Model Checking II
Temporal Logic Model Checking

Edmund M. Clarke, Jr.
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
Temporal Logic Model Checking

Specification Language: A propositional temporal logic.

Verification Procedure: Exhaustive search of the state space of the system to determine if the specification is true or not.

Why Model Checking?

Advantages:
- No proofs!
- Fast
- Counter-examples
- No problem with partial specifications
- Logics can easily express many concurrency properties

Main Disadvantage: *State Explosion Problem*
- Too many processes
- Data Paths

Much progress has been made on this problem recently!
Finite-state systems are modeled by labeled state-transition graphs, called *Kripke Structures*.
If some state is designated as the *initial state*, the structure can be unwound into an infinite tree with that state as the root.

We will refer to this infinite tree as the *computation tree* of the system.

Paths in the tree represent possible computations or behaviors of the program.
Formally, a *Kripke structure* is a triple $M = \langle S, R, L \rangle$, where
- S is the set of states,
- $R \subseteq S \times S$ is the transition relation, and
- $L : S \rightarrow \mathcal{P}(AP)$ gives the set of atomic propositions true in each state.

We assume that every state has at least one possible successor (i.e., for all states $s \in S$ there exists a state $s' \in S$ such that $(s, s') \in R$).

A *path in M* is an infinite sequence of states, $\pi = s_0, s_1, \ldots$ such that for $i \geq 0$, $(s_i, s_{i+1}) \in R$.

We write π^i to denote the *suffix* of π starting at s_i.

Unless otherwise stated, we assume *finite* Kripke structures.
Temporal logics may differ according to how they handle branching in the underlying computation tree.

In a linear temporal logic, operators are provided for describing events along a single computation path.

In a branching-time logic the temporal operators quantify over the paths that are possible from a given state.
The computation tree logic CTL* (pronounced “CTL star”) combines both branching-time and linear-time operators.

In this logic a path quantifier can prefix an assertion composed of arbitrary combinations of the usual linear-time operators.

1. Path quantifiers:
 - \mathbf{A} — “for every path”
 - \mathbf{E} — “there exists a path”

2. Linear-time operators:
 - $\mathbf{X} p$ — p holds true next time.
 - $\mathbf{F} p$ — p holds true sometime in the future
 - $\mathbf{G} p$ — p holds true globally in the future
 - $p \mathbf{U} q$ — p holds true until q holds true

For a path $\pi = (s_0, s_1, \ldots)$, state s_0 is considered to be at the present time.
The syntax of state formulas is given by the following rules:

- If \(p \) is an atomic proposition, then \(p \) is a state formula.
- If \(f \) and \(g \) are state formulas, then \(\neg f \) and \(f \lor g \) are state formulas.
- If \(f \) is a path formula, then \(E(f) \) and \(A(f) \) are state formulas.

Two additional rules are needed to specify the syntax of path formulas:

- If \(f \) is a state formula, then \(f \) is also a path formula. (A state formula \(f \) is true for a path \(\pi \) if the \(f \) is true in the initial state of the path \(\pi \).)
- If \(f \) and \(g \) are path formulas, then \(\neg f \), \(f \lor g \), \(Xf \), \(Ff \), \(Gf \), and \(f \cup g \) are path formulas.
If \(f \) is a state formula, the notation \(M, s \models f \) means that \(f \) holds at state \(s \) in the Kripke structure \(M \).

Assume \(f_1 \) and \(f_2 \) are state formulas and \(g \) is a path formula. The relation \(M, s \models f \) is defined inductively as follows:

1. \(s \models p \iff \) atomic proposition \(p \) is true in \(s \).
2. \(s \models \neg f_1 \iff s \not\models f_1 \).
3. \(s \models f_1 \lor f_2 \iff s \models f_1 \) or \(s \models f_2 \).
4. \(s \models E(g) \iff g \) holds true for some path \(\pi \) starting with \(s \).
4. \(s \models A(g) \iff g \) holds true for every path \(\pi \) starting with \(s \).
If \(f \) is a path formula, the notation \(M, \pi \models f \) means that \(f \) holds true for path \(\pi \) in Kripke structure \(M \).

Assume \(g_1 \) and \(g_2 \) are path formulas and \(f \) is a state formula. The relation \(M, \pi \models f \) is defined inductively as follows:

1. \(\pi \models f \) if and only if \(s \) is the first state of \(\pi \) and \(s \models f \).
2. \(\pi \models \neg g_1 \) if and only if \(\pi \not\models g_1 \).
3. \(\pi \models g_1 \lor g_2 \) if and only if \(\pi \models g_1 \) or \(\pi \models g_2 \).
4. \(\pi \models X g_1 \) if and only if \(\pi^1 \models g_1 \).
5. \(\pi \models F g_1 \) if and only if there exists some \(k \geq 0 \) such that \(\pi^k \models g_1 \).
6. \(\pi \models G g_1 \) if and only if for every \(k \geq 0 \), \(\pi^k \models g_1 \).
7. \(\pi \models g_1 U g_2 \) if and only if there exists a \(k \geq 0 \) such that \(\pi^k \models g_2 \) and \(\pi^j \models g_1 \) for \(0 \leq j < k \).

Recall: For \(\pi = (s_0, s_1, \ldots) \), we write \(\pi^i \) to denote the suffix starting with \(s_i \).
Notice that Fp, FFp, $FFFFp$, etc., hold true for a path π even if p holds true at only the initial state in the path π.

- In CTL*, the ‘future’ includes the present state. (States have temporal duration, so if we’re presently in state s at time t, then we’ll still be in state s in the future at time $t + dt$ where dt is an infinitesimally small period of time.)
Note the following:

- $\mathbf{A}(f) \equiv \neg \mathbf{E}(\neg f)$
- $\mathbf{F} f \equiv (\text{true } \mathbf{U} f)$

 (Recall: $\pi \models g_1 \mathbf{U} g_2 \iff$ there exists a $k \geq 0$ such that $\pi^k \models g_2$ and $\pi^j \models g_1$ for $0 \leq j < k$.)
- $\mathbf{G} f \equiv \neg \mathbf{F} \neg f$

So, given any CTL* formula, we can rewrite it without using the operators \mathbf{A}, \mathbf{F}, or \mathbf{G}.
The Logic CTL

CTL is a restricted subset of CTL* that permits only branching-time operators—each of the linear-time operators G, F, X, and U must be immediately preceded by a path quantifier.

More precisely, CTL is the subset of CTL* that is obtained if the following two rules are used to specify the syntax of path formulas.

- If f and g are state formulas, then Xf and fUg are path formulas.
- If f is a path formula, then so is $\neg f$.

Example: $AG(EFp)$
Linear temporal logic (LTL), on the other hand, consists of formulas that have the form $\mathbf{A} f$ where f is a path formula in which the only state subformulas permitted are atomic propositions.

More precisely, a path formula is either:

- If $p \in AP$, then p is a path formula.
- If f and g are path formulas, then $\neg f$, $f \lor g$, $\mathbf{X} f$, and $f \mathbf{U} g$ are path formulas.

Example: $\mathbf{A}(\mathbf{FG} p)$
It can be shown that the three logics discussed in this section have different expressive powers.

For example, there is no CTL formula that is equivalent to the LTL formula $A(FG\,p)$.

Likewise, there is no LTL formula that is equivalent to the CTL formula $AG(EF\,p)$.

The disjunction $A(FG\,p) \lor AG(EF\,p)$ is a CTL* formula that is not expressible in either CTL or LTL.
Consider the following Kripke structure:

Are there any paths starting with S_1 for which $G p$ is true?
Starting with S_2?
Starting with S_3?

At which states does $AG p$ hold true?
At which states does $AF AG p$ hold true?
Does $FG p$ hold true for all paths starting with S_1?
There are eight basic CTL operators:

- AX and EX,
- AG and EG,
- AF and EF,
- AU and EU

Each of these can be expressed in terms of EX, EG, and EU:

- $AX\ f = \neg EX(\neg f)$
- $AG\ f = \neg EF(\neg f)$
- $AF\ f = \neg EG(\neg f)$
- $EF\ f = E[true \ U \ f]$
- $A[f \ U \ g] \equiv \neg E[\neg g \ U \ \neg f \ \land \ \neg g] \ \land \ \neg EG \ \neg g$
The four most widely used CTL operators are illustrated here. Each computation tree has the state s_0 as its root.

$$M, s_0 \models \text{EF } g$$

$$M, s_0 \models \text{AF } g$$

$$M, s_0 \models \text{EG } g$$

$$M, s_0 \models \text{AG } g$$
Typical CTL* formulas

- **EF**(\textit{Started} \land \neg \textit{Ready}): It is possible to get to a state where \textit{Started} holds but \textit{Ready} does not hold.

- **AG**(\textit{Req} \rightarrow \textbf{AF} \textit{Ack}): If a request occurs, then it will be eventually acknowledged.

- **AG**(\textbf{AF} \textit{DeviceEnabled}): The proposition \textit{DeviceEnabled} holds infinitely often on every computation path.

- **AG**(\textbf{EF} \textit{Restart}): From any state it is possible to get to the \textit{Restart} state.

- **A**(\textbf{GF} \textit{enabled} \Rightarrow \textbf{GF} \textit{executed}): if a process is infinitely-often \textit{enabled}, then it is infinitely-often \textit{executed}.

Note that the first four formulas are CTL formulas.
Model Checking Problem

Let M be the state–transition graph obtained from the concurrent system.

Let f be the specification expressed in temporal logic.

Find all states s of M such that

$$M, s \models f.$$

There exist very efficient model checking algorithms for the logic CTL.

The EMC Verification System

Preprocessor

Model Checker (EMC)

State Transition Graph

10^4 to 10^5 states

 CTL formulas

True or Counterexample
Basic Model Checking Algorithm

- $M, s_0 \models EG a \land AF b$?
- $M, s_0 \models \neg AF \neg a \land AF b$?
Basic Model Checking Algorithm

- \(M, s_0 \models \text{EG } a \land \text{AF } b? \)
- \(M, s_0 \models \neg \text{AF } \neg a \land \text{AF } b? \)
Basic Model Checking Algorithm

- $M, s_0 \models EG a \land AF b$?
- $M, s_0 \models \neg AF \neg a \land AF b$?
Basic Model Checking Algorithm

- $M, s_0 \models \textbf{EG} \ a \land \textbf{AF} \ b$?
- $M, s_0 \models \neg \textbf{AF} \ \neg a \land \textbf{AF} \ b$?
Basic Model Checking Algorithm

- $M, s_0 \models EG \ a \land AF \ b$?
- $M, s_0 \models \neg AF \ \neg a \land AF \ b$?
Mutual Exclusion Example
Mutual Exclusion Example

c1
n2
t1 -> AF c1

t1 n2
c1 n2
AF c1

t1 t2

n1 t2
t1 -> AF c1

t1 t2
t1 t2

n1 c2
t1 -> AF c1

t1 c2
Mutual Exclusion Example
Mutual Exclusion Example

Graph showing mutual exclusion with nodes and edges indicating transitions and conditions.
Vectorized version of *EMC* algorithm on Fujitsu FACOM VP400E using an explicit representation of the state–transition graph.

State Machine size:
- 131,072 states
- 67,108,864 transitions
- 512 transitions from each state on the average.

CTL formula:
- 113 different subformulas.

Time for model checking:
- 225 seconds!!