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Abstract. In this paper, we consider the problem of partitioning a $rdata
sample drawn from a mixture &f product distributions. We are interested in the
case that individual features are of low average qualjitgnd we want to use as
few of them as possible to correctly partition the sample.aiealyze a spectral
technique that is able to approximately optimize the totahdsize—the product
of number of data pointa and the number of featurds—needed to correctly
perform this partitioning as a function af/~y for K > n. Our goal is motivated
by an application in clustering individuals according teittpopulation of origin
using markers, when the divergence between any two of thelatipns is small.

1 Introduction

We explore a type of classification problem that arises incthr@ext of computational
biology. The problem is that we are given a small sample o size.g., DNA ofn
individuals (think ofrn in the hundreds or thousands), each described by the values
of K featuresor markers e.g., SNPs (Single Nucleotide Polymorphisms, thinkisof
as an order of magnitude larger thalh Our goal is to use these features to classify
the individuals according to their population of origin.dteres have slightly different
probabilities depending on which population the indivichelongs to, and are assumed
to be independent of each other (i.e., our data is a smalllssingpn a mixture ofk very
similar product distributions). The objective we consigeto minimize the total data
sizeD = nK needed to correctly classify the individuals in the sampla &unction of
the “average quality’ of the features, under the assumption that> n. Throughout

the paper, we usg/ andu{ as shorthandsfqrgj) andul@ respectively.

Statistical Model: We havek probability spaces?y, . . ., 2, over the se{0, 1}%. Fur-
ther, the componentdeature$ of » € (2, are independent anlr,, [z; = 1] = pi

(1 <t <k 1<i< K).Hence, the probability spacés,, ..., {2, comprise the
distribution of the features for each of tliepopulations. Moreover, the input of the
algorithm consists of a collectiom(xture) of n = Zle N, unlabeled samplesy,
points from{2;, and the algorithm is to determine for each data point fronictviof
21,...,8 it was chosen. In general we #ot assume thaiv, ..., N; are revealed
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to the algorithm; but we do require some bounds on theiriveaizes. An important

parameter of the probability ensemlilg, . . ., (2, is themeasure of divergence
i 0k — i)
= = 1
YT K @

between any two distributions. Note thafily measures the Euclidean distance be-
tween the means of any two distributions and thus represesitsseparation. Further,
let N = n/k (so if the populations were balanced we would havef each type) and
assume from now on th&tN < K. Let D = nK denote the size of the data-set. In
addition, letr? = max; ¢ pi(1 — pi) denote the maximum variance of any random bit.

The biological context for this problem is we are given DNAammation fromn
individuals fromk populations of origin and we wish to classify each individiméo
the correct category. DNA contains a series of markersd&MPs, each of which has
two variants (alleles). Given the population of origin ofiadividual, the genotypes can
be reasonably assumed to be generated by drawing allelesendently from the ap-
propriate distribution. The following theorem gives a stiéfint condition for a balanced
(Ny = N») input instance whek = 2.

Theorem 1. (Zhou 06 [25])AssumeN; = N» = N. If K = (%) and KN =

(InNloglog Ny then with probabilityl — 1/ poly(NN'), among all balanced cuts in
the complete graph formed amofgdy sample individuals, the maximum weight cut
corresponds to the partition of th&V individuals according to their population of
origin. Here the weight of a cut is the sum of weights acroksddes in the cut, and the
edge weight equals the Hamming distance between the birgeaftthe two endpoints.

Variants of the above theorem, based on a model that allowsamdom draws from
each SNP for an individual, are given in [3, 25]. In particuteotice that edge weights
based on the inner-product of two individuals’ bit vectomsrespond to the sample
covariance, in which case the max-cut corresponds to theaopartition [25] with
high probability. Finding a max-cut is computationallyrexttable; hence in the same
paper [3], a hill-climbing algorithm is given to find the ceat partition for balanced
input instances but with a stronger requirement on the sizbsth K andn K.

A Spectral Approach: In this paper, we construct two simpler algorithms usingcspe
tral techniques, attempting to reproduce conditions abbvearticular, we study the
requirements on the parameters of the model (namely], &, andK) that allow us to
classify every individual correctly and efficiently withdh probability.

The two algorithms CAssIFY and RRTITION compare as follows. Both algo-
rithms are based on spectral methods originally developepiaph partitioning. More
precisely, Theorem 2 is based on computing the singulaoveetith the two largest
singular values for each of the x K input random matrix. The procedure is concep-
tually simple, easy to implement, and efficient in practi€er simplicity, Procedure
Classify assumes the separation paramegisrknown to decide which singular vector
to examine; in practice, one can just try both singular vects we do in the sim-
ulations. Proof techniques for Theorem 2, however, arecditfito apply to cases of
multiple populations, i.e% > 2. Procedure Partition is based on computing a rank-



approximation of the input random matrix and can cope withigtune of a constant
number of populations. It is more intricate for both implertegion and execution than
Classify. It does not requirg as an input, while only requires that the constaris
given. We prove the following theorems.

Theorem 2. Letw = 22NuN2) gnd ., be a lower bound on. Lety be given.
Assume thal{ > 2nInn andk = 2. ProcedureCLASSIFY allows us to separate two

populations w.h.p., when > {2 ( o? ) whereo? is the largest variance of any

YWminW
random bit, i.eo? = max; ¢ pi(1 — pi). Thus if the populations are roughly balanced,
thenn > s suffices for some constant

This implies that the data required i3 = nK = O (1n"04/72w2w§nn)- Let P, —
(p')i=1....x, We have

K
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Theorem 3. Letw = 20NLNi) There is a polynomial time algorithPARTITION

that satisfies the following. Suppose tliat> nlogn andn > C;—Zz for some large
enough constant’, and thatw = (2(1). Then given the empirical x X matrix com-
prising the K features for each of the individuals along with the parametés, PAR-
TITION separates thé populations correctly w.h.p.

Summary and Future Direction: Note that unlike Theorem 1, both Theorem 2 and
Theorem 3 require a lower bound eneven wherk = 2 and the input instance is bal-
anced. We illustrate through simulations to show that thénss not to be a fundamental
constraint of the spectral techniques; our experimengallte show that even when

is small, by increasind( so thatnK = 2(1/+2), one can classify a mixture of two
populations using ideas in Procedure Classify with succagsreaching an “oracle”
curve, which is computed assuming that distributions amnm where success rate
means the ratio between correctly classified individuats/snExploring the tradeoffs
of n and K that are sufficient for classification, when sample sizs small, is both of
theoretical interests and practical value.

1.1 Related Work

In their seminal paper [21], Pritchard, Stephens, and Diypeesented a model-based
clustering method to separate populations using genotgfge @hey assume that ob-
servations from each cluster are random from some paramawiel. Inference for
the parameters corresponding to each population is dongyjaiith inference for the
cluster membership of each individual, alhh the mixture, using Bayesian methods.
The idea of exploiting the eigenvectors with the first twoegigalues of the adja-
cency matrix to partition graphs goes back to the work of leiefll2], and has been
used in the heuristics for various NP-hard graph partitigrproblems (e.g., [13]). The
main difference between graph partitioning problems ared dlassification problem



that we study is that the matrices occurring in graph partitig are symmetric and
hence diagonalizable, while our input matrix is rectangingeneral. Thus, the contri-
bution of Theorem 2 is to show that a conceptually simple dficient algorithm based
on singular value decompositions performs well in the frawordk of a fairly general
probabilistic model, where probabilities for each of tRefeatures for each of thi
populations are allowed to vary. Indeed, the analysis AE3IFY requires exploring
new ideas such as the Separation Lemma and the normalizdttbe random matrix
X, for generating a large gap between top two singular valfidéseoexpectation ma-
trix X and for bounding the angle between random singular vectudstlaeir static
correspondents, details of which are included in SectioiitR analysis in full version.

Procedure Partition and its analysis build upon the spetchniques of McSh-
erry [18] on graph partitioning, and an extension due to €ojsnlan [4]. McSherry
provides a comprehensive probabilistic model and presarggectral algorithm for
solving the partitioning problem on random graphs, prodideat a separation con-
dition similar to (2) is satisfied. Indeed, [18] encompasseonsiderable portion of
the prior work on Graph Coloring, Minimum Bisection, and fimgl Maximum Clique.
Moreover, McSherry’s approach easily yields an algorithat solves the classification
problem studied in the present paper under similar assompas in Theorem 3, pro-
vided that the algorithm is given the parameteas an additional input; this is actually
pointed out in the conclusions of [18]. In the context of draartitioning, an algorithm
that does not need the separation parameter as an input wiaedié [4]. The main
difference betweenARTITION and the algorithm presented in [4] is thatATITION
deals with the asymmetric x K matrix of individuals/features, whereas [4] deals with
graph partitioning (i.e., a symmetric matrix).

There are two streams of related work in the learning comigufne first stream is
the recent progress in learning from the point of view of tdusig: given samples drawn
from a mixture of well-separated Gaussians (componentligions), one aims to clas-
sify each sample according to which component distribuii@omes from, as studied
in[8,9,2,23,1,15,7]. This framework has been extendeddcergeneral distributions
such as log-concave distributions in [1, 15] and heavyethdistributions in [7], as well
as to more than two populations. These results focus maimigeducing the require-
ment on the separations between any two cenfferand P,. In contrast, we focus on
the sample siz®. This is motivated by previous results [3, 25] stating thaabquiring
enough attributes along the same set of dimensions fromaaunponent distribution,
with high probability, we can correctly classify every imiiual.

While our aim is different from those results, whete> K is almost universal
and we focus on casds > n, we do have one common axis for comparison, the
{y-distance between any two centers of the distributions.altiex works [9, 2], the
separation requirement depended on the number of dimessi@ach distribution; this
has recently been reduced to be independeht,adhe dimensionality of the distribution
for certain classes of distributions [1, 15]. This is congide to our requirement in (2)
for the discrete distributions. For example, according kedrem?7 in [1], in order to
separate the mixture of two Gaussians,

17y Pall, = 2 (7 + o/own @3



is required. Besides Gaussian and Logconcave, a genemkthe Theoren® in [1]

is derived that in principle also applies to mixtures of dite distributions. The key
difficulty of applying their theorem directly to our scenais that it relies on a con-
centration property of the distribution (Eqg. (10) of [1])athneed not hold in our case.
In addition, once the distance between any two centers id fixe., oncey is fixed
in the discrete distribution), the sample sizén their algorithms is always larger than
n (% log® K) [1,15] for log-concave distributions (in fact, in Theorgnof [15], they
discard at least this many individuals in order to correcthssify the rest in the sam-
ple), and Iargerthaﬂ?(%) for Gaussians [1], whereas in our cases. K always holds.
Hence, our analysis allows one to obtain a clean boundiorthe discrete case.

The second stream of work is under the PAC-learning framkwehere given a
sample generated from some target distributigthe goal is to output a distributiorh
that is close tdZ in Kullback-Leibler divergencek L(Z||Z;), whereZ is a mixture of
product distributions over discrete domains or Gaussia6sl4, 5, 6, 20, 10, 11]. They
do not require a minimal distance between any two distrimg]j but they do not aim to
classify every sample point correctly either, and in gehemguire much more data.

2 A Simple Algorithm Using Singular Vectors

As described in Theorem 2, we assume we have a mixture of teaugt distributions.
Let N1, N» be the number of individuals from each population class. gaad is to cor-
rectly classify all individuals according to their distitions. Letn = 2N = N; + No,
and refer to the case whée¥;, = N, as the balanced input case. For convenience, let
us redefine K to assume we hav®(logn) blocks of K features each (so the total
number of features is reallp (K log n)) and we assume that each sefofeatures has
divergence at least. (If we perform this partitioning of features into blockswdomly,
then with high probability this divergence has changed bly anconstant factor for
most blocks.) The high-level idea of the algorithm is nowdpeat the following proce-
dure for each block of features: use th& features to create anx K matrix X, such
that each rowX;,7 = 1,...,n, corresponds to a feature vector for one sample point,
across itsK’ dimensions. We then compute the top two left singular veaigru, of
X and use these to classify each sample. This classificatthrc@s some probability
of error f for each individual at each round, so we repeat the procdduesach of the
O(log n) blocks and then take majority vote over different runs. Eaeind we require
K > nfeatures, so we need(n logn) features total in the end.

In more detail, we repeat the following proced@réog n) times. Letl’ = 13X\ /30,17,
wherewy,, is the lower bound on the minimum weighiin{ 2%, 22}, which is inde-
pendent of an actual instance. Lsget X ), so(X) be the top two singular values &f.

Procedure Classify: Given~y, N, wpi,. Assume thatV > %

— Normalization: use thé& features to form a random x K matrix X'; Each indi-
vidual random variabléX; ; is anormalizedandom variable based on the original
Bernoullir.v.b; ; € {0,1} with Pr{b; ; = 1] = p] for X; € P, andPr[b; ; = 1] =

p3 for X; € P,, such thatX; ; = 31,



- Take top two Ieftsmgularvectoni uz Of X, whereu; = [u;1,...,uin],i =1,2.
A s(X) > T = 1:‘,))—2N\/3wmm7, useus to partition the individuals with) as
the threshold, i.e., partitiof € [n] according tous ; < 0 Orus ; > 0.
2. Otherwise, usei; to partition, with mixture mean/ = Z?:l u1n as the
threshold.

Analysis of the Simple Algorithm: Our analysis is based on comparing entries in the
top two singular vectors of the normalized randomK matrix X, with those of a static
matrix X', where each entryt; ; = E[X; ;] is the expected value of the corresponding
entry in X. Hencevi = 1,..., Ni, X; = [uf, 3, ..., pf°], wherep] = 171 vj, and
1+p}
2

Vi= Ny +1,....n, X = [, p3,..., K], wherep) = ,Vj. We assume the
divergence is exactly among thek features that we have chosen in all calculations.

The inspiration for this approach is based on the followiegiina, whose proof
is built upon a theorem that is presented in a lecture note figl®an [22]. For a
n x K matrix A, let s;(A) > s2(4) > ... > s,(A) be singular values ofl. Let

U1, ..., Un, U1, ..., s, D€ then left and right singular vectors oX, corresponding to
51(X), ..., sn(X) such that|u;||, = 1, ||v;]|, = 1, Vi. We denote the set of left and
right singular vectors o&” with @y, ..., 4,, U1, ..., Un.

Lemma 4. Let X be the randomn x K matrix andX its expected value matrix. Let
A = X — X be the zero-mean random matrix. ldete the angle between two vectors:
[ui, vi], [wi, v;], where||[u, vi]||, = [|[wi, vi]]|, = 2 and [u, v] represents a vector that

is the concatenation of two vectaisv.

481 (A)

w; — Uil < ||[ug, vi] — [, V)|l = 20; = 2sin(0;) < ————,
o =l < W, v — [ 9) < gont),

(4)
wheregap(i, X') = minj; |s;(X) — s;(X)].

We first bound the largest singular valsigA) = s;(X — &) of (a; ;) with inde-
pendent zero-mean entries, which defines the Euclideamtyperorm

(@)l :=sup Q> asjayy Y a7 <1,y yi<1y. (5)
i

The behavior of the largest singular value ofrarx m random matrices! with i.i.d.
entries is well studied. Latala [17] shows that the weakestimption for its regular
behavior is boundedness of the fourth moment of the engies) if they are not iden-
tically distributed. Combining Theorem 5 of Latala with tbencentration Theorem 6
by Meckes [19] proves Theorem 7 that we néed

Theorem 5. (Bounded Norm of Random Matrices [17])or any finiten x m matrix
A of independent mean zero r.vis; we have, for an absolute constarit

1

4

Ell(aij)| <C max /ZEa”—i—max /ZE(L” ZEaﬁj . (6)
2%

"10necanals One can also obtain an upper boundfy/n + K) onsi(A) using a theorem on by Vu [24],
through the construction @ + K) x (n + K) square matrix out ofi.



Theorem 6. (Concentration of Largest Singular Value: Boun@d Range [19])For
any finiten x m, wheren < m, matrix A, such that entries, ; are independent r.v.
supported in an interval of length at mast then, for all¢,

Pr(|s1(A) — Ms1(A)| > ] < de~t'/4D%. ©)

Theorem 7. (Largest Singular Value of a Mean-zero Random Matix) For any finite

n x K, wheren < K, matrix A, such that entrieg; ; are independent mean zero r.v.
supported in an interval of length at mast with fourth moment upper bounded By
then

Pr(si(A) > CBY*VK + 4D /7 + t} < get/4 (8)

for all t. Hencel| A|| < C; BY/*V/K for an absolute constardt; .

2.1 Generating a Large Gap ins1(X), s2(X)

In order to apply Lemma 4 to the top two singular vectorsfoAnd X’ through

_ 451(X — X)
[ur = |, < T51(70) = 52 (0] 9)
Juz il < ot (10

min (|s1(X) — s2(X)|,|s2(X)])’

we need to first boungs; (X) — so(X)| away from zero, since otherwise, RHSs on
both (9) and (10) become unbounded. We then anagpé2, X') = min (|s1(X) — s2(X)], |s2(X)]).
Let us first define values, b, ¢ that we use throughout the rest of the paper:

K K K
a=> (u)% b= pkuk, = (uh)> (11)

k=1 k=1 k=1

For the following analysis, we can assume thab, ¢ € [K/4, K], given thatX is
normalized in Procedure Classify.

We first show that normalization of as described in Procedure Classify guarantees
that not only|s; (X) — s2(X)| # 0, but there also exists @(+/ N K) amount of gap
betweens; (X) andsz(X) in Proposition 8:

gap(X) := [s1(X) — s2(X)[ = O(VNK). (12)

Proposition 8. For a normalized random matriX, its expected value matriX’ sat-
isfies 10v2NE < gap(X) < vV2NK, wherecy = zlé)(‘;/f_f) is a constant, given that
a,b,c € [K/4, K] as defined in (11). In addition,

,/% < 51(X) < VANK, andg/g < 51 (X) + 52(X) < VINK.  (13)



We next state a few important results that justify Procedilessify. Note that the
left singular vectorsi;, Vi of X are of the formz;, ..., i, vi, ..., yi]":

ﬂl = [xla s L1, Y1, 'ayl]Ta and 17,2 = [:E21 ey T2,Y2, 7y2]T7 (14)
wherez; repeatdV; times andy; repeatsV, times. We first show Proposition 9 regard-
ing signs ofx;, y;,¢ = 1, 2, followed by a lemma bounding the separatior:efy,. We

then state the key Separation Lemma that allows us to coathad least one of top two

left singular vectors of can be used to classify data at each round. It can be extended
to cases wheh > 2.

Proposition 9. Letb as defined in (11): whelh> 0, entrieszy, y; in 4, have the same
sign whilexs, 2 in 4y have opposite signs.

Lemma 10. |.T2 — y2|2 < %n}\?x Wherecmax = (\/ w1 \/ w ) —  Wmin’ | 2|2

Cax min R 2 Cy min o wr
2N whereCy min = | J WhereCy min = LT 0,

40.)%:3)10.)2; |y2
Lemma 11. (Separation Lemma)K~y = s1(X)? (21 — y1)? + s2(X)? (22 — y2)%.

Proof. Let A := P, — P, asin Theorem 2, anbl = [1,0,...,0,—1,0,...,0]7, where
1 appears in the first and1 appears in théV; + 1! positions. Themd = X7b = [ui —
pi 2 — 3, — uE]. GivenX = s1(X) a7 + s2(X) 01 , we thus rewrited
as:A=XTp= Sl(X)l_)lﬂ{b—FSQ(X)l_)gﬂgb = Sl(X)’L_)l (561 —y1)+SQ(X)1_}2 (xg—yg).
The lemma follows from the fact thgt\ ||, = /K~ andv,, o, are orthonormal. =

Combining Proposition 9, Lemma 10, (13), and Lemma 11, wehav

Corollary 12. s5(X) < # and hencg@ap(2, X) = min(sy(X), |s1(X)—

s2(X)]) = s2(X) for a sufficiently smally.

Finally, we show that the probability of error at each rouaddach individual is at
mostf = 1/10, given the sample size as specified in Theorem 2. Hence by taking
majority vote over the different runs for each sample, ogoathm will find the correct
partition with probabilityl — 1/n2, given that at each round we take a setof> n
independent features. We leave the detailed analysislindtgdion.

3 The Algorithm PARTITION

As in Section 2, by repeating the partitioning procksgsn times, we may restrict our
attention to the problem of classifying a constant fractiéthe individuals correctly.
Let V = {1,...,n} be the set of alh individuals, and let) : V — {1,...,k}
be the map that assigns to each individual the populatioeldrtys to. Further, set
Vi = ¢~ 1(t), defineN; = |V;|, I’ = K~, and\ = vKo. In addition, letA = (a,;)
denote the empirical x K input matrix. Then the assumption from Theorem 3 can be
rephrased ag,;, Ky > Ci)\2.

If X = (xij)lgign,lgjgj{ is an x K matrix, then we IeﬂXH = max|¢|=1 HXgH
signify the operator norm of, while || X||r = (3_, ;27 ) denotes the Frobenius



norm. The algorithm RRTITION computes @ank k approximationﬁ of the input ma-
trix A. Thatis,A is an x K matrix of rank at mosk, and if B is anyn x K matrix of
rank at most, then||A — A|| < ||A — B||. Such anA can be computed in polynomial
time via singular value decomposition. L&t denote the-row of A.

Algorithm 13. PARTITION(A4, k)
Input: A n x K matrix A and the parametér. Output: A partition Sy, ..., S; of V.

1. Compute a rank k approximation A of A.
Forj=1,...,2log K do

2. Let I; = K277 and compute Q) (v) = {w € V : [|Ay, — A,||? < 00112}
forallv e V. v v
Then, determine sets Q“) Q“) as follows: fori = 1,...,k do

3. Pick v € V\ UiZ} @V such that QD )\ UiZI QY| is maximum.

set Q) = QU(w) \ Uil @ and ¢/ = T Do) Au:

4. Partition the entire set V' as follows: first, let Sf” = QE” foralll <i<k.
Then, add each v € V' \ U, Qf”) to a set SY) such that |4, — ¢ is
minimum. R ‘

Setr; =Y, Y, o A0 — 672,
5.  LetJ be such that r* = 7, is minimum. Return 5{”, ... S\,

The basic idea behindARTITION is to classify each individual € V' according
to its row vectorA, in the rankk approximationA. That is, two individuals), w are
deemed to belong to the same populatiofi.iff, — A, |2 < 0.01I'2. Hence, RRTITION
tries to determine setSy, ..., Si such that for any twa, w in the same sef; the
distance| 4, — A4,,| is small. To see why classifying the individuals accordingteir
corresponding row vectors iA is a good idea, we consider an auxiliary matfix=
(E,;) with entriesE,; = pfp(v). Thus, the entries ot equal the expectations of the
entries ofA.

Lemma 14. There is a constar® > 0 such thay", ., | A, — E, ||* < CkA? whp.
Proof. Recall thatd andE both have rank< &, we obtain

D N4, —E,|? = || A - Elf} < 2k|| A - E|| < 8k||A—E|* < Ck)?,
veV

where the last inequality follows from Theorem 7. [ ]

Observe that Lemma 14 implies that fmosty we have||A —E,||? < 107°r, say.
Forlettingz = |{v : | A, —E,|? > 1075I"}|, we getl0 61"z < 3 cv | A, —E, |2 <
CkX?, whencez < npi, due to our assumption tha,i, " > k)\z Thus, most rows
of A are close to the corresponding rows of thgectednatrix E. Sincel” is not given
to the algorithm as an input parametexR?ITION has to estimaté’ on its own.

To this end, the outer loop goes throudjlog K “candidate values!’;. These values

are then used to obtain a partitid){l), ceey (k) in Steps 2—4, which are similar to the

algorithm presented in [18]. In addition, Step 4 computestior parameter;. Finally
Step 5 outputs the partition that minimizes the error patame. More precisely, Step 2



usesI; to compute for eachh € V the setQ(v) of elementsw such that|| A, —
A,|| < 0.01T7. Then, Step 3 tries to compute “big” disjoittl’’, ..., @\, where
eacth.j) results from some&)(v;). Further, Step 4 assigns all elementsot covered
by QY. ..., QY to thatQ!” whose “center vectorz? is closest tad,.

Thus, we need to show that eventually picking the partitidrose error ternr;
is minimum yields a good approximation to the ideal partitid, ..., Vj. The basic

reason why this is true is th@ﬁj) should approximate the expectatiif: for class
V; well iff QZ(.J) is a good approximation df;. Hence, ingj), . Qg) is “close” to

Vi,..., Vi, thenr; = 2% D pes® | A, —gi(J)||2 ~ ||A—E|/% will be about as small
as||K — E||% (cf. Lemma 14). Furthermore, Lemma 16 shows that any pamtiiuch

thatr; is small yields a good approximation uf, . . ., V4. Theorem 3 is an immediate
consequence of Lemmas 15 and 16.

Lemma 15. If 11" < I; < I', thenr; < Cok3A? for a certain constan€, > 0.

Lemma 16. Let Sy, ..., Sk be a partition andsy, . .., £, a sequence of vectors such
that % | Yoves, 16— Ajll? < Cok®X2. Then there is a bijectio® : {1,...,k} —
{1,...,k} such that the following holds.

1. ||& —EV=w]|]2 < 0.001 % foralli=1,...,k and
2. Zf:l |Si AV=(5)] < 0.0017miy.

4 Experiments

We illustrate the effectiveness of spectral techniquesgusimulations. In particular,
we explore the case when we have a mixture of two populatiweshow that when
NK > 1/4%andK > 1/, either the first or the second left singular vectoRoghows
an approximately correct partitioning, meaning that thecess rate is well abovie/2.
The entry-wise expected value matdxis: amongK /2 featuresp! > p} and for the
other half pi < pj such thawi, pi,p} € {132 + £, 152 + £}, wheree = 0.1 Hence
~v = a?. We report results on balanced cases only, but we do obseaveimbalanced
cases show similar tradeoffs. For each populafiyrthe success rate is defined as the
number of individuals that are correctly classified, i.Beytbelong to a group that is
the majority of that group, versus the size of the populatin

Each point on the SVD curve corresponds to an average ratel69drials. Since
we are interested in exploring the tradeoffs\of K in all ranges (e.g., whelV << K
or N >> K), rather than using the threshditin Procedure Classify that is chosen in
case bothV, K > 1/, to decide which singular vector to use, we try bathandu.
and use the more effective one to measure the success ratehatrial. For each data
point, the distribution ofX is fixed across all trials and we generate an independent
Xonwx i for each trial to measure success rate based on the morgiaffetassifier
betweernu; andus.

One can see from the plot that whé&h < 1/, i.e., whenK = 200 and400, no
matter how much we increa9é, the success rate is consistently low. Note &tat100
of success rate is equivalent to a total failure. In contrakenN is smaller than /-,



as we increasé&’, we can always classify with a high success rate, where iergén
NK > 1/4?is indeed necessary to see a high success rate. In partithéacurves

for K = 5000, 2500, 1250 show the sharpness of the threshold behavior for increasing
sample sizex from below1/K~? to above. For each curve, we also compute the best
possible classification one could hope to make if one knevdiaace which features
satisfiedp} > p, and which satisfieg! < p. These are the horizontal(ish) dotted lines
above each curve. The fact that the solid curves are appraathese information-
theoretic upper bounds shows that the spectral technigqurisctly using the available
information.

y=0.0016, Balanced case

100
|

200 g —e— K=5000
ponageo ° —&— K= 2500
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Lol A + + =
o | + 9 2 —— K=625
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| / / — 7 K=200
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Fig. 1. Plots show success rate as a functiombfor several values of(, wheny = (0.04).
Each point is an average over 100 trials. Horizontal linesgtles”) indicate the information-
theoretically best possible success rate for that valug” ¢ghow well one could do if one knew
in advance which features satisfigfl > p% and which satisfieg! < pi; they are not exactly
horizontal because they are also an average over 100 rugrsical bars indicate the value of
for which NK = 1/42.
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A Detailed Analysis for the Simple Algorithm

In this section, we first prove a proposition regarding, ¢ as defined in (11). We next
provide the proof to Theorem 7 regarding the largest singidue of( X — X'). We then
use Lemma 4 to bound the number of individuals that we misiflaat each round in
Section A.2. We finish by showing that with high probabilitye can correctly classify
all individuals by taking majority vote oved(log N) different runs.

Throughout the rest of the paper, we useY, H to represent random matrices,

- T 10X

whereH = X X* andY = {XT 0
static matrices. Let us substituieb, c in H = XX, where the blocks ift{ from top
to bottom and from left to right are of siz&l; x N1, N1 x Na, No x N7 andNy x Ny
respectively:

] . We useY, ), H to represent the corresponding

a ...ab...b
_ r |a...ab...b
H=x4" = b...bc...c (15)
i b ...bc...c_ ON XN
Proposition 17. For any choices ofi¥, ac > b?; By definition,
K
a+c—2b:2aﬁ, whereay, = |} — pb|. (16)
=1
Proof. a 4+ ¢ — 2b = 3", o7 holds by definition.
K K K 2
e = 33 - (3 mu’é))
k= k=1 k=1
K . K
= Wbk D kil + (wps)?) — | Do (uhuh)® + > 2ubufpd i
k=1 j£k k=1 j£k
= (uid)? + (Wl ph)? — 2ufpbpd i = (kb — 1 pf)* > 0.
J#k j#k
[ ]

Remark 18.Both matrices oft and X X7 have rank at most two. Where = b2, H
has rankl.
A.1 Proof of Theorem 7

Proofof Theorem 7. By having an upper bound on both maximum vaeiand fourth
moment of any entry, we have the following corollary of Themrs.



Corollary 19. (Largest Singular Value: Bounded Fourth Moment [17]) For any fi-
nite n x m, wheren < m, matrix of independent mean zero r.«s;, such that the
maximum variances of any entry is at mest and each entry has a finite fourth mo-
mentB we have

E ll(a:)| < € (o(vim+ i) + (mnB)*) < CBY4/im (17)
for an absolute constartt.

Remark 20.The requirement that? is upper bounded is not essential. The conclusion
in Corollary 19 works so long as fourth moment is boundedsby

LetMs; (A) be the median aof; (A). Following a calculation from [19], we have
[Els1(A)] — Ms1 (A)] < E[[s1(A) — Ms1(A)]]
/ (51 (A) — Misi (A)] > £)dt

34/ e /D% 4 — 4D/7,

whereD < 1 for Bernoulli random variables that we consider. This abous to con-
clude Theorem 7. [ ]

A.2 Correctness of Classification for the Simple Algorithm

We now prove correctness of our algorithm. We first show hoetioosel” for Proce-
dure Classify. LetB denote the fourth moment bound for a single random variable i
the mean zero random mattk — X’; for the type of normalized Bernoulli r.v.s that we
care abouty/B is in the order ob2, whereo? is defined in Theorem 2.

Let N+ be a large enough constant. lset X — X') < Cyv/'K, whereCy = C, BY/*4
as defined in Theorem 7 and let the threshold

T = \/C3KN~ > 15CoVK, (18)
which requires that
C3N~v > 225C2, whereC; satisfies (22). (19)

Following Lemma 27, (37), (39), and Proposition 25, we have
|52(X) — 52(X)| < s1(X — &) < CoVK. (20)
We have two cases,

1. Whensy(X) < T, by Lemma 10 and the fact that(X) < so(X) 451 (X —X) <

T + CoVK < 1L, we have

25672 Cinax _ 128C3K7Cimax _ 128C3 K4
225 2N 225 = 225Wmim

$52(X)?|wy — yaf* < (21)



for Cinax as defined in Lemma 10. We wast(X)?|z2 — y2|? < 252, This holds

s0 long ast22CelaCmex < 128Cs KA < 353 \hich is true if
675 675Wmi . .
Oy < 2L2%min . s we takes = ™ from this pointon.  (22)

2048 2048

It follows from Lemma 11 that (X)?|z; — y1]? > %. Hence by (13)

|z1 —y1| > Ky > Ky Zl l- (23)
: 2s1(X) ~ 2v2NK ~— 2V 2N

Thus the condition of Theorem 21 holds with= % so long as

_ 2048C1VB

, (24)

3Wmin

due to (19) and (22); This is a weaker condition than (35)ffer 1.
2. Whensy(X) > T, we havesy(X) > s2(X) — s1(X — X) > T — CovVK > 4L,

This satisfies the condition of Theorem 23, with= 1 m = &/,
Let us first denote the first singular vector and its “noise” vectot as follows:
u{ = (.”L'-i—él,...,$+6N],y+T1,...,y+TN2), ET = (51,...,61\[],7'1,...,7']\[2).

It turns out that we only need to use the mixture mean

M= Zz 1(x+5)+21 1(y+71)

5N (25)

to decide which side to put a node, i.e., to partitjos [2/V] according tou; ; < M
oru;; > M, given thatNl/Ng is a constant; Misclassifying any entry will contribute

2 (5%) amount tol|@; — s |5

Theorem 21. Assume w.l.o.g. thaV; < N, and2N < K. Letw; = N;/2N and
= N3/2N. Supposer; — y1| > c2./ 5% for some constant, = % By requiring

N > 20;35 VB asin (24), and

2cq 252 . 2c202 2502\/
Ny > 7, or equivalently2N > 2610 5 >,
fe3ywiws fesywawy ch'yw w?

(26)

wherec; = % for C specified in Theorem 7 ang specified in Proposition 8,

we can classify the two population using the mixture m&awith the error factor at
mostf for Ny, N, respectivelywhp.

By Lemma 4 and Theorem 7, we immediately have the followiagne!

Claim. Forc¢; chosen as in Theorem 2|:Ls|\§ =M g2 4 o

i=1"1 T<CIU

i=1"'1 = N



Proof. Given thatc; = 5\0/1_5)5 such that”; appears in Theorem 7 ang appears in
Proposition 8,

2624—27

lur — @1y ~ 261 ~ 2sin(6y)

s (X - X) 4G YBVEK  co

gap(1,X) ~ 4¢V2NK/5 /N

This allows us to conclude the claim. [ ]

We need the following lemma, proof of which appears in Appe]

Lemma 22. Assume tha N < K and Condition (26) in Theorem 21, we have

No(1 =) |y — |

bl |, MOVl g

M-z >
M —a] > = IN

Proofof Theorem21. Recall thatthe largest u, have the formofz, ..., x,y,...,y],
wherex repeatsV; times andy repeatsV, times; hence w.l.0.g., assume thak y,
we have

; ; 2 2 N3y 2
Vi, s.t. x + 6; > M, it contributess; > |M — z|° >~ SN to [e]l5, (28)
: ; ; 2 2 N2 27
Vi,s.t.y — 1, < M, it contributess; > |M — y|* >~ ——=—~ to ||e ||2 (29)

Hence the total number of entries that goes abb/érom P, and those goes below
M from P, can not be too many since their total contribution is upperruted by
lel|2 = [[uy — @1 ]|5. Let4; be the number of misclassified entries fravy, i.e., those
described in (28), by Lemma 4,

N2c2y c2o?

8N3

0 <HIM -2 < ]} < (30)
Thus given thatv; > 801” > fif;; - hence it suffices to guarantee that< 201‘71 <
JN1.

We next bound the number of entries frdpa that goes below/, which can not be
too many either; let; be the number of misclassified entries frd

20.2

N22
L2 < 0IM =yl < ey < 2, (31)

8N3

ls

hence by requiring

20%02

= fwicdy’

(32)



it suffices to guarantee thég < 201" < fNs.
Condition (32) is equivalent to

N. 2 2 2
Nl = 241 Z a7 5 (33)
w2 fW1w2CQ”Y
Thus by requiring
2 2 2
Nz (34)
fegywawr

we have satisfied all requirements. ]

Combining Lemma 4 and Corollary 12, we have

Claim. Given thatss(X) > csv/KN7, [|us — a3 < 200" < jfggw

This allows us to prove the following theorem. Let the clfisation error factor be
the number of misclassified individuals from one group owegaltamount of people in
that group.

Theorem 23. AssumeV; < Ny and2N < K. Letw; = N;/2N andwy = N»/2N.
Let s2(X) > c3/KN~, wherecz = 1—76,/% and wyi, is the minimum possible
weight allowed by the algorithm. By requiring

2 2
on > 309 (ﬂ + 1) -6 <70 ) : (35)
Wminfy \ w1 frywminwi

we can classify the two population usiigo separate components i, with error
factor at mostf for both Py, P, whp.

Proof. Let ¢4, /5 be the number of misclassified entries frdP and P, respectively;

they each contribute at lea§gzi=, and Cy‘"”‘ amount to||uz — u3||,, and hence by
Claim A.2,
Oy min o 16C2K _ 16C3
14 < - < < . 36
oN = luz = ol < KN~y ~ &Ny (36)
Hencel; < —22¢5_ 160 (4“’1 + 1)
¢3YCo min —
2
Similarly, by Claim A.2, we havégﬁ“" g Hug — U2H2 andthugs, < 623200@ <
2YCly min
% so long asN > ??32 (45—? + 1); the bound o2 NV follows by plugging incs =
34
7 3Wimin
16 min | [ |
Finally,
Theorem 24. Given a set ofi > 2 w‘%) individuals, by trying Procedure Clas-

sify forlog n rounds, with probability of error at each round for each imitiual being

f = 1/10, where each round we take a setf > n independent features, and by
taking majority vote over the different runs for each samele algorithm will find the
correct partition with probabilityl — 1/n2.



Proof. A sample is put in the wrong side with a probability10 at each round. Let
&; be the event that samplés misclassified for more thag n times, thusPr[&;] =

(%)log" < 1/n332; hence by union bound, with probability— 1/72, none of the N

individuals is misclassified. [ ]

B More Proofs for the Simple Algorithm Classify

B.1 Proof of Lemma 4

Letuy,...,un,v1,...,v, be then left and right singular vectors of, corresponding
t0 51(X) > s2(X) > ... > s,(X), we have fovi, ||u;[|, = 1, ||vi]|, = 1 such that
XT’U,i = Sl(X)’Ul andXvi = Sl(X)’U,l

Before we prove Lemma 4, given anx K matrix X, wheren < K, let us first
defineH = X X7 and a block matrix

Y_{O X 37)

T .
X0 0 ](2N+K)><(2N+K)

Recall that singular values of a realx K matrix X are exactly the nonnegative
square roots of the largest eigenvalues di = X X7, i.e, s;(X) = \/\i(H),Vi =
1,...,n, given that

Hu; = XX Tu; = 5;(X) Xv; = 52(X ). (38)

Hence the left singular vectors, . . ., u,, of X are eigenvectors dff corresponding to
Ni(H) = s2(X).
We next show that the first eigenvalues of” and their corresponding eigenvectors:

o[- Lea] ] =[] -] oo [2]. e

and hence

Proposition 25. The largestn eigenvalues o™ are s1(X), ..., s,(X) with corre-
sponding eigenvectors;, v;],Vi = 1,...,n, whereu;, v;, Vi, are left and right sin-
gular vectors ofX corresponding ta; (X).

In fact both+s,(X) are eigenvalues df, which is irrelevantProofof Lemma 4. We
first state a theorem, whose statement appears in a lecttedp&@pielman [22], with
a slight modification (off by a factor on RHS). Our proof foighheorem is included
here for completeness. It is known that for any real symroetiatrix, there exist a set
of n orthonormal eigenvectors.

Theorem 26. (Modified Version of Spielman [22]For A and M being two symmetric
matrices andE = M — A. Let A\ (A) > A (A4) > ... > X\, (A) be eigenvalues of
A, with orthonormal eigenvectors,, ve, ..., v, and letA; (M) > \(M) > ... >



A (M) be eigenvalues o/ and wy, ws, . ..,w, be the corresponding orthonormal
eigenvectors oM, with 8; = Z(v;, w;). Then

12— Addlly _ Bl +1Ad _ 2118,
gap(i,A) ~ gap(i,A) ~ gap(i,A)
wheregap(i, A) = minj»; |A;(A4) — A\;(4)] and A; = X (M) — Xi(A4).
Let us apply Theorem 26 to the symmetric mafrixn (37). In particular, we only
compare the first eigenvectors ot” of ). For the numerator of RHS of (40), we have
E=Y-Y,and|E|, =Y — Y|, = s:1(Y —=)) by aderivation similar to (39), where
eigenvectors ofr are concatenations of left and right singular vectorsof- X'; For

the denominator, we have by Proposition 88p(i, V) = min;; [A;(Y) — A; (V)| =
min;z; |5;(X) — s;(X)]. -

We first prove the following claim.

(40)

Claim. For any symmetria: x n matrix 4, let \;,vi = 1,...,n be eigenvalues oft
with orthonormal eigenvectors , v, . . ., v,, forall y L v;,
1A = Ai)ylly = min A = As flyll, (41)

Proof. Let us first assumg L v; and writey = >~7_, ., c;jv;, thus we havdly||, =

\/E:?:1J¢i0§and

1A= Nylly =1 D (A=)
=15 )
= Z ¢i(Aj — Ai)v;
=15 )
= Z C§|)‘j - /\z|2
J=1,j#i

[ |
Proofof Theorem 26. Let us construct a vectothat is orthogonal te; as follows:
y = w; — (vl w;)v; (42)
By Claim B.1, we have

1A = X (ADwlly > min A (4) = 25(A)] s (43)



and hence

[[(A = Xi(A)yll
lylly < min;; [Ai(A) — X (4)] o

On the other hand,

(A= Xi(A))yll, = H(A Xi(A)) (wi = (v] wi)v; HQ
= [I(A = Ai(A))will,
= [I(M = E = Ai(A))wil 5
= 16 (M) = Ai(A))w; = Ewill

= (A = Eywill, < [|E = A,
< [1E[ly + A

Finally, given that|w||, = 1,

lylla (A = X(A))yll,
[wlly = mingz; [Ai(4) — A;(A)]
1 E]l5 + |4

gap(i, A)

Lemma 27.Vi=1,...,n, |A;)| < [|E,.

sin(f;) =

Proof. Let S; be a subspace of dimensignRecall the following definitions of; for
a matrix:

Ai(M) = inf sup ' M. (45)

SN-i+1z€Sn_it1,l|zl,=1

Inthe following, letSy;_;  , be the subspace that is orthogonal to the subset of orthonor-
mal eigenvectors;, ..., v;_; of symmetric matrixA. Note that this is theV — ¢ + 1
dimensional subspace that achieves the minimum of the mawiof v” Av over all
unit-length vectors in the particular subspace.

Ai(M) = inf sup e Mz < sup T Mz
SN—i+1 €SN _ip1,|ll,=1 z€SY i llwll,=1
< sup tT(A+ E)x
zGS}’V,ierHI‘b:l
< sup vT Av + sup |zT Ex|
VESY_iypsllvll,=1 wER™, ||zl =1
= Ai(A) +[IE], -

For the other direction, le$y_; , be the subspace that is orthogonal to the subset of
orthonormal eigenvectors,, . .., w;_; of symmetric matrix)/. Note that this is the

N —i+1 dimensional subspace that achieves the minimum of the mawiofw? Mw

over all unit-length vectors in the particular subspace.



Ai(A) = inf sup T Az < sup ' Ax

SN-it1 €Sy _it1,|zll,=1 z€SYK . llzll,=1

< sup ' (M + (—E))x
zGS}\L}iiJA,Hsz:l

< sup wl Mw + sup J:T(—E):c
wes%7¢+1wllwll2:1 IGR”,||:6||2:1

< sup w? Mw + sup leT (—E)x|
weSY_, s lwll,=1 z€R™, ||z||,=1

=N(M) + [ E|,,

where|[E[, — ||~

Thus we have- ||E||, < (M) — Xi(A) < ||E||,, and hencgd;| < [|E||,. [ |

< IBl+Al _ 20El,

Thereforegin(6;) < i < gan(iA)- [
B.2 Some Propositions Regarding the Static Matrices
: : T 0 X :
For static matrix{ = XX* and) = T o | We define
gap(H) = [\ (H) — A2(H)|,
gap(H)
a =1|A - A =,
Proposition 28. For static matrix)/, let
gap(H)
a =1|A - A = 46

we have

vmax{Nia, Nac} < A\1(Y) < v/Nia+ Nac
V4 Nla =+ NQC S )\1(3}) + )\2()7) S \ 2(N16L + NQC)
NlNQ(ac— b2) S )\2 y) S 2N1N2(CLC— b2)
Nia + Nac Nia + Noc

Thus we have

gap(y) = 6 (\/%) o <\/(N1a+%j\[2(ac_ b2)> |

Proof. We first show the following:



Proposition 29. For static matrix# = X7 as in (15), Let\;(H), \2(H) be the
non-zero eigenvalues &f, and denotgap(H) = |A1(H) — A2 (H)|.

_ Nla + N20+ \/(Nla — NQC)2 + 4N1N2b2

N Noc — Nia — Nac)? + 4N1N3b?
() = et Noe - e - Noe? HANVMGEE 4
|N1a — NQC| < gap(H) < Nija + NQC, (49)

where\;(H) = 0, whenac = b? andgap(H) = Nia + Nac.

Proof. Let H = XX7T. Rank of H is at most 2. Therefore there exists at most two
non-zero eigenvalues, \s for H, with corresponding nonzero eigenvectorsvs be-
ing constant on each population. This is true because if witipthyu® = X7 by
a permutation matrix’ to exchange two rows among the same population, we have
PHv; = \Pv;, Vi = 1,2; given thatPHv; = Huv;, we deduce thaPv;, = v; for
non-zero)\;. Hencev; must be constant on each population.

Let the top two eigenvectarn, v, be of form[z, ..., x,y,...,y], wherex repeats
N times andy repeatsV, times; Note that they correspondsitpandi, of X follow-
ing a derivation similar to (38).

We thus have the following equations:

Niax + Noby = Az, (50)
N1bx + Nacy = Ay, (51)

which can be written in a matrix form:

Nla—/\ Ngb €T _
Given that
X
0,
HE

the matrix is not one-to-one and therefore
Nla - A Ngb .
D[ Nlb NQC—)\] =0

By solving(Nia — X)(Nac — A) — N1 Nob? = 0, we get\; (H), A2 (H) andgap(H).
We next derive an upper bound gap(H).

gap(H) = /(N1a — Nac)? + 4N, Nyb2
= /(N1a + Nac)2 — 4Ny Naac + 4N; Nob?
< +v/(N1ia + Nac)?
< Nia + Nac,

wherea, ¢ > 0 andac > b? as in Proposition 17.



It is easy to see that
gap(H) > |Nia — Nac|, (53)
given thath? > 0. [ ]
Thus we have

max{Nia, Nac} < A1 (H) < Nia + Nac,
0 < X2(H) < min{N;ya, Nac},
A (H) + A2(H) = N1a + Nac,
A1 (H)A2(H) = N1 Na(ac — b?),

Given that two largest eigenvaluesXf A (V) = /A1 (H) andA2 (V) = /A1 (H) for

Y= [;?T /ﬂ , by Proposition 29 and the following fact:

V()2 +22)2) < M)+ 220) = V2002 + 20)?),  (54)

we get all inequalities. ]

B.3 Proofs of Proposition 8 and 9

Proof of Proposition 8. We rewrite Proposition 28 given that, fon@malized’,
gap(H) > 8«NE as Proposition 31 andl; (V) = s;(X). In particular,

gap(H)
gap(X) = gap(Y) = N0+ )
gap(H) S 8coNK
~ VNia+ Noc ~ 5V2NK
4V2NK

> .
o )

For the upper bound ogap(X'), we have that

ap(H
gap(X) =gap(Y) = %(/\Q)(y)
< Nia + Nac
~ V/Nia+ Nac
< /Nia+ Nac < V2NK




Definition 30. For our application, we havek, 1 > p¥, p5 > 0, and

[ 14+p; 14p? 14+pF 7
5 )
1+p] 14pf 1+4pf
_ 2 2 T 2
A 14+py 1+p3 1+p& (55)
5 52 e g
1+py 14p3 1+pK
L2 2 T2 Jonxk

It is easy to see that with this normalized random matkix;H) = A2(H) is not
possible, given that, b, c € [K/4, K]; furthermore,gap(H) = ©(NK) as in the
Proposition 31.

Proposition 31. GivenH = XX7 anda, b, c as in (11) for any expected value mean
matrix X, which is not necessarily normalized,

gap(H) = v/ (Ve — Nocl? + NG NGP 2 "0 (56)

b|\/ac
wherecy = 1‘(('&/;)

Hence for a normalized’, gap(H) = ©(NK) given thata, b, ¢ € [K/4, K].

Proof. For a tighter lower bound ofjlap(#) than the obviougNia — Nac|, let us
assume w.l.o.g. thd¥sc > Nja. Thus we have

N, > 2N—2

pa (57)

We differentiate two cases:

— Balanced caseVia > 4 Nac.
— Imbalanced caseV;a < 4 Nac.

For balanced case: we hadg > 5t 22¢ and hence

gap(H) > /4N Nob? > %QM\/E
a
o BN o [ SN Vi

- 5 a+4+cVa~T 5 a+c
7800NK
5 )

whereN; > 2N < as in (57).
For the imbalanced case, given th&ic > |b| by Proposition 17,

21
gap(H) > 4/ (Nla— NQC)2 > %NQC
S 42 Nac S 8 N|b|/ac
—2ba+c T 5 a+c
SCONK
> 5




Finally, for a normalized random matriX and itsX’, we havery being a constant
and combing with the upper bound g@p(H) < Nia + Nac < 2N K concludes that
gap(H) = O(NK). [

Proof of Proposition 9. By (38)#1, uy are the first and second eigenvectorsiof
corresponding to\; (%) and A2 (H). Let 2, y be entries that correspond 18, P re-
spectively in the first or second eigenvectorgbfBy (50) and (51), we have

y_/\—Nla Nlb

E_ Ngb B )\—NQC.

In addition, given any # 0, we havegap(H) > |N1a — Nac| and hence\; (H) >
max{Nia, Nac} > Ao(A). Therefore, foh > 0, £ > 0 for first eigenvector anek 0
for vy. and forb < 0, it is the opposite. ]

B.4 Proof of Lemma 10

Proofof Lemma 10. We first show thats|, |y2| are within a constant factor of each
other, given that, /ws = %—; is a constant.

Proposition 32. For a normalizedY’, whereNy, No, a, b # 0, 22, y2 in the second top
left singular vectori, satisfy

20y ml, A (58)

Proof. By (50) and given the upper bound gap(H) in (49),

@ . Nia — Ao . Nla—Ngc—i—gap(H) < Nia

= = — 59
|$2| Nob 2N5b - Ngb’ ( )
and henc ”I' > {22, By (51) and (49), we have
@ _ Noc — Ao _ Ngc—Nla—i-gap(H) < M (60)
|y2 Nib 2N1b Npb
We finish the proof by observing that
1 a 1 ¢
—< = —< <
27 b 2 27 b 2 (61)

due to the fact tha% < “1 <2,¥Vj=1,...,K for Mf € [1/2,1] in a normalized¥’,
and the following Iemma

Lemma33. If 0 < cpin < ‘;— < Cmax, Vi = 1,...,n, wherea;, b; > 0, thency, <




Proof.

Sy emindi _ S S i
- Zi:l bl B Zi:l bz
Letx = 25 andy = y». By Proposition 32jy| < 23¢lz! and

2|z N\ 2
1= N12% + Noy? < Ny2? + N, (&> <a? (

hence forCy, in = 2

4w]2+w1 wo!

T

2

No

w2 1

>
- 4w% + wiwse 2N

Looking in the other direction, by Proposition 32| <

2ly| N2 \ 2
1= Niz? + Noy? < Noy> + Ny (%) <
1

and hence for a give@ly iin =

yl* >
On the other hand, by Proposition 32, we hayle> Ml

N 2
1= Ni22 4+ Noy?® > Nyz2 + N, (';'Tl> >

and thus

w1
4w§+w1 wo!

w1 1

4w? + wiws IN’

Looking in the other direction, by Proposition 32|

N 2
1=N1562+N2y22N2y2+N1<|y| 2) 2y2<

2N;

and hencey|? < 21 L Hence we have that

w§+4w1 wo 2N *°

|z —y* = (=] + [y])* < <\/

<

1
2N

No

2|y| N>
Ny !

NyNj + 4N2

2
(PN

x|

N, We have
22 N12 + 4N1No
2 - 4Ny
4(.«)2 1
<L —— .
~ w? +dwiwe 2N
ly| NV
Z glel

ANy N, + N3

4N,

)

)

).

).

w% + dwiwo 2N

4&]2 1

4w1

1

+ \/w% + dwiws 2N

[

4(.«)2

4w1

2
wi + dwiws

ol

2
w3 + dwiwo

>2

)

(62)

(63)

(64)

(65)

(66)



andCrax = (/- +1/25)°. Hence
4(.«)2 4w
< = 44/
Cmax < <\/w% + dwiwy + \/w2 + 4w1w2> ( w2>

C Proof of Lemma 22

Recall that the largest left singular vectars us has the form ofz, ..., z,y,..., ],
wherex repeatsV; times andy repeatsV, times.Proofof Lemma 22. Let us define
the following random variables,

1 Ny 1 No
ZEZ&-, T:EZTZ', (67)
i=1 i=1
such that by Claim A.2,
Ny Zi\hl 612 c10
6] = 25 <_Z|5|< < ]\1le
1 & 1 & N, vail 7 o
|T|—|E;ﬂ SE;hﬂS P < NN
and hence
c10v/No

max(|N16], | Na7|) < (68)

VN

given that we always assume théf > N;. A natural classifier to separate individuals
would be:# when we use; ; but we do not have accessit@ndy. Recall that

A= i @+ 8) + T (y+ 7)) Niw+ Nay | Nid+ Nor
2N 2N 2N '

We are now ready to show that whah, N, are large enough, we see enough separation
between the mixture sample mean and bo#mdy. We first prove the following claims.

2
Claim. £N16 + yNoT = — H62H2 .

Proof. This claim is obvious given thalu: ||, = [|@:[l, = 1, and, us, € all being
real vectors,

il = [|aslls + llel3 +2 < @1, e >= [|as]3 + [le]|2 + 22N18 + yNor.  (69)



We next useﬁ |z N1d + yNo7| to obtain a bound oh% |, given that

L aNiG 4 yNar| < el _cio? (70)
T ;
VN O TYRRTI= 0 AN < aNVAN

2 2 2 2
2cio” 8cio” wy
c2y 7y wi )’

Claim. Let N; < N, andw; = 2% andw, = 22, and given thatv, > max(
we have

l'1|y I|\/_)

N15 + NQT
2N

Proof. We nextderive a bound o#:$EN2T | By Separation Lemma 11, we have— y| =
c2+/ 5% foraconstant; = 1/2, and thus we havg‘% > ﬁ Therefore,

|tN1d + yNor|  |max(x,y)(N16 + No7) + (2 — max(z,y))N1d + (y — max(x,y))NaT|

V2N V2N
S [max(z, y)| (N10 + No7) |z — y[max(|N16], [ Na7])
- V2N V2N
Thus we have, given (68), (70) and (72),
N16 + Not |max(z,y)]
< N N.
] < el v+ )
< |zN16 + yNar| n |z — y| max(|N16], | Na7])
V2N V2N

o2 c2\/7 N,

< c104\| —
2NV2N 2N N
Nicoy < Nily — z|\/y

T 2NV2N 2N 7

where

2 2

2 2
A% and (72)
Y

cio Nicoy

2NvV2N  4ANvV2N

, holds so long agv; >

N N 2 2
cavias [Nz Ny onesg long asv; > Sa0 2 sothat  (73)
2N V N T 4NV2N e

> 2\/5010'\/ NQ
- ﬁ Y

Both conditions are guaranteed by (26) in Theorem 21. ]

Ny (74)



This allows us to conclude that

Niz + N16 + Nzy + NoT B Nz + Ngy
2N 2N

| N16 + Not
N 2N

 (HNTY

Given thatly — x| = c2,/7/V2N as shown in the Separation Lemma 11, we have

Niz + N6 + Noy + Not

. NQ(y—ZC) + N15+N27'
2N B

2N 2N
- No(y — ) B N16 + Not
- 2N 2N

_I‘

> N2 |y — ,Tl _ min{Nl, Ng}ﬂ |y — x|
- 2N 2N

L (0= \ANaly—al

- 2N 3

and similarly,

B Niz + N1§ + Nzy + NoT
Y 2N

_|Ni(y =) N1+ Not
| 2N 2N
Nl(y—I) N15+N27'
‘ 2N _‘ 2N

o Nily—af  min{Ny, No}\ /7]y — 2|
- 2N 2N

S A= VM y — 2]

- 2N '

D Proofs of Procedure Partition

D.1 Proof of Lemma 15

Suppose tha§p < p; < p. To ease up the notation, we omit the supersgrigitius, we
let5; = S9, Q; = QY for1 < i < k, andQ(v) = QW (v) forv € V (cf. Steps
2—-4 ofParti ti on). The following lemma, whose proof we postpone to Sectio?, D.
shows that there is a permutatiersuch that; is “close” toEV~® forall 1 < i < k,

letp =T andp; = \/T}.

Lemma 34. Suppose tha%p < p; < p. There is a bijectionr : {1,...,k} —
{1,...,k} such that for each < i < k we havgQ;| > 3|V, | and||§; —EV=® || <
0.1p2.

.....



In the sequel, we shall assume without loss of generality i map= from
Lemma 34 is just the identity, i.er,(i) = i for all ;. Bootstrapping on the estimate
& —EYi||?2 < 0.1p? for 1 < i < k from Lemma 34, we derive the following stronger
estimate.

Corollary 35. Forall 1 < i < k we have||¢; — E:
E, |2

2 < 100[Qi] 7 Y yeq, 14w —

Proof. By the Cauchy-Schwarz inequality,
1/2

6 =BV = Qi7" | D Av =BV || < 1Qi 7V | Y0 1A —EY P (75)
vEQR; vEQ;

Furthermore, ag¢; — EV#||?2 < 0.1p? by Lemma 34, for alb € Q; \ V; we have
14, — B> < 2(] Ay — &° + (16 — EY4||*) < p*/3, (76)

because the construction &f; in Step 3 ofParti ti on ensures than &2 <
0.01p%. Hence, a4E, — EVi||2 > p?, (76) implies that| A, — E, || > 0.1|| A, — EV:||.
Therefore, the assertion follows from (75). [ ]
Corollary 36. Forall v € S; \ V; we have| A, — &]| < 3|4, — E, |
Proof. Leti # [ and consider a € S; N V;. We shall establish below that

HA\U - 51” < ”A\v - 5[” (77)
Then by Lemma 344, — &|| < |A, — E,| + |E, — &|| < ||A, — E,|| + p/3, and
thusp < |E, — EV*|| < |4, — & + [|& — BV || + | A, - E,|| < 2|4, — E, || + 2p.

Consequently, we obtaihflv —E,|| > %p, so that the assertion follows from the
estimate

-~ 77 ~ ~ Lemma34 < p -~
HAU_&H < HAU_&H < HAU_EU||+HEU_§Z” < ||AU_EUH+§ < 3HAU_EUH

Finally, we prove (77). Ifv € S; NV, \ Q;, then the construction f; in Step 4 of
Par ti ti on guarantees that4, — &|| < ||A, — & /|, as claimed. Thus, assume that
v € Q;NV.. Then

H/ALJ — &l <0.15p [by the definition ofQ; in Step 3 ofPar ti ti on],
max{||& — EVi[|, & — Eo|} < %p [by Lemma 34]
IEY —E,| > p
Therefore, if| A, — & || < || A, — &||, then we would arrive at the contradiction
p< B —Eof < [EY = &l + Iy — &Il + 116 — &
< 2+ A &l + 1A~ &l < 2p+ 2014, — & < 0.99.

Thus, we conclude thatd, — &|| > || A, — & ||, thereby completing the proof.



Proofof Lemma 15. SincéQ;| > 3|Vi| by Lemma 34, we have the estimate

k k
Y e-alP<2Y Y (14w - Bl + B, - &1

i=1 wesS;NV; i=1 wes;NV;

k
Cor.35 S;NV;
< 2||A—EH2F+2OOZ| |

o > I, — Ey||? < 500(|A — E|¢78)
i=1 v

vEQR;
Furthermore, by Corollary 36
k N k N N
Yoo A -&lP<9d ) Y A -E P <9IA-E|F.  (79)
i=1veS;\V; i=1veS;\V;
Since||A — E||2. < ;A% by Lemma 14, the bounds (78) and (79) imply the assertion.

D.2 Proof of Lemma 34

Proofof Lemma 34. Fot <i < k we chooser(i) so that|@Q; N V,(; | is maximum.
We shall prove below that for all < I < k& we have

lgr — EV=0]|* < 0.1p7, (80)
Qi > max{[Vi] 1 € (L., b} \ w({1, -0 — 1})} — 0.0 (81)
|Ql N Vﬂ(l)| Z |Ql| - 0-01nmin- (82)

These three inequalities imply the assertion. To seesthsia bijection, let us assume
thatr(l) = w(I’) for two indicesl < [ < I’ < k. Indeed, suppose that min 7~ 1(1).
Then|Ql| > |V7r(l)| — 0.01nmin by (81), and thUS#Vﬂ.(l) \ Ql| < 0.1mmin by (82)
Therefore, we obtain the contradiction

(81) (82)
0.99nmin < |Ql/| < 11|¢2l’ N Vﬂ'(l)| < 11|V7T(l) \ Ql| < 0.11numin.

Finally, asr is bijective, (81) entails that);| > 0.9V, forall 1 < < k. Hence, due
to (82) we obtaif@; N Vi| > 0.9|Qi| > 1|V, |, as desired.

The remaining task is to establish (80)—(82). We proceechtydtion oni. Thus,
let us assume that (80)—(82) hold for &k L; we are to show that then (80)—(82) are
true for/ = L as well. As a first step, we establish (81). To this end, carsadclass
V; such that & n({1,...,L —1}) andletZ; = {v € V; : ||A, — E,||* < 0.001p%}.
Then0.001p2(|Vi| = |Zi]) < Y vz, 14w —Eu|? < [|A—E||% < cxA?, whence the
assumption op? = I yields

Moreover, for allv € Z; we have

Q) ={w e V: |4, — Ay|? < 0.01p*} D Z,. (84)



In addition, letw € @, for somel < L; since our choice of ensures that € V; #
Ve, we have

p< ”Evﬂ(l) - EUH < HEv - A\UH + ”A\w - A\v” + Hgl - A\w” + Hgl - EVWU) ||(85)

Now, the construction in Step 3 #artiti on ensures thartgw — &l < 0.1p. Fur-
thermore||¢, — EV=( || < p/3 by induction (cf. (80)), and| A, — E, || < 0.1p, because
v € Z;. Hence, (85) entails th4td,, — A,| > 0.1p, so thatw ¢ Q(v). Consequently,
(84) yields

Z;NQ=0foralll < L. (86)

Finally, letv;, signify the element chosen by Step 3R&rt i t i on to constructy) ..
Then by constructiofQ | = |Q(v) \ Uz Qi > Q) \U ' Qi|. Therefore,
L-1
(8 )(86)

|QL| > |Q \ U Ql' |Z| > |V| _001nm1n

As this estimate holds for adlgz ({1 —1}), (81) follows.

Thus, we know thag);, is “big”. As a next step, we prove (82), i.e., we show that
Q1 “mainly” consists of vertices i/ (). To this end, lett < i < k be such that
|EY: — A,, || is minimum. LeY’ = Q. \V;. Thenforallw € Y we have|E,,—A,, || >
|EV: — E | Further, sincep < [|E, — EVi|| < |E, — Al + BV — A4, <
2||E,, — Ay, |, we conclude tha{E,, — A, [|> > %p2. On the other hand, a8 € Q,,
we have||4,, — A,, |2 < 0.01p2. Therefore, we obtaitjA,, — E,,[|2 > 0.1p? for all
w €Y, so that

00Y]p? < 3 Ay ~Eu? < [A-E[} S ed (87)
weyY

Hence, due to our assumption ph = I, (87) yields thatY| < 0.017n,,;,. Conse-
quently, (81) entails thdl; N Q| > 0.99|Qy|, so that: = «(L). Hence, we obtain
QLN Vi)l =1Qr NV =1Qr \ Y| > |QL| — 0.01nmiy,, thereby establishing (82).

Finally, to show (80), we note that by constructifigy, — A,, |2 < 0.01p* and
|Aw—A,, ||* <0.01p* forallw € QLNVy(y) (cf. Step3ofPar ti ti on). Therefore,

QL N Vil - |1 Br(ry — &Ll
< 30 ) = AP+ 1A — Au )P+ Ay — Byl

weQLNVr(r)
< 0.060%Qr N Viry| + 314~ E|J3
Lemma 14 9 9
0.06p°|QrL N Vn—(L)| + 3cpA”. (88)

Since|Qr N Vi ()| > 0.9nmin due to (81) and (82), (88) entails te,. () — & || <
0.07p2 + 62> < 0,12, Thus, (80) follows. -



D.3 Proof of Lemma 16

Proof of Lemma 16. SefS,, = S, NV, for1 < a,b < k. Moreover, for each
1 <a<kletl <n(a) < kbe such thafEV= — &, is minimum. Then for all
b # 7(a) we have

p < EV@ —EY| < B — &l + [|EY — &l < 2B ~ &, (89)

so that||EY®» — &,|| > p/2. Therefore, by our assumption thgﬁ“:1 Yves, 1§ —
EUHQ < Cok3A2, we have
2
P
T > ISal < D iSal BV gl
a=11<b<k:b#m(a) a,b=1
k
< 2 Y B - AP+ 1A - &l
a,b=1vES,,
~ k ~
< 2A-ElF+2 )] Y 1A -Gl
a,b=1vESyp
Lemma 14 342 342 27342
ACok° A= 4+ 2Cok° A= < CFR° A=, (90)
Hence,
k
8c2k3\?
SISt Vawl= > 208w < T <0001 (91)
a=1 1<a,b<k:b#m(a) P

Combining (90) and (91), we obtathgz |EV=@ —&,[12 < [SaVi(a)l-[|Er(a) —&all* <

c2k32% whence
2c2k3\2
min

Thus, we have established the first two parts of the lemmalditian, observe that (91)
implies thatr is bijective (because the sefs, .. ., S), are pairwise disjoint angd/,| >
nmin forall 1 < a < k). Finally, the third assertion follows from the estimate

IEr(a) — &all> < <0.001p*> foralll <a<k. (92)

k

k
D 1Sa] BV —EV=@ |2 < 23 [Sep] (JEV=@ — &|? + [IEV=) — &%)
a,b=1 a,b=1

©9) k v )
283 ISul [EV® — g

a,b=1

(90)
< 8C2E*A? < 0.001p%1min.



