Lecture 15: Implementing a Symbolic Model Checker

- Representing Transition Relations
- Implementing Basic CTL Operators
- Fairness Constraints
- Buchi Automata
- Omega Regular Languages
- Checking Language Containment
How To Build a CTL Model Checker

The following papers describe how to build a Symbolic Model Checker including fairness constraints:

Representing Transition Relations

How to represent state-transition graphs with *Ordered Binary Decision Diagrams*:

Assume that system behavior is determined by \(n \) boolean state variables \(v_1, v_2, \ldots, v_n \).

The Transition relation \(N \) will be given as a boolean formula in terms of the state variables:

\[
N(v_1, \ldots, v_n, v'_1, \ldots, v'_n)
\]

where \(v_1, \ldots v_n \) represents the current state and \(v'_1, \ldots, v'_n \) represents the next state.

Now convert \(N \) to a OBDD!!
Symbolic Model Checking

\textit{Check} takes a CTL formula as its argument and returns the OBDD for the set of states that satisfy the formula:

If f is an atomic proposition v_i, then $\text{Check}(f)$ is simply the OBDD for v_i.

Formulas of the form $f \lor g$ and $\neg f$ are handled using the standard OBDD algorithms for these connectives.

\textbf{EX} f, \textbf{E}[f U g], and \textbf{EG} f are handled by auxiliary procedures:

\begin{align*}
 \text{Check(} \textbf{EX} f \text{)} & = \text{CheckEX(} \text{Check}(f) \text{)} \\
 \text{Check(} \textbf{E}[f \text{ U } g] \text{)} & = \text{CheckEU(} \text{Check}(f), \text{Check}(g) \text{)} \\
 \text{Check(} \textbf{EG} f \text{)} & = \text{CheckEG(} \text{Check}(f) \text{)}
\end{align*}

\textbf{AX} f, \textbf{A}[f U g] and \textbf{AG} f are rewritten in terms of above operators.
Symbolic Model Checking (Cont.)

CheckEX is simple since $\textbf{EX} f$ is true in a state if it has a successor in which f is true.

\[
\text{CheckEX}(f(\overline{v})) = \exists \overline{v}' \ [f(\overline{v}') \land R(\overline{v}, \overline{v}')] .
\]

Given OBDDs for f and R, the OBDD for

\[
\exists \overline{v}' \ [f(\overline{v}') \land R(\overline{v}, \overline{v}')] .
\]

is computed as described in the first lecture.
Symbolic Model Checking (Cont.)

\[\text{CheckEU}(f(\bar{v}), g(\bar{v})) \text{ is given by} \]
\[\text{lfp } Z(\bar{v}) \left[g(\bar{v}) \lor \left(f(\bar{v}) \land \text{CheckEX}(Z(\bar{v})) \right) \right]. \]

The function \text{lfp} is used to compute the sequence of approximations \(Z_0, Z_1, \ldots\).

This sequence converges to \(E[f \ U g]\) in a finite number of steps.

The OBDD for \(Z_{i+1}\) is computed from the OBDDs for \(f, g,\) and \(Z_i\).

Since OBDDs are a canonical form for boolean functions, convergence is easy to detect.

When \(Z_i = Z_{i+1}\), \text{lfp} terminates. The state set for \(E[f \ U g]\) is given by the OBDD for \(Z_i\).
Symbolic Model Checking (Cont.)

Check$_{EG}$ is similar. In this case, the procedure is based on the greatest fixpoint characterization for the CTL operator EG:

\[
\text{Check}_{EG}(f(\bar{v})) = \text{gfp} \ Z(\bar{v}) \ [f(\bar{v}) \land \text{Check}_{EX}(Z(\bar{v}))]
\]

Given the OBDD for f, the function Gfp is used to compute the OBDD for $\text{EG} \ f$.
CTL with Fairness Constraints

A *fairness constraint* can be an arbitrary formula of CTL.

Let $H = \{h_1, \ldots, h_n\}$ be a set of such fairness constraints.

A path p is *fair* with respect to H if each $h_i \in H$ holds *infinitely often* on p.

The path quantifiers in CTL formulas are restricted to fair paths.
Consider the formula $\text{EG } f$ with the set of fairness constraints H.

This formula will be true at a state s if there is a path p starting at s such that

- f holds globally on p, and
- each formula in H holds infinitely often on p.
Let S be the largest set of states with the following two properties:

1. all of the states in S satisfy f, and
2. for all fairness constraints $h_k \in H$ and all states $s \in S$
 - there is a non-empty sequence of states from s to a state in S satisfying h_k, and
 - all states in the sequence satisfy the formula f.

It can be shown that each state in S is the beginning of a path on which f is always true.

Furthermore, every formula in H holds infinitely often on this path.
The operator EG (Cont.)

It follows that $\text{EG} f$ can be expressed as a greatest fixed point of a predicate transformer:

$$\text{EG} f = \text{gfp} S \left[f \land \bigwedge_{k=1}^{n} \text{EX}(E[f \ U S \land h_k]) \right]$$

This formula can be used to compute the set of states that satisfy $\text{EG} f$.
Other Operators

Checking the formulas $\text{EX } f$ and $\text{E}[f \ U \ g]$ under fairness constraints is simpler.

The set of all states which are the start of some fair computation is

$$fair = \text{EG } \text{true}.$$

Hence,

$$\text{EX}(f) = \text{EX}(f \land fair),$$
$$\text{E}[f \ U \ g] = \text{E}[f \ U \ g \land fair]$$

Remaining CTL operators can be expressed in terms of EX, EG, and EU. For example,

$$\text{A}[f \ U \ g] \equiv \neg \text{E}[
eg g \ U \neg f \land \neg g] \land \neg \text{EG } \neg g.$$
There are many types of ω-automata. However, we will only consider deterministic Büchi automata.

A finite Büchi automaton is a 5-tuple

$$M = \langle K, p_0, \Sigma, \Delta, A \rangle,$$

where

- K is a finite set of states
- $p_0 \in K$ is the initial state
- Σ is a finite alphabet
- $\Delta \subseteq K \times \Sigma \times K$ is the transition relation
- $A \subseteq K$ is the acceptance set.

M is deterministic if for all $p, q_1, q_2 \in K$ and $\sigma \in \Sigma$, if $\langle p, \sigma, q_1 \rangle, \langle p, \sigma, q_2 \rangle \in \Delta$ then $q_1 = q_2$.
Language Acceptance

An infinite sequence of states \(p_0p_1p_2 \ldots \in K^\omega \) is a path in \(M \) if there exists an infinite sequence \(a_0a_1a_2 \ldots \in \Sigma^\omega \) such that \(\forall i \geq 0 : \langle s_i, a_i, s_{i+1} \rangle \in \Delta \).

Let \(p = p_0p_1p_2 \ldots \in K^\omega \) be a path in \(M \). The infinitary set of \(p \) is the set of states that occur infinitely often on \(p \).

A sequence \(a_0a_1a_2 \ldots \in \Sigma^\omega \) is accepted by \(M \) if there is a corresponding path \(p = p_0p_1p_2 \ldots \in K^\omega \) such that the infinitary set of \(p \) contains at least one element of \(A \).

The set of sequences accepted by an automaton \(M \) is called the language of \(M \) and is denoted \(L(M) \).
The alphabet for these examples is the set $\Sigma = \{p, q, r\}$. States in the acceptance set are shaded.

- This automaton accepts infinite length strings with the property that every occurrence of p is eventually followed by an occurrence of q.

- This automaton accepts infinite length strings with the property that p occurs almost always in the string.
Product Construction

Let M and M' be two Büchi automata over the same alphabet Σ.

Consider the Kripke structure

$$K(M, M') = (AP, K \times K', \langle p_0, p'_0 \rangle, L, R),$$

where

- $AP = \{q, q'\}$ is the set of atomic propositions
- $\langle s, s' \rangle \models q$ iff $s \in A$
- $\langle s, s' \rangle \models q'$ iff $s' \in A'$
- $\langle s, s' \rangle R \langle r, r' \rangle$ iff $\exists a \in \Sigma : \langle s, a, r \rangle \in \Delta$ and $\langle s', a, r \rangle \in \Delta'$.
Checking Containment

It is possible to show that, if M' is deterministic,

$$\mathcal{L}(M) \subseteq \mathcal{L}(M') \iff K(M, M') = A[\varphi q \Rightarrow \varphi q']$$

The above formula is in CTL* but not in CTL. However, it belongs to a class of formulas which can be checked in polynomial time.

In fact, $A[\varphi q \Rightarrow \varphi q']$ is equivalent to $AG AF q'$ under the fairness constraint “infinitely often q”.

Checking this formula with the given fairness constraint can be handled by the technique described previously.