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Binary Decision Diagrams

Ordered binary decision diagrams (OBDDs) are a canonical form for
boolean formulas.

OBDDs are often substantially more compact than traditional normal
forms.

Moreover, they can be manipulated very efficiently.

» R. E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, C-35(8), 1986.
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Binary Decision Trees

To motivate our discussion of binary decision diagrams, we first consider
binary decision trees.

A binary decision tree is a rooted, directed tree with two types of
vertices, terminal vertices and nonterminal vertices.

Each nonterminal vertex v is labeled by a variable var(v) and has two
successors:

» low(v) corresponding to the case where the variable v is assigned 0,
and

» high(v) corresponding to the case where the variable v is assigned 1.

Each terminal vertex v is labeled by value(v) which is either 0 or 1.
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Binary Decision Trees (Cont.)

A BDD for the two-bit comparator given by the formula
f(ar,az,b1,b2) = (a1 < b1) A (a2 < b2),

is shown in the figure below:
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Binary Decision Trees (Cont.)

We can decide if a truth assignment satisfies the formula as follows:
> Traverse the tree from the root to a terminal vertex.
» If variable v is assigned 0, the next vertex on the path will be low(v).
» If variable v is assigned 1, the next vertex on the path will be high(v).

» The value that labels the terminal vertex will be the value of the
function for this assignment.

In the comparator example, the assignment
<a1 — 1, a9 <— 0, bl — 1, b2 — 1>

leads to a leaf vertex labeled 0, so the formula is false for this assignment.
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A More Concise Representation

Binary decision trees do not provide a very concise representation for
boolean functions.

However, there is usually a lot of redundancy in such trees.

In the comparator example, there are eight subtrees with roots labeled by
b2, but only three are distinct.

Thus, we can obtain a more concise representation by merging
isomorphic subtrees.

This results in a directed acyclic graph (DAG) called a binary decision
diagram.
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Binary Decision Diagrams

More precisely, a binary decision diagram is a rooted, directed acyclic
graph with two types of vertices, terminal vertices and nonterminal
vertices.

Each nonterminal vertex v is labeled by a variable var(v) and has two
successors, low(v) and high(v).

Each terminal vertex is labeled by either 0 or 1.
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Binary Decision Diagrams (cont’d)

A binary decision diagram with root v determines a boolean function

fo(z1,...,xy) in the following manner:
1. If v is a terminal vertex:
1.1 If value(v) =1 then fy(z1,...,2,) =1
1.2 If value(v) = 0 then fy(z1,...,zn) =0.
2. If v is a nonterminal vertex with var(v) = z; then fy(x1,...,2,) is
given by
Z; flow(v)(xla oo 71‘71) + T fhigh(v)(xlv oo 71'71)

8/42



Canonical Form Property

In practical applications, it is desirable to have a canonical representation
for boolean functions.

This simplifies tasks like checking equivalence of two formulas and
deciding if a given formula is satisfiable or not.

Such a representation must guarantee that two boolean functions are
logically equivalent if and only if they have isomorphic representations.
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Canonical Form Property (Cont.)

Two binary decision diagrams are isomorphic if there exists a bijection h
between the graphs such that
» terminals are mapped to terminals and nonterminals are mapped to
nonterminals,
» for every terminal vertex v, value(v) = value(h(v)), and
» for every nonterminal vertex v:
> var(v) = var(h(v)),

> h(low(v)) = low(h(v)),
> h(high(v)) = high(h(v)

and
)-
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Canonical Form Property (Cont.)

Bryant showed how to obtain a canonical representation for boolean
functions by placing two restrictions on binary decision diagrams:
» First, the variables should appear in the same order along each path
from the root to a terminal.
» Second, there should be no isomorphic subtrees or redundant
vertices in the diagram.
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Canonical Form Property (Cont.)

The first requirement is easy to achieve:
» We impose total ordering < on the variables in the formula.

» We require that if vertex u has a nonterminal successor v, then
var(u) < var(v).

12/42



Canonical Form Property (Cont.)

The second requirement is achieved by repeatedly applying three
transformation rules that do not alter the function represented by the
diagram:

Remove duplicate terminals: Eliminate all but one terminal vertex with
a given label and redirect all arcs to the eliminated vertices
to the remaining one.

Remove duplicate nonterminals: If nonterminals v and v have
var(u) = var(v), low(u) = low(v) and
high(u) = high(v), then eliminate one of the two vertices
and redirect all incoming arcs to the other vertex.

Remove redundant tests: If nonterminal vertex v has low(v) = high(v),
then eliminate v and redirect all incoming arcs to low(v).
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Canonical Form Property (Cont.)

The canonical form may be obtained by applying the transformation rules
until the size of the diagram can no longer be reduced.

Bryant shows how this can be done by a procedure called Reduce in
linear time.
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Ordered Binary Decision Diagrams

The term ordered binary decision diagram (OBDD) will be used to refer
to the graph obtained in this manner.

If OBDDs are used as a canonical form for boolean functions, then

» checking equivalence is reduced to checking isomorphism between
OBDDs, and

> satisfiability can be determined by checking equivalence with the
trivial OBDD that consists of only one terminal labeled by 0.
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OBDD for Comparator Example

If we use the ordering a1 < by < as < by for the comparator function, we
obtain the OBDD below:
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Variable Ordering Problem

The size of an OBDD depends critically on the variable ordering.

If we use the ordering a1 < as < by < by for the comparator function, we
get the OBDD below:
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Variable Ordering Problem (Cont.)

For an n-bit comparator:

> if we use the ordering a; < b; < ... < a, < b,, the number of
vertices will be 3n + 2.

> if we use the ordering a1 < ... < a, <by...<b,, the number of
vertices is 3 - 2™ — 1.

In general, finding an optimal ordering is known to be NP-complete.

Moreover, there are boolean functions that have exponential size OBDDs
for any variable ordering.

An example is the middle output (n'" output) of a combinational circuit
to multiply two n bit integers.
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Heuristics for Variable Ordering

Heuristics have been developed for finding a good variable ordering when
such an ordering exists.

The intuition for these heuristics comes from the observation that
OBDDs tend to be small when related variables are close together in the

ordering.

The variables appearing in a subcircuit are related in that they determine
the subcircuit’s output.

Hence, these variables should usually be grouped together in the ordering.
This may be accomplished by placing the variables in the order in which

they are encountered during a depth-first traversal of the circuit diagram.
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Dynamic Variable Ordering

A technique, called dynamic reordering appears to be useful if no obvious
ordering heuristic applies.

When this technique is used, the OBDD package internally reorders the
variables periodically to reduce the total number of vertices in use.
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Logical Operations on OBDDs

We begin with the function that restricts some argument z; of the
boolean function f to a constant value b.

This function is denoted by f |, and satisfies the identity

f |xi<—b (ml,...,xn) = f(l‘l,...,$¢_1,b,xi+1,...7$n).

If f is represented as an OBDD, the OBDD for the restriction f
computed by a depth-first traversal of the OBDD.

;b is

For any vertex v which has a pointer to a vertex w such that
var(w) = x;, we replace the pointer by low(w) if bis 0 and by high(w)
if bis 1.

When the graph is not in canonical form, we apply Reduce to obtain the
OBDD for f

z;b-

21/42



Logical Operations (Cont.)

All 16 two-argument logical operations can be implemented efficiently on
boolean functions that are represented as OBDDs.

In fact, the complexity of these operations is linear in the size of the
argument OBDDs.

The key idea for efficient implementation of these operations is the
Shannon expansion
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Logical Operations (Cont.)

Bryant gives a uniform algorithm called Apply for computing all 16
logical operations.

Let x be an arbitrary two argument logical operation, and let f and f’ be
two boolean functions.

To simplify the explanation of the algorithm we introduce the following
notation:

» v and v’ are the roots of the OBDDs for f and f.

> z =wvar(v) and 2’ = var(v’).

23/42



Logical Operations OBDDs (Cont.)

We consider several cases depending on the relationship between v and

v’

» If v and v’ are both terminal vertices, then
f* [ = value(v) * value(v').
» If x = 2/, then we use the Shannon expansion

f*f/:‘%'(f |x<—0*f/ ‘z<—0)+x(f |®<*1*fl |IH1)

to break the problem into two subproblems. The subproblems are
solved recursively.

The root of the resulting OBDD will be v with var(v) = x.
Low(v) will be the OBDD for (f |z—0 *f’ |z—0)-
High(v) will be the OBDD for (f |p—1 *f' |z—1)-
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Logical Operations OBDDs (Cont.)

» If z <2/, then [ |z0= f' |z—1= [’ since f’ does not depend on z.

In this case the Shannon Expansion simplifies to
f*f/:-’f' (f |w<—0*f/)+$'(f |z<—1 *fl)

and the OBDD for f x f’ is computed recursively as in the second
case.

» If ' < z, then the required computation is similar to the previous
case.
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Logical Operations (Cont.)

By using dynamic programming, it is possible to make the algorithm
polynomial.
» A hash table is used to record all previously computed subproblems.

» Before any recursive call, the table is checked to see if the
subproblem has been solved.

» If it has, the result is obtained from the table; otherwise, the
recursive call is performed.

» The result must be reduced to ensure that it is in canonical form.
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OBDD Extensions

A single OBDD can be used to represent a collection of boolean
functions:

» The same variable ordering is used for whole the collection.
» As before, no isomorphic subgraphs or redundant vertices.

Two functions in the collection are identical if and only if they have the
same root.

Consequently, checking whether two functions are equal can be
implemented in constant time.
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OBDD Extensions (Cont.)

A possible extension is to add labels to the arcs in the graph to denote
boolean negation.

This makes it unnecessary to use different subgraphs to represent a
formula and its negation.

Canonicity?
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OBDDs and Finite Automata

OBDDs can also be viewed as deterministic finite automata (DFAs).

An m-argument boolean function can be identified with the set of strings
in {0,1}™ that evaluate to 1.

This is a finite language. Finite languages are regular. Hence, there is a
minimal DFA that accepts the language.

The DFA provides a canonical form for the original boolean function.

Logical operations on boolean functions can be implemented by standard
constructions from elementary automata theory.
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Representing Finite Relations

OBDDs are extremely useful for obtaining concise representations of
relations over finite domains.

If R is an n-ary relation over {0, 1} then R can be represented by the
OBDD for its characteristic function

fr@1,...,zn) = 1iff R(xy,...,2p).

» J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 102° states and beyond.
Information and Computation, 98(2):142-170, June 1992.

» J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L.
Dill. Symbolic model checking for sequential circuit verification.

IEEE Transactions on Computer-Aided Design of Integrated Circuits,
13(4):401-424, 1994.
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Representing Relations (Cont.)

Suppose R is an n-ary relation over the domain D, where D has 2™
elements for some m > 1.

To represent R as an OBDD, we simply encode elements of D using a
binary representation. Formally, we use a bijection ¢ : {0,1}" — D that

maps each boolean vector of length m to an element of D.

We construct a new boolean relation R’ of arity m x n according to the
following rule:

where Z; is a vector of m boolean variables which encodes the variable z;
that takes values in D.

R can now be represented as the OBBD for the characteristic function
jﬁg/ of R'.
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Representing Relations (Cont.)

This technique can be easily extended to relations over different domains,
D1,...,D,.

Since sets can be viewed as unary relations, the same technique can be
used to represent sets as OBDDs.
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Quantified Boolean Formulas (QBF)

Sometimes it is convenient to use existential or universal quantification
over boolean variables.

The resulting logic is the logic of Quantified Boolean Formulas (QBF).

Suppose x is a propositional variable.

» The QBF formula Jz.f is true iff: f |, is true or f |1 is true.

» The QBF formula Vz.f is true iff: f |z—q is true and f |, is true.

(We identify 1 with true and identify 0 with false.)
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QBF Syntax, cont’d

Formally:

Given a set of propositional variables V = {v1,...,v,},
QBF (V) is the smallest set of formulas such that

> every variable in V is a formula,
» if f and g are formulas, then =f, f V g, and f A g are formulas, and

» if fis a formula and v € V, then Juvf and Vv f are formulas.
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Truth Assignments

A truth assignment for QBF (V) is a function o : V' — {0,1}.

If a € {0,1}, then we will use the notation o (v < a) for the truth
assignment defined by

a ifv=w
o(v— a)(w) = { o(w) otherwise.

If fis a formula in QBF (V) and o is a truth assignment, we will write
o = f when f is true under the assignment o.
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QBF Semantics

The relation = is defined recursively in the obvious manner:
» o Ev, iff o(v) =1,

ol f, iff o f,

cEfvg iff o= f, or o g,

oEfAg iffcolEf, and o =g,

ol f, iff clv—0)Ef, or o{v—1) E f,

olE=Yof, iff o(v—0) = f, and o(v 1) = f

vV v.v v Yy
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QBF formulas and Relations

QBF formulas have the same expressive power as ordinary propositional
formulas; however, they are sometimes much more concise.

Every QBF formula determines an n-ary boolean relation consisting of
those truth assignments for the variables in V' that make the formula true.

We will identify each formula with the boolean relation that it determines.
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QBF formulas and Relations

Previously, we showed how to associate an OBDD with each formula of
propositional logic.

In principle, it is easy to construct OBDDs for Jvf and Vv f when f is
given as an OBDD.

> dzf = floco +f [s
> Vaof =f |z<—0 -f |9:<—1

In practice, however, special algorithms are needed to handle quantifiers
efficiently.
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Relational Products

In model checking, quantifiers occur most frequently in relational
products

o[ f(0) A g(0)].

We give an algorithm that performs this computation in one pass over
the OBDDs f(7) and g(7).

This is important since we avoid constructing the OBDD for f(7) A g(7).

Before giving the algorithm for the relational product

30 () A g(0)]

let's review the algorithm for normal conjunction,

f(@) A g(0)
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Conjunction

Conjoin(f,g: OBDD)

if f="falseV g=false then return false
else if f=true A\ g=true then return true
else if cache[(f,g)] # null then return cache[(f, g)]
else
let = be the top variable of f
let y be the top variable of g
let z be the topmost of x and y
ho := Conjoin(f|.=0, 9|2=0)
hi := Conjoin(f|.=1, g|.=1)
h := IfThenElse(z, h1, ho) /+* BDD for (z A h1) V (=2 A hg) */
cache[(f,g)] :==h
return h
endif
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Relational Products (Cont.)

RelProd(f,g: OBDD, E: set of variables)

if f="falseV g=false then return false
else if f=true \ g=true then return true
else if cache[(f, g, E)] # null then return cache[(f,g, E)]
else
let = be the top variable of f
let y be the top variable of g
let z be the topmost of x and y
ho := RelProd(f|.=0,9|:=0, F)
hi := RelProd(f|.=1,9|.=1, E)
if z € E then h := Or(hg,h1) /* BDD for hg V hy */
else h := IfThenElse(z, hq, ho) /* BDD for (z Ah1)V (=2 Ahg) */
endif
cache[(f,g9,E)] :=h
return h
endif
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Relational Products (Cont.)

Like many OBDD algorithms, RelProd uses a result cache.

In this case, entries in the cache have the form ((f, g, E), h), where E is
a set of variables that are quantified out and f, g and h are OBDDs.

If such an entry is in the cache, then a previous call to RelProd(f, g, E)
returned h as its result.

Although the algorithm works well in practice, it has exponential
complexity in the worst case.
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