
Model Checking II
Temporal Logic Model Checking

Edmund M. Clarke, Jr.
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1/32

Temporal Logic Model Checking

Specification Language: A propositional temporal logic.

Verification Procedure: Exhaustive search of the state space of the
system to determine if the specification is true or not.

◮ E. M. Clarke and E. A. Emerson. Synthesis of synchronization
skeletons for branching time temporal logic. In Logic of programs:

workshop, Yorktown Heights, NY, May 1981, volume 131 of Lecture

Notes in Computer Science. Springer-Verlag, 1981.

◮ J.P. Quielle and J. Sifakis. Specification and verification of
concurrent systems in CESAR. In Proceedings of the Fifth

International Symposium in Programming, volume 137 of Lecture

Notes in Computer Science. Springer-Verlag, 1981.

2/32

Why Model Checking?

Advantages:

◮ No proofs!

◮ Fast

◮ Counter-examples

◮ No problem with partial specifications

◮ Logics can easily express many concurrency properties

Main Disadvantage: State Explosion Problem

◮ Too many processes

◮ Data Paths

Much progress has been made on this problem recently!

3/32

Model of Computation; Microwave Example

Finite-state systems are
modeled by labeled state-
transition graphs, called
Kripke Structures.

4/32

Model of Computation (Cont.)

If some state is designated
as the initial state, the
structure can be unwound
into an infinite tree with
that state as the root.

We will refer to this infi-
nite tree as the computa-

tion tree of the system.

Paths in the tree repre-
sent possible computations
or behaviors of the pro-
gram.

a b

b c c

a b

a b

c

c c

b c

State Transition Graph or
Kripke Model

(Unwind State Graph to obtain Infinite Tree)

Infinite Computation Tree

5/32

Model of Computation (Cont.)

Formally, a Kripke structure is a triple M = 〈S,R,L〉, where

◮ S is the set of states,

◮ R ⊆ S × S is the transition relation, and

◮ L : S → P(AP) gives the set of atomic propositions true in each
state.

We assume that every state has at least one possible successor (i.e., for
all states s ∈ S there exists a state s′ ∈ S such that (s, s′) ∈ R).

A path in M is an infinite sequence of states, π = s0, s1, . . . such that for
i ≥ 0, (si, si+1) ∈ R.

We write πi to denote the suffix of π starting at si.

Unless otherwise stated, we assume finite Kripke structures.

6/32

Computation Tree Logics

Temporal logics may differ according to how they handle branching in the
underlying computation tree.

In a linear temporal logic, operators are provided for describing events
along a single computation path.

In a branching-time logic the temporal operators quantify over the paths
that are possible from a given state.

7/32

The Logic CTL∗

The computation tree logic CTL∗ (pronounced “CTL star”) combines
both branching-time and linear-time operators.

In this logic a path quantifier can prefix an assertion composed of
arbitrary combinations of the usual linear-time operators.

1. Path quantifiers:
◮ A — “for every path”
◮ E — “there exists a path”

2. Linear-time operators:
◮ Xp — p holds true next time.
◮ Fp — p holds true sometime in the future
◮ Gp — p holds true globally in the future
◮ pUq — p holds true until q holds true

For a path π = (s0, s1, . . .), state s0 is considered to be at the present time.

8/32

Path Formulas and State Formulas

The syntax of state formulas is given by the following rules:

◮ If p is an atomic proposition, then p is a state formula.

◮ If f and g are state formulas, then ¬f and f ∨ g are state formulas.

◮ If f is a path formula, then E(f) and A(f) are state formulas.

Two additional rules are needed to specify the syntax of path formulas:

◮ If f is a state formula, then f is also a path formula.
(A state formula f is true for a path π if the f is true in the initial
state of the path π.)

◮ If f and g are path formulas, then ¬f , f ∨ g, X f , F f , G f , and
f U g are path formulas.

9/32

State Formulas (Cont.)

If f is a state formula, the notation M, s |= f means that f holds at

state s in the Kripke structure M .

Assume f1 and f2 are state formulas and g is a path formula. The
relation M, s |= f is defined inductively as follows:

1. s |= p ⇔ atomic proposition p is true in s .
2. s |= ¬f1 ⇔ s 6|= f1.
3. s |= f1 ∨ f2 ⇔ s |= f1 or s |= f2.
4. s |= E(g) ⇔ g holds true for some path π starting with s

4. s |= A(g) ⇔ g holds true for every path π starting with s

10/32

Path Formulas (Cont.)

If f is a path formula, the notation M,π |= f means that f holds true

for path π in Kripke structure M .

Assume g1 and g2 are path formulas and f is a state formula. The
relation M,π |= f is defined inductively as follows:

1. π |= f ⇔ s is the first state of π and s |= f .
2. π |= ¬g1 ⇔ π 6|= g1.
3. π |= g1 ∨ g2 ⇔ π |= g1 or π |= g2.
4. π |= X g1 ⇔ π1 |= g1.
5. π |= F g1 ⇔ πk |= g1 for some k ≥ 0
6. π |= G g1 ⇔ πk |= g1 for every k ≥ 0
7. π |= g1 U g2 ⇔ there exists a k ≥ 0 such that

πk |= g2 and πj |= g1 for 0 ≤ j < k.

Recall: For π = (s0, s1, . . .), we write πi to denote the suffix starting with si.

11/32

Time

Notice that Fp, FFp, FFFp, etc., hold true for a path π even if p holds
true at only the initial state in the path π.

◮ In CTL∗, the ‘future’ includes the present state. (States have
temporal duration, so if we’re presently in state s at time t, then
we’ll still be in state s in the future at time t + dt where dt is an
infinitesimally small period of time.)

12/32

Relationships between operators

Note the following:

◮ A(f) ≡ ¬E(¬f)

◮ F f ≡ (true U f)

(Recall: π |= g1 U g2 ⇔ there exists a k ≥ 0 such that
πk |= g2 and πj |= g1 for 0 ≤ j < k.)

◮ G f ≡ ¬F¬f

So, given any CTL∗ formula, we can rewrite it without using the
operators A, F, or G.

13/32

The Logic CTL

CTL is a restricted subset of CTL∗ that permits only branching-time
operators—each of the linear-time operators G, F, X, and U must be
immediately preceded by a path quantifier.

More precisely, CTL is the subset of CTL∗ that is obtained if the
following two rules are used to specify the syntax of path formulas.

◮ If f and g are state formulas, then X f and f U g are path formulas.

◮ If f is a path formula, then so is ¬f .

Example: AG(EF p)

14/32

The Logic LTL

Linear temporal logic (LTL), on the other hand, consists of formulas that
have the form A f where f is a path formula in which the only state
subformulas permitted are atomic propositions.

More precisely, a path formula is either:

◮ If p ∈ AP , then p is a path formula.

◮ If f and g are path formulas, then ¬f , f ∨ g, X f , and f U g are
path formulas.

Example: A(FG p)

15/32

Expressive Power

It can be shown that the three logics discussed in this section have
different expressive powers.

For example, there is no CTL formula that is equivalent to the LTL
formula A(FG p).

Likewise, there is no LTL formula that is equivalent to the CTL formula
AG(EF p).

The disjunction A(FG p) ∨ AG(EF p) is a CTL∗ formula that is not
expressible in either CTL or LTL.

16/32

AF(AG(p)) vs A(FG(p))

Consider the following Kripke structure:

Are there any paths starting with S1 for which G p is true?
Starting with S2?
Starting with S3?

At which states does AG p hold true?

At which states does AFAG p hold true?

Does FG p hold true for all paths starting with S1?

17/32

Basic CTL Operators

There are eight basic CTL operators:

◮ AX and EX,

◮ AG and EG,

◮ AF and EF,

◮ AU and EU

Each of these can be expressed in terms of EX, EG, and EU:

◮ AX f = ¬EX(¬f)

◮ AG f = ¬EF(¬f)

◮ AF f = ¬EG(¬f)

◮ EF f = E[true U f]

◮ A[f U g] ≡ ¬E[¬g U ¬f ∧ ¬g] ∧ ¬EG¬g

18/32

Basic CTL Operators (Cont.)

The four most
widely used CTL
operators are illus-
trated here.
Each computation
tree has the state s0

as its root.

g

.

.

.
.
.
.

.

.

.
.
.
.

g

.

.

.
.
.
.

.

.

.
.
.
.

g

g

M, s0 |= EF g M, s0 |= AF g

g

.

.

.
.
.
.

.

.

.
.
.
.

g

g

g

.

.

.
.
.
.

.

.

.
.
.
.

g

g

g

g

g g

M, s0 |= EG g M, s0 |= AG g

19/32

Typical CTL∗ formulas

◮ EF(Started ∧ ¬Ready): It is possible to get to a state where
Started holds but Ready does not hold.

◮ AG(Req → AFAck): If a request occurs, then it will be eventually
acknowledged.

◮ AG(AFDeviceEnabled): The proposition DeviceEnabled holds
infinitely often on every computation path.

◮ AG(EFRestart): From any state it is possible to get to the Restart

state.

◮ A(GF enabled ⇒ GF executed): if a process is infinitely-often
enabled, then it is infinitely-often executed.

Note that the first four formulas are CTL formulas.

20/32

Model Checking Problem

Let M be the state–transition graph obtained from the concurrent
system.

Let f be the specification expressed in temporal logic.

Find all states s of M such that

M, s |= f.

There exist very efficient model checking algorithms for the logic CTL.

◮ E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using temporal logic
specifications. ACM Trans. Programming Languages and Systems,
8(2):pages 244–263, 1986.

21/32

The EMC Verification System

Preprocessor Model Checker

(EMC)

CTL formulas

State Transition Graph

10 to 10 states4 5

True or Counterexample

22/32

Basic Model Checking Algorithm

◮ M, s0 |= EG a ∧ AF b?

◮ M, s0 |= ¬AF¬a ∧ AF b?

a ~b

a ~b

a b

~a b

23/32

Basic Model Checking Algorithm

◮ M, s0 |= EG a ∧ AF b?

◮ M, s0 |= ¬AF¬a ∧ AF b?

a ~b

a ~b

a b

~a b

AF b

AF b

AF ~a

24/32

Basic Model Checking Algorithm

◮ M, s0 |= EG a ∧ AF b?

◮ M, s0 |= ¬AF¬a ∧ AF b?

a ~b

a ~b

a b

~a b

AF b

AF b

AF ~a

AF b

25/32

Basic Model Checking Algorithm

◮ M, s0 |= EG a ∧ AF b?

◮ M, s0 |= ¬AF¬a ∧ AF b?

a ~b

a ~b

a b

~a b

AF b

AF b

AF b

AF ~a

AF b

26/32

Basic Model Checking Algorithm

◮ M, s0 |= EG a ∧ AF b?

◮ M, s0 |= ¬AF¬a ∧ AF b?

a ~b

a ~b

a b

~a b

AF b

~AF ~a

AF b

AF b

AF ~a

AF b

~AF ~a

~AF ~a

27/32

Mutual Exclusion Example

c1

n2

c2t1 t2

n1

n2

c2

n1

t1

t1

t1 t2

t2

t2n1

c1 n2

28/32

Mutual Exclusion Example

c1

n2

c2t1 t2

n1

n2

c2

n1

t1

t1

t1 t2

t2

t2n1

t1 -> AF c1

t1 -> AF c1

t1 -> AF c1

c1

AF c1

n2

AF c1

29/32

Mutual Exclusion Example

c1

n2

c2t1 t2

n1

n2

c2

n1

t1

t1

t1 t2

t2

t2n1

t1 -> AF c1

t1 -> AF c1

t1 -> AF c1

c1

AF c1
t1 -> AF c1

n2

AF c1
t1 -> AF c1

AF c1

30/32

Mutual Exclusion Example

c1

n2

c2t1 t2

n1

n2

c2

n1

t1

t1

t1 t2

t2

t2n1

AF c1

t1 -> AF c1

t1 -> AF c1

t1 -> AF c1

c1

AF c1
t1 -> AF c1

n2

AF c1
t1 -> AF c1

AF c1
t1 -> AF c1

31/32

The Kyoto University Verifier

Vectorized version of EMC algorithm on Fujitsu FACOM VP400E using
an explicit representation of the state–transition graph.

State Machine size:

◮ 131,072 states

◮ 67,108,864 transitions

◮ 512 transitions from each state on the average.

CTL formula:

◮ 113 different subformulas.

Time for model checking:

◮ 225 seconds!!

32/32

