic predicate
transformer on S.
1. The functional 7 is both U-continuous and N-continuous.
2. For every i, 7¢(False) C 71 (False) and 7¢(True) 2 7 (True).
3. There is an integer iy such that for every j > i,
7/ (False) = 1 (False).
There is an integer jo such that for every j > jg,
I (True) = 770 (True).
4. There is an integer iq such that Ifp Z [7(Z)] is 7(False).
There is an integer jo such that gfp Z |7(2) } is 770 (True).



Least Fixpoint Algorithm

As a consequence of the preceding lemmas, if 7 is monotonic, its least
fixpoint can be computed by the following program.

function Lfp(Tau : Predicate Transformer)

begin
Q := False;
Q' = Tau(Q);
while (Q # Q') do
begin
Q:=Q%
Q' = Tau(Q')
end;
return()
end



Correctness of Algorithm

The invariant for the while loop is given by the assertion
(@ =7Q) A (Q P Z[r(2)])
It is easy to see that at the beginning of the i-th iteration,
Q = 771 (False) and Q' = 7*(False). Lemma 2 implies that
False C 7(False) C Tz(False) C....

So, the number of iterations before the loop terminates is bounded by
the cardinality of S.

When the loop terminates, we have Q = 7[Q] and Q C Ifp Z [7(Z)].

It follows directly that Q@ = Ifp Z [7(Z)] and that the value returned is
the least fixpoint.



Greatest Fixpoint Algorithm

The greatest fixpoint of 7 may be computed in a similar manner.
Essentially the same argument can be used to show that the procedure
terminates and that the value it returns is gfp Z [7(Z)].

function Gfp(Tau : Predicate Transformer)
begin
Q := True;
@ = Tau(Q):
while (Q # Q') do
begin
Q:=qQ;
Q' = Tau(Q')
end;
return(Q)
end



Fixpoint Characterizations for CTL

Each CTL operator can be characterized as a least or greatest fixpoint of
a predicate transformer:

» AlfiU fol =UfpZ [faV (fi NAX Z)]
E[fiVU fo] =WpZ [foV (fi NEXZ)]
AF f, = Ifp Z [f, V AX Z]
EF f, =fpZ [f; VEX Z]
AG f, =gfpZ [/ NAX Z]
EGf —gfp Z [fi NEX Z]
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We will only prove the characterization for EU.



Fixpoint Characterization of EU

Lemma
E[f1 U f2] is the least fixpoint of the functional 7(Z) = fo vV (f1 NEX Z).

Proof:
It is straightforward to prove that E[f; U f5] is a fixpoint of 7(Z).

Additional steps are required to show that E[f; U f5] is the least such
fixpoint.
1. Prove that 7(Z) = f2 V (f1 A EX Z) is monotonic.
2. Observe that 7 is U-continuous and that
Ifp Z [7(Z)] = Uit (False).
3. Show that E[f; U fo] = U;7*(False). See next page.

4. Conclude from steps 2 and 3 that E[f; U f2] is the least fixpoint of
T(Z)=foV(inEXZ). O



Characterization of EU (Cont.)

Next, we show that E[f; U fo] = U;7!(False). We break this step into
two parts:
» First, show that U;7!(False) C E[f; U fa].
Hint: Prove by induction that for all i, 7/(False) C E[f; U f2]. Use
the fact that E[f1 U f2] is a fixpoint of 7(Z).
» Next, show that E[f; U fo] C U;7¢(False).
Hint: If s; = E[f1 U f3], then there is a path m = s1,...,s;,... such
that s; = f2 and for all [ < j, s; |= f1. Show that s; € 7 (False).



Simple Example for E[p U ¢]

The next four figures show how E[p U ¢] may be computed for a simple
Kripke structure.

In this case the functional 7 is given by

7(Z)=qV (pANEXZ).

The figures demonstrate that the sequence of approximations 7¢(False)
converges to E[p U ¢].

E[p U ¢] = 3(False) since 73(False) = 74(False).



Simple Example for E[p U ¢] (Cont.)

M, so = E[pUgq|?



Simple Example for E[p U ¢] (Cont.)

M, s = E[pUq]?

71 (False)



M, so = E[pUq]?
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