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Abstract

We propose weakening the assumption made when studying the pricarohgnRather than assume that self-
interested players will play according to a Nash equilibrium (which may &eecomputationally hard to find), we
assume only that selfish players play so as to minimize their own regretetReigimization can be done via simple,
efficient algorithms even in many settings where the number of actionaeh&ic each player is exponential in the
natural parameters of the problem. We prove that despite our wehkessemptions, in several broad classes of
games, this “price of total anarchy” matches the Nash price of anazebg though play may never converge to Nash
equilibrium. In contrast to the price of anarchy and the recently intragdipciee of sinking [15], which require all
players to behave in a prescribed manner, we show that the price ofitaathy is in many cases resilient to the
presence of Byzantine players, about whom we make no assumptamaly, because the price of total anarchy
is an upper bound on the price of anarchy even in mixed strategiesyrftr games our results yield as corollaries
previously unknown bounds on the price of anarchy in mixed strategies.

1 Introduction

Computer systems increasingly involve the interaction oftiple self-interested agents. The designers of these sys
tems have objectives they wish to optimize, but by allowielfish agents to interact in the system, they lose the ability
to directly control behavior. How much is lost by this lackoaintralized control? Much as the study of approximation
algorithms aims to understand what is lost when computasidimited, and the field of online algorithms aims to
understand what is lost when information is limited, thedgtaf the price of anarchy has aimed to understand what is
lost when central organization is limited.

In order to study the cost incurred when coordination is, lagt must make some assumption about how selfish
agents behave. Traditionally, the assumption has beesédHeh agents will play Nash equilibrium strategies, ard th
price of anarchyof a game is defined to be the ratio of the value of the objetinetion in the worst Nash equilibrium
to the social optimum value.

It does not seem realistic, however, to assume that all agrelat system will necessarily play strategies that form
a Nash equilibrium. Even with centralized control, Nashidgnia can be computationally hard to find. Moreover,
even when Nash equilibria are easy to find computationdlbtet is no reason in general to believe that distributed
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self-interested agents, often with limited informatioroabthe overall state of the system, will necessarily cagwer
to them. In addition, for games with only mixed-strategyiéhra, we would have to assume that rational agents not
only play so as to maximize their own utility, but also so apteserve the stability of the system. Since a game may
have many Nash equilibria, and agents may individuallyeprdifferent equilibria, it is not clear why agents would
want to preserve the stability of a Nash equilibrium, evehhéfy managed to reach one.

In this paper, we study the value obtained in games with kedfients when we make a much weaker and more
realistic assumption about their behavior. We considezaitgrl play of the game and allow agents to play any sequence
of actions with only the assumption that this action seqadras low regret with respect to the best fixed action in
hindsight. This “price of total anarchy” is strictly a geabration of price of anarchy, since in a Nash equilibrium,
all players have zero regret. Regret minimization is a séialassumption because there exist a number of efficient
algorithms for playing games that guarantee regret thalstém zero, because it requires only localized information,
and because in a game with many players in which the actioasyo$ingle player do not greatly affect the decisions
of other players (as is often studied in the network settiplglyers can only improve their situation by switching from
a strategy with high regret to a strategy with low regret.

We consider four classes of games: Hotelling games, in whleyers compete with each other for market share,
valid games [30] (a broad class of games that includes amtregfacility location, market sharing [14], traffic
routing, and multiple-item auctions), linear congestiamgs with atomic players and unsplittable flow [1] [7], and
parallel link congestion games [24]. We prove that in the fhieee cases, the price of total anarchy matches the price
of anarchy exactly even if the play itself is not approacheqgilibrium; for parallel link congestion we get an exact
match forn = 2 links but an exponentially greater price for genetalhen the social cost function is the makespan.
When we consider average load instead, we prove that if thbimaspeeds are relatively bounded, that the price of
total anarchy id + o(1), matching the price of anarchy. For linear congestion gaandsaverage cost load balancing,
the price of anarchy bounds were previously only known faemtrategy Nash equilibria, and as a corollary of our
price of total anarchy bounds, we prove the correspondiitg @f anarchy bound for mixed Nash equilibria as well.

Most of our results further extend to the case in which onlyps®f the agents are acting to minimize regret and
others are acting in an arbitrary (possibly adversariatymea When studyingnarchy it is vital to consider players
who behave unpredictably, and yet this has been largelyréghop until now. Since Nash equilibria are stable only
if all players are participating, and sink equilibria [13palefined over state graphs that assume that all players play
rationally, such guarantees are not possible under thel@tdmprice of anarchy model or the price of sinking model
[15].

1.1 Regret minimization and the price of total anarchy

Theregretof a sequence of actions in a repeated game is defined asfinredife between the average cost incurred
by those actions and the average cost the best fixed solutatdvaave incurred, where the best is chosen with the
benefit of hindsight. An algorithm is called regret-miniimig, or no-regret, if the expected regret it incurs goes to
zero as a function of time.

Regret-minimizing algorithms have been known since theds9%vhen Hannan [16] gave such an algorithm for
repeated two-player games. Recent work on regret minifoizdias focused on algorithmic efficiency and conver-
gence rates as a function of the number of actions availabtthas broadened the set of situations in which no-regret
algorithms are known. Kalai and Vempala [20] show that Harfsalgorithm can be used to solve online linear
optimization problems with regret approachingt a rateO(1/+/T'), given access to an exact best-response oracle.
Zinkevich [31] developed a regret-minimizing algorithnr fanline convexoptimization problems. So-calldzhndit
algorithms have also been developed [2, 26, 10, 22], whiblege low regret even in the situation where the algo-
rithm receives very limited information after each rounglafy. Kakade et al. [19] show how to use@mapproximate
best-response oracle to achieve online performance iarlimy@imization problems that is closeddimes that of the
best static solution. Those results provide efficient atlgors for many situations in which the number of strategies
for each player is exponential in the size of the naturalespntation of the game. In cases where each player has
only a polynomial number of strategies, Littlestone and Miath’'s weighted majority algorithm [25] can be used to

1Babaioff et al. [3] propose a model of network congestion Wiittalicious” players. Their model defines malicious behavioopsmizing a
specific function, however, and is not equivalent to arbjtiay.



minimize regret.

In this paper, we propose regret-minimization as a readerd®finition of self-interested behavior and study the
outcome of such behavior in a variety of classes of repeatateg. We introduce the term “price of total anarchy”
to describe the ratio between the optimum social cost anddbil welfare achieved in a game where the players
minimize regret. We note that the guarantees we prove usagd-regret property are strictly stronger than minimax
guarantees.

1.2 Related work: Price of anarchy

Economists have long studied games with self-interestegeps. ANash equilibriumin such a game is a profile of
strategies for each player such that, given the stratedidsemther players, no player prefers to deviate from her
strategy in the profile. A Nash equilibrium can pare or mixed depending on whether the players all play pure,
deterministic strategies, or they randomize over purdegias to give a mixed strategy.

The study of the effect of selfishness in games has been quitélar in computer science for much of the past
decade. In 1999, Koutsoupias and Papadimitriou [24] intced the notion of thprice of anarchyas a measure of this
effect: they studied the ratio between the social welfatb@bptimum solution and that of the worst Nash equilibrium.
Since then, researchers have studied the price of anarehwide variety of games (for example [28, 30, 11]).

Unfortunately, Nash equilibria are not necessarily thet beéinition of selfish behavior. 18-player, n-action
games, Nash equilibria are PPAD-hard to compute [4], bahiygame with a polynomial number of actions, one can
run regret-minimizing algorithms. (One can also do so effity in many settings with even an exponential number
of actions.) Many games only admit mixed Nash equilibriaj #rere is no immediate incentive for players to play
their given mixed strategy as opposed to any one of the prategtes in the support of the mixed strategy. In addition,
there is no reason to assume in general games that agentsstestiag selfish behavior shoutdnvergeto a Nash
equilibrium.

Our work is most similar in spirit to that of Mirrokni and Vat{27] and Goemans et al. [15], who also question
the plausibility of selfish agents converging to Nash elytidi. They introduce the notion of sink equilibria, which
generalize Nash equilibria in a different way than we do. dind so, they abandon simultaneous play, and instead
consider sequential myopic best response plays. Theyanalgk equilibria in the class of valid games and show
that valid games have a price of sinking of betweeandn + 1. In contrast, we prove that valid games have a price
of total anarchy of 2, matching the (Nash) price of anarchye @ason for this gap is that myopic best responses
provide no guarantee about the payoff of any individual ptajndeed, the example in [15] of a valid game with price
of sinking n demonstrates that myopic best response is not always a#itibontheir example, myopic best response
players each expect average payoff tending to zero as thbetuhplayers increases, whereas they could each easily
guarantee themselves payoffs of one on every turn (and vetub if they minimized regret). Additionally, because
sink equilibria rely on play entering and never leaving sioka best response graph, the price of sinking is brittle to
Byzantineplayers who may not be playing best responses. In contrasshaw that valid games have a price of total
anarchy of 2 even in the presence of arbitrarily many Byramplayers, about whom we make no assumptions.

1.3 Related work: Correlated equilibria

Foster and Vohra [12] show that any algorithm that minimiaesronger notion of regret known as “internal regret”
will result in an empirical distribution of play that conggs to a weaker notion of equilibrium, a correlated equi-
librium. In addition, several polynomial-time internagret-minimizing algorithms are known for settings in whic
action choices are explicitly given [17]. Because we plageeaker assumption on the agents’ algorithms, there are
more algorithms, simpler algorithms, and more efficienbetgms for regret minimization than for internal regret
minimization. In addition, we are able to prove guaranteemneén Byzantine settings, where not all players behave
rationally; such settings need not correspond to correledgiilibria.

1.4 Our results

In this paper, we study the price of total anarchy in four s#msof games. We emphasize that our analysis does not
presume that players play according to any particular dbafyorithms; our results hold whenever players happen to



experience low regret, which is a strictly weaker assunmptti@n that players play according to a Nash equilibrium.
than In Section 3 we examine a class of generalized Hoteflarges, where sellers select locations on a graph and
achieve revenues that depend on their own locations as sviedocations chosen by the other sellers. We prove that
for such games (and an even broader class, see Sectionr8/3ggaet minimizing player gets at least half of her fair
share of the sales, regardless of how the other (Byzantiaggs behavé. This result exactly matches the price of
anarchy in these games.

Valid games, introduced by Vetta [30], model games wherestiogal utility is submodular, the private utility of
each player is at least her Vickrey utility (the amount hersgnce contributes to the overall welfare), and where the
sum of the players’ private utilities is at most the totaliabatility. In Section 4 we prove that the price of total
anarchy in valid games with nondecreasing social utilityctions exactly matches the (Nash) price of anarchy, even
if Byzantine players are added to the system.

Finally, in Section 5, we analyze atomic congestion gamels tio types of social welfare functions. First, we
consider unweighted atomic congestion games with playemsed social welfare functions, and in both the linear
cost and the polynomial cost case, we show price of totalctuyaesults that match the price of anarchy [7, 1]. Next,
we consider a parallel link congestion game with social arelequal to makespan, the game that initiated the study of
the price of anarchy [24], and show that the price of totafremaof the parallel link congestion game with two links
is 3/2, exactly matching the price of anarchy. We also show thaptfee of total anarchy in the parallel link game
with n links is 2(y/n), which is strictly worse than the price of anarchy. Finallye show a price of total anarchy
matching the known price of anarchy in the load balancingeaith the sum social utility function. In the case of
load balancing with sum social utility, our price of totabaohy results also yield previously unknown price of angrch
results for mixed strategies.

In Section 6, we discuss techniques for minimizing regretdaoh of these settings.

2 Preliminaries

In this paper, we considérplayer games. For each playiewe denote byd; the set of pure strategies available to that
player. A mixed strategy is a probability distribution owetions inA4;; we denote bys; the set of mixed strategies
available to playef. Let A = A4; x As x ... x A andS = S; x S; x ... x Sk. Every game has an associated social
utility functiony : A — R that takes a set containing an action for each player to seaiealue. Each playerhas

an individual utility functiono;; : A — R.

We often want to talk about the social or individual utilityaostrategy profiles = {s1,...,s;} € S. To this end,
we denote byy : S — R the expected social utility over randomness of the playetddya; : S — R the expected
value of the utility of a strategy profile to playerWe denote the social value of the socially optimum strafegyile
by OPT = maxges7(S) in maximization problems. Corresponding®PT = minges ¥(S) in minimization
problems.

We also sometimes wish to talk about a modification of a paleticstrategy profile; lef @ s, be the strategy set
obtained if playel changes her strategy fromto s. Let(); be the null strategy for playeér(player: takes no action).
We use superscripts to denote time %¥ds the strategy profile at time s! is playeri’s strategy at time.

We consider both maximization and minimization games is ffaper. Inmaximizationgames the goal is to
maximizehe social utility function and the players wishrt@aximizeheir individual utility functions; irminimization
games, both quantities minimized. We define the price ofdnyaand the price of total anarchy so that their values are
always greater than or equal to one, regardless of whetharewdiscussing a maximization or a minimization game:

Definition 2.1. The price of anarchy for an instance of a maximization ganuefted to be%f’—ST), whereS§ is the
worst Nash equilibrium for the game (the equilibrium thatdngizes the price of anarchy). The price of anarchy for
an instance of a minimization game is defined togafér)—, whereS is the worst Nash equilibrium for the game (the
equilibrium that maximizes the price of anarchy).

2We note that robustness to Byzantine players is not inharentr model. Indeed, there exist games for which the additi@yaantine players
can make the social welfare, as well as the utilities of irdiiail regret-minimizing players, arbitrarily bad.



Definition 2.2. The regret of playef in a maximization game given action sets, A%, ..., AT is

meaj\( —ZaZ (A' @ a;) — Zal (AY).
a; i

The regret of playei in a minimization game given action sets$, A%, ..., AT is
1 T
T Z%‘(A - anéln — Zm (A" @ a;).
t=1 €A

A regret-minimizing algorithm is one with low expected regr
Property 2.3. When a playef uses a regret-minimizing algorithm or achieves low reg@tany sequencd’, ..., A7,
she achieves the property
T

max— «; At a;) < R(T
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for maximization games and
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1 T
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for minimization games, where expectation is over the irterandomness of the algorithm, and whé&€l') — 0 as
T — oco. The functionR(T") may depend on the size of the game or a compact representiagiof. We then define
T. to be the number of time steps required to BéT') = .

Note that this implies that, for any sequerfe . .., ST, a player with the regret-minimizing property achieves
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for minimizationgames.

Definition 2.4. The price of total anarchy for an instance of a maximizatiameg is defined to b@ax %,

T t=1

where the max is taken over dll and S',S2,...,S7, whereSy,..., Sy are play profiles of players with the

regret-minimizing property. The price of total anarchy famn instance of a minimization game is defined to be
1 T =~ t

max %, where the max is taken over &l and S', S2,..., ST, whereS;,..., Sy are play profiles of

players with the regret-minimizing property.

Because all players have zero regret when playing a Nashlegun, the price of total anarchy of a game is never
less than its price of anarchy. In this paper we study theemfcanarchy and the price of total anarchy for general
classes of games. The price of (total) anarchy for a classofeg is defined to be the maximum price of (total)
anarchy over any instance in that class. Bounds on the pritetal) anarchy for a class of games may not be tight
for particular instances in that class.

3 Hotelling games

Hotelling games [18] are well studied in the economicséitere; see, for example, [13] and [21] for surveys. Hotgllin
games are traditionally location games played on a lineweugeneralize them to an arbitrary graph and a broad class
of behaviors on the part of the customers. We prove our régsilfor a specific Hotelling game, and then observe that
our proof still holds in a much more general setting.



3.1 Definition and price of anarchy

Imagine a set of souvenir stand owners in Paris who must eedigtre to set up their souvenir stands each day. Every
day, n tourists buy a souvenir from whichever stand they find firgtclEstand operator wishes to maximize her own
sales. Every day there aresales, and we wish to maximize fairness: The social welfanetfon is the minimum
sales of any souvenir stand. Formally, this maximizatiomgas defined by an vertex graphG = (V, E). Every
selleri among the: sellers has strategy sét; = V, that is, every day she sets up her stand on some vertex of the
graph. Each day, every tourist chooses a path from somegidstribution over paths on the graph, and buys from
the seller he encounters first (for instance, as a special @&s could have one tourist at each vertex of the graph
who purchases from the nearest souvenir stand). If therdiés lzetween sellers, we assume the tourist splits his
contribution among them equally). At any timehe social welfare ig/(S*) = min; @;(S*). The social optimum

is obtained by splitting all vertices equally among/alblayers (this can be achieved if all players play on the same
vertex). ThereforPT = n/k.

Theorem 3.1. The price of anarchy of the Hotelling game(s: — 2) /k.

Proof. Given a strategy sef, consider the alternate sgf & ();). There aré: — 1 active players in this alternate set
and the total payoff is stilk, so there must be some playewho achieves expected payaff, (S & 0; ) >n/(k-1).

If player i played the same strategy as plajeshe would achieve expected payafS @ s) > (% 5y Thus, any
strategy achieving expected payoff less t% is not an equilibrium strategy, since in a Nash equilibrium,
player wishes to change her strategy.

This bound is tight: Consider a game on a graph with1 identical stars, where we identify tourists with vertices
of the graph and each patronizes the nearest souvenir $tettis examplek — 1 of the players play deterministically
at the center of their own star; playkeiplays uniformly at random over all — 1 star centers. This strategy sets a
Nash equilibrium, and the randomizing player ea&n$S) = n/(2k — 2) (the other players do better), so the social

welfarey(S) = n/(2k — 2). SinceOPT = n/k, this demonstrates that the price of anarch%‘% = %—_2) O

3.2 Price of total anarchy

Since at a Nash equilibrium, no player has regret, the pfit&al anarchy for the Hotelling game is at le&&t —2) / k.
In this section, we show that this value is tight; that is:

Theorem 3.2. The price of total anarchy in the Hotelling game(¥: — 2)/k, matching the price of anarchy.

The proof of this theorem relies on the symmetry of the garis; groperty was similarly useful to Chien and
Sinclair [5] in the context of studying convergence to Naghikbria in symmetric congestion games.

Let O! be the set of plays at timeby all playersotherthan playei. LetO; = ZtT:l O¢, the union with multiplicity
of all plays of players other thainover all time periods.

Definition 3.3. Let Al~* be the quantity such that if playémplays an action uniformly at random frot! at time
stepu, she achieves expected payoff2k — 2) + Af~“. Note thatA! " is always) because thé — 1 other players
have average payoff exactly (k — 1) when player is removed.

Lemma 3.4. Forall 4, forall 1 < t,u <T: Ayt + Al=v > 0.

Proof. If ¢ = u, the claim follows easily, as noted in the definition. Othiseyimagine g2k — 2)-player game in
which there is a time-player and a timer player for each original player other thanThe time# version of a player
7 plays strategy;t the timeu version playss¥. Since the sum of all players’ payoffsiis if player: picks a random
strategy from among those already being pIayed and plaggttiis imaginary gameeplacingthe player she copies,
i expects to have payoff/(2k — 2). Half of the time, playei will select a timet strategy and replace that tinte-
player. It can only improveé's payoff in this case to remove all of the other timplayers and only play against time-
players. This leavesplaying a strategy uniformly selected frof} at timew. A parallel argument holds the other



half of the time, when playerselects a timer strategy, and thus

n 1 n 1 n
< = Atﬂu - A’U.*)t
k=2 = 2<@k—m+ i )*2(@k—m+ i )
n 1
4+ (A7 AV
oh—z T2ATT AT
as desired. O
of Theorem 3.2Fix a sequence of plays!, ..., ST. Recall thatD; = O} + ... + O . Defineo! to be the uniform
distribution overO!. Picking an actiorm uniformly at random fron©O; is equivalent to picking a random time step

and then picking a strategy € O} uniformly at random. Playei's expected payoff had she randomly seleaigd
and played it over all’ rounds is

1 T T 1 T T n
7 ai(S'®of) = oy AT
FY Y asted) = 5 (g )
u=1t=1 u=1t=1
T T
Tn 1
o T
S Tn
= (2k-2)

where the last inequality holds because of Lemma 3.4. Toerethere must be some single fixed actiohe S
that achieves at Ieaﬁ% when played ovef” rounds of the above game. Any regret minimizing player acse
expected total payoff at least this much (mirlisand so has expected payoff at leagt(2k — 2)) — ¢, proving the
theorem. O

3.3 The price of total anarchy in generalized Hotelling games

We note that the proof of Theorem 3.2 made no use of the spedafithe Hotelling game described above. In
particular, the same proof shows that any regret minimipiager achieves expected payoff approachif{i — 2)
regardlesof how other players behave, and so we are able to guarantelepgyoff among regret-minimizing players
players even in the presence of Byzantine players makiritramp(or adversarial) decisions.

Theorem 3.5. Any player who minimizes regret in the Hotelling game acksepayoff approaching/(2k — 2),
regardless of how the other players play.

The same proof also holds when the buyers use much more tjemlesafor choosing which stand to patronize.
Neither do we use the fact that players’ utilities are lindarfact, our proof only makes use of three properties of the
Hotelling game:

1. Constant Sum The individual utilities of the players in the game alwayssto the same value, regardless of
play.

2. Symmetric: All players have the same action set, and the payoff vestarfunction of the action vector that is
invariant to a permutation of the names of the players.

3. Monotone: The game is defined for any number of players, and removenggps from the game (while keeping
the strategies of the remaining players fixed) does not dserthe payoff for any remaining player.

We call such games with the “fairness” social utility fumetiy(S) = min; «;(S) generalized Hotelling games
and get the following theorem:

30ne caveat is that customers may not in general base theitiselades on the actions of the players—for instance byqguating thesecond
closest souvenir stand. If we were to allow rules such asthisoving players from the game could decrease the payoffroé sif the remaining
players, and we rely on this not being the case.



Theorem 3.6. In anyk-player, generalized Hotelling game, the price of total ealigy among regret minimizing players
is (2k — 2)/k even in the presence of arbitrarily many Byzantine players.

3.4 Regret minimization need not converge

Since players may efficiently minimize regret in Hotellingnges, but may not necessarily be able to compute Nash
equilibria, it is notable that we are able to match standaickepof-anarchy guarantees. In fact, it is possible that
regret-minimizing players in Hotelling games never cogesio a Nash equilibrium:

Theorem 3.7. Even if all players in the Hotelling game are regret minimg, stage game play need not converge to
Nash equilibrium.

Proof. Considerk players{0, ...,k — 1} on a graph withk — 1 identicaln-vertex stars with centers, ..., v
and an isolated vertex, ;. At time periodt, playeri plays on vertex:.; mod x- Each player has expected payoff
(n(k — 1)+ 1)/k, but no fixed vertex has expected payoff more thafk + 1) /2k), so no player has positive regret.
However, at each time period, the player at the isolatecexest_; has incentive to deviate, so this is not a Nash
equilibrium. O

A similar example shows that even if all players minimizeemnial regret (so that play is guaranteed to converge to
the set of correlated equilibria), play can cycle forevett an need not converge to Nash equilibritim.

4 Valid games

4.1 Definitions and price of anarchy

Valid games, introduced by Vetta [30], are a broad class afegthat includes the market sharing game studied
by Goemans et al. [14], the facility location problem, a i@nsof the traffic routing problem of Roughgarden and
Tardos [28], and multiple-item auctions [30]. When desagpvalid games, we slightly adapt the notation of [30].
Consider &-player maximization game, where each playbas a groundset of actions from which she can play
some subset. Not every subset of actions is necessarilpello LetY = V; x ... x Vg, and letA; = {a; C

V; : a;is afeasible actioh Let the game have some social utility functipn 2¥ — R, and let each player have

a private utility functione; : 2¥ — R. The discrete derivative of at X C V in the directionD C V — X is

fp(X) = [(XUD) = f(X).
Definition 4.1. A set functionf : 2¥ — R is submodular if forA C B, f/(A) > f/(B) Vi € V — B.

Note that submodular utility functions represent the eooiscconcept of decreasing marginal utility, reflecting
economies of scale.

Definition 4.2. A game with private utility functions; : 2" — R and social utility functiony : 2V — R is valid if y
is submodular and

a(S) > 7, (So) @)
k
Z a(S) < 7(9) @)

Condition 1 states that each agent’s payoff is at leasiMirey utility—the change in social utility that would
occur if agent did not participate in the game. Condition 2 states that dlegasutility of the game is at least the sum
of the agents’ private utilities.

“L players play on a set &f/2 + 1 vertices. Players are divided into two equal sized groifigend R. Every turn, there is exactly one player on
k/2 vertices, and:/2 players on the remaining vertex. Playerdimnd R get their own vertices on alternate turns, and the crowdeeéweotates,
so that each player is equally often on every vertex, and grparticular vertex she is equally often alone and crowdédtkr@fore no player has
any incentive to swap any vertex with any other.



For example, consider the market sharing game studied byn@oget al. [14]. The game is played on a bipartite
graphG = ((V,U), E). Each vertex i/ is a player, and each vertexihis a market. Each market has a value and
a cost to service it, and each player has a budget. A playeremizy a set of markets to which she has edges, if the
sum of their costs is at most her budget. For each market thiatyar enters, she receives payoff equal to the value
of that market divided by the number of players that chosenterdt. The social utility function is the sum of the
individual player utilities, or equivalently, the sum oftialues of the markets that have been entered by any player.
This valid game models a situation in which cable internetjaters enter different cities with values proportional to
their populations and share the market equally with otheallproviders; the social utility is the number of people
with access to high speed internet.

Vetta [30] analyzes the price of anarchy of valid games armvstthat if.S is a Nash equilibrium strategy and
QO ={oy,...,01} is a strategy profile optimizing the social utility functisn thaty(Q2) = OPT , then

OPT <2(5) — > 7. (So0)
- > ALQUSelie... o).
110 F#S;

Thus, ify is nondecreasing, then for any Nash equilibrium strat®gy(S) > OPT /2, giving a price of anarchy of
2. In contrast, Goemans et al. [15] show that the price ofisqfor valid games is larger than

4.2 Price of total anarchy
In this section, we show that the price of total anarchy fdidugames matches the price of anarchy exactly:

Theorem 4.3. If all players play regret-minimizing strategies férrounds, with strategy profil§* at time, then
1 T
= t =/ t
OPT < Zz_;(zy(s ) — z_: t%ﬁ(s ® 0;)
- > 'y;f;(QU(StEB@i@...EB@k))> + k.
oy #st
We defer this proof to the appendix. For nondecreasinge get the following corollary:

Corollary 4.4. If v is nondecreasing, the price of total anarchy for valid gansessymptotically 2.

The price of anarchy and the price of sinking are both britilthe addition of Byzantine players. In contrast, for
nondecreasing social welfare functiopsour price of total anarchy result holds even in the preseficebitrarily
many Byzantine players. In any valid game, suppose players, k are regret minimizing. LeOPT = ~(Q) be
the optimal value for these players playing alone. Supposestis some additional set of Byzantine playBrthat
behave arbitrarily.

Theorem 4.5. Consider a valid game with nondecreasing social welfarection v, where thek regret minimizing
players playS?, ..., ST overT time steps while the Byzantine players p&y, ..., BT. Then the average social
welfare1/T Y"}_, v(S* U B') > OPT /2.

Proof. We observe that
V(QUB')
<~(QuStuBY)
=7(S'UBY)+ Y A (S'UB'UQ@N® ... o)
Qo st
<A(S'UBY+ Y AL (S'@0;UBY),

Lo #sk



where the first inequality follows becausés nondecreasing, and the third follows from submodula¥ifg then have

OPT < ~(QUB')

YS'UBY+ > (@0 UBY)
1:8;7#0;

YS'UBY+ > ai(S'®o;UB)

118, F#0;

A

IN

with the first line following because is nondecreasing, and the second from the Vickrey condiSamming ovefl,
this yields

T T
T-OPT <> 4(S'UB)+Y > ai(S"®oiUB).
t=1

t=1i:s;7#0;

Suppos& .., 7(S* U BY) < T - OPT/2. Since

T k T + T
> ai(S'u B ZZ (StUBY) < Z (St U BY),

t=1 i=1

it must be that

k T
Y>> ai(S'@oiUBY) > ZZa, (StUBY),
=1 t=1 i=1 t=1
and so there is some regret minimizing playésr whom Zthl a;(S*®o; UBY) > Zthl a;(S*U B"), violating the
condition that he is regret minimizing. O

Note that here we have shown that in a valid game with a noedsitrg social utility function, it players
minimize regret and an arbitrary number of Byzantine playaeaddedto the system, the resulting social welfare
is no worse than half the optimal social welfare foplayers. This is a slightly different result than we showed f
Hotelling games, where we were able to guarantee that egobtmminimizing player obtains at least half of her fair
share of the entire game, regardless of what the dthet players do. On the other hand, for valid games one clearly
cannot obtain half of the optimum social welfare fo#- |B| players since the Byzantine players need not be acting in
even their own interest.

5 Atomic Congestion Games

In this section, we show price of total anarchy results matghxisting price of anarchy results for atomic, unweighte
congestion games with social utility equal to the sum of theygr utilities [7, 1]. We also consider the atomic
congestion game of weighted load balancing with socialtyiglqual to the makespan [24, 8, 23], and show matching
results for two links, but demonstrate that folinks, the price of total anarchy is exponentially worsentttze price of
anarchy. Finally, we consider weighted load balancing wabial utility equal to the sum of the player utilities [29],
and show that fok >> n, the price of total anarchy is+ o(1). In the case of load balancing with sum social utility,
our price of total anarchy results also imply previously mokn price of anarchy results for mixed strategies.

A congestion game is a minimization game consisting of a Bét players and, for each playeér a setV; of
facilities. Playeri plays subsets of facilities from some feasible det= {a; C V; : q; is a feasible actiop In
weightedgames, each playeérhas an associated weight; in unweightedgames, each player weight Is Each
facility e has an associated latency functifin A playeri playinga; experiences cost; = > ., fe(l.) wherel. is
the load on facilitye: I. = > j : e € a;w;.
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5.1 Atomic congestion games with sum social utility

In this section, we consider unsplittable atomic selfishinguwith unweighted players. The social utility functiorew
consider in this section is the sum of the player costsdn) = . o;(A). We writeQ = {04, ..., 0} } for a strategy
profile optimizing the social utility function. We writel, for the load on edge at timet, and!; for the load on edge
ein Q.

We first consider linear edge costs of the fofpil.) = c.l. + b. for edgee. In this setting, Christodoulou and
Koutsoupias [7] and Awerbuch et al. [1] independently shebéteat the price of anarchy for pure strategies is 2.5. We
show a matching bound for the price of total anarchy, whisb ahplies the matching bound shown by Christodoulou
and Koutsoupias [6] for the price of anarchy for mixed sy#te and for correlated equilibria. We defer the proof of
the theorem to the appendix.

Theorem 5.1. The price of total anarchy of atomic congestion games witlvaighted players, sum social utility
function, and linear cost functions is 2.5.

Corollary 5.2 (Christodoulou and Koutsoupias [6]). The price of anarchy of atomic congestion games with un-
weighted players, sum social utility function, and lineastfunctions is 2.5, even for mixed strategies. The same
bound also holds for correlated equilibria in this setting.

We next consider polynomial latency functions and show anbomnatching the price of anarchy shown by
Christodoulou and Koutsoupias [7] and Awerbuch et al. [t]nfixed strategies. We defer the proof to the appendix.

Theorem 5.3. The price of total anarchy of atomic congestion games witlvaighted players, sum social utility
function, and polynomial latency functions of degdide at mostd .

5.2 Parallel link congestion game with makespan social uttly

The parallel link congestion game modelddentical links and: weighted players (jobs) who must choose which
link to use. Each player pays the sum of the weights of the @bshe link she chose. The social cost for this
game is defined as the total weight on the worst-loaded liiks §ame was the main focus of the Koutsoupias and
Papadimitriou paper that introduced the concept of theepfanarchy [24].

More formally, this is a minimization game where for eachypla, the feasible actions até; = {1,...n}. The
social utility function isy(A) = maxje 1, n} Di.q,—; Wi

Koutsoupias and Papadimitriou [24] proved that the pricarmdrchy of the parallel link congestion game with
two links is3/2. Two groups of researchers [9, 23] later proved that theepofcanarchy when there arelinks is
O(logn/loglogn).

In this section, we show a matching bound on the price of tatarchy for 2 links. We also show that ferdinks,
the price of total anarchgoes noimatch the price of anarchy.

Theorem 5.4. The price of total anarchy of the parallel link congestiomgawith makespan social utility and two
links is3/2, exactly matching the price of anarchy.

The proof, which we defer to the appendix, parallels thathim ¢riginal Koutsoupias and Papadimitriou paper
[24]. Itis subtler because regret-minimizing algorithnméyagive a guarantee in expectation, on average, and make no
guarantees about the performance on any given day.

For the parallel link congestion game withlinks, the price of total anarchy diverges from the price wéhy.

This divergence stems from the fact that in the paralleldigkme, the social cost functionis defined in terms of
expected maximurtink latency, whereas individual utility is a function of aveeggb latency? In the single stage
Nash equilibrium analyzed for price of anarchy results tite values are related: expected job latency for playsr
equal to the average link latency of every link in the suppbrits mixed strategy. In a Nash equilibrium, therefore,

5Note that if we were to redefine the social cost functiofor the parallel links game to be the maximum expegtdlatency, it is simple to
verify that the resulting price of total anarchy is 2: Resdake weights so thadPT = 1. Total weight is< n, andw; < 1 for all players. Over
any sequence of plays, there must be some link with averageldte< 1. Therefore, every playeris guaranteed to experience average latency in
expectation at most+ w; + € < 2 + .
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maximum expected link latency must be low, and with tail basjnt is straightforward to argue that the expected
maximum link latency cannot be too high [9]. Over an arbitraequence of regret-minimizing plays, however,

average job latency no longer necessarily correspondstavitrage latency of any link. This is demonstrated by a
cycling example we use in the proof of the following theorevhjch we defer to the appendix:

Theorem 5.5. The price of total anarchy in the parallel link game with msfgan social utility and: links isQ(y/n).

5.3 Parallel links congestion game with sum social utility

We have just shown that the price of total anarchy does nothr&ie O(log n/ loglogn) price of anarchy for the
load balancing game with the makespan social utility fuorctiThe results in Section 5.1, however, imply a price of
total anarchy< 2.5 for the load balancing game with thkemsocial utility function (since load balancing is a special
case of routing), even for mixed strategies and differentesespeeds. In fact, we can show more: in this section, we
show that so long ak >> n and the server speeds are relatively bounded, the priceabtoarchy is + o(1). This
matches a price of anarchy result shown by Suri et al. [29ptwe strategy equilibria. Our theorem below, the proof
of which we defer to the appendix, implies an equivalentgoatanarchy result even for mixed strategy equilibria.

Theorem 5.6. In the load balancing game with sum social cost and lineagray functions, the price of total anarchy
is1+ o(1) provided thatt >> n and server speeds are relatively bounded.

Corollary 5.7. In the load balancing game with sum social cost and lineagday functions, the price of anarchy is
1+ o(1) provided thatt >> n and server speeds are relatively bounded, even for mixatkgtes.

6 Algorithmic efficiency

In the Hotelling games we analyzed in Section 3, each plageohlyn strategies—the nodes in the graph. In such
settings, the weighted majority algorithm [25] runs in padynial time and minimizes regret. Similarly, in the parhlle
links congestion game, there arestrategies—the links—and thus minimizing regret is relatively straighté@rd.

In valid games, if the set of actions available to a playerdlymomial in|V;|, the action groundset, then once
again, weighted majority can be used to minimize regret. él@w in arbitrary valid games, the action space for
playeri could be as large a8Y:!. In such situations, if the player’s private utility is adiar function of the elements of
the groundset she obtains and she can compute exact bemtigesin polynomial time (such as in the market sharing
game of Goemans et al. [14]), then she can use results of Kathiempala [20] to minimize regret in polynomial
time. If her utility function is linear, but she can only coatp approximate best responses, results of Kakade et al.
[19] allow her toapproximatelyminimize regret; that is, she obtains expected averagectasst tos times the cost of
the best fixed solution in hindsight, whepds the approximation ratio of her optimizer. We can modify ptoof of
the price of total anarchy to carry thisthrough and show:

Theorem 6.1. The price ofg-minimizing regret in valid games is+ 3.

If the player’s utility function is convex and well-definedrey the convex hull of her pure strategies and she
furthermore has the ability to project points in space ohai tonvex hull, then she can use an algorithm developed
by Zinkevich [31] to minimize her regret. In situations wlero existing techniques are a perfect fit, more specialized
regret-minimizing algorithms for specific games may alsal&esloped.

7 Conclusions

We propose regret minimization as a definition of selfish bigian repeated games. We consider four general classes
of games—generalized Hotelling games, valid games, andi@imongestion games with two different social utility

functions—and show that the price of total anarchy exactlyches the price of anarchy in most cases, but there
is a gap of2(y/n) versusO(—2£"_) in the case of. parallel links. Our results hold even in games where regret-

9T / loglogn . L ) X .
minimizing algorithms can cycle and fail to converge to anikiorium. We also prove results in Byzantine settings
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when only some of the players achieve regret minimizatich the other players are allowed to act in an arbitrary
fashion. In addition, our results for weighted load balagaith player-summed social utility functions imply new
price of anarchy results for mixed strategies.

AcknowledgmentsWe thank Evangelia Pyrga for bringing [6] to our attention.
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A Proofs

of Theorem 4.3 Suppose all players use low regret strategies, so that foplagyer:,

T T
TeJrZaZ (SY) 22 (S* @ 0y).
t=1 t=1
Expanding terms, we can rewrite this as

Te+ > a(SH+ Y a(sh

t:st=0; t:st#o;
> Z di(StEBO'i)ﬁL Z O_ti(St@Ui)-
tist=o; t:st#o;

We note that wher! = o;, a;(S*) = a;(S* @ o), so this yields
T+ > a(s)> ) S @)
t:st#o; t:st#o;
Summing over all players, we get

k k
ke +3° > ash > Y ai(S* ® ay)

i=1 t:st#0; =1 t:st#0y

\VY

Y
=

v
@

=
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where the second equation holds by assumption 1. Now ndte tha

T T k
DILCORENDIDILICH
=1 t=1 i=1
T T
- ¥ ai(sH+y a;i(S")
t=14 oi=st t=14 oi#st
T T
S35 9 SRACTED o DEACELS
t=1 iio;#st t=1d:0;=s!
k T
i=1 t:0;#st t=1i:o;=s]

where the third line holds by assumption 2 and the fourthisreereordering of the summations. This gives us

i k
Z Z W;g(st@wi)ﬁTek—l—Z Z di(St)

1=1 t:0;#s! 1=1 t:0; st
T T
<Tek + Zﬁ(St) - Z Z Yoo (S @ ;).
t=1 t=1 j:o;=st '
We use the following lemma proved by Vetta [30]:

Lemma A.l. If Q = {o41,...,01} Iis a strategy profile optimizing the social utility functignthen for any strategy
profile S

Q) <AS)+ D A (S@l)— D A QUESeh®...0)).

120 #£Sq 1:0;#£Sq

From Lemma A.1, for any sequence of pla&§s . . ., S¢,

() <Y (v(St)+ > A (St en)

t=1 i:0;#st

-y fygg(QU(StEB@iEB...@@k)))'

i:0F#st

Substituting, we get

T
T-0OPT < Z <2’y(5t) + ek — Z Vo (S" @ 0;)
=1

iioy=s!

— Z ’_ygz(QU(St@@i@...@@k)))v

Lo #sk
which completes the proof. O

of Theorem5.1Let Q) = {oy4,...,01} be a strategy profile optimizing the social utility functien thaty(Q?) =
OPT By the assumption of regret minimization, each player'stemerage cost is no more than the cost of her best
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fixed action in hindsight. In particular, it is no more tharskfe had played her part in the optimal strategy on every
timestep: For alt,

T T
Zai(st) = chezgwe
t=1

t=1 ecst

IA
]
NSD\
B
®
N

T
< Z Ce(lé+1)+be~

A

[M]=
N
&
m—:
=
+
&

T
ZZ Z celt + b,

t=1 eGEis.t.e€s§ t=1ecFEisteco;
T
= > cellll + cell + el
t=1eckE

We now use a lemma also used by Awerbuch et al. [1]:

Lemma A.2. For ¢, j > 0 integers:
1ij =352+ 3 — 3(j — 39)?
2. 22+ 3i—1(j—2i)2 < 342
We can apply part 1 of the lemma to get

T
DS (el + bl

t=1ecE

This is equivalent to

o 3
Z (Celi + ibe)li
t=1ecE
9 3 1 3 3
< o l* 2 _l* _ - lt _ _l* 2 —bel*.
W (§eer+ S - 50t - 32) + S

This allows us to apply property 2 of the lemma to obtain

T T 5 3
SO (el bl < > 506(12)2 + el
t=1ecE t=1ecFE
5 T
< 3 SN eelz + bz,
t=1ecFE
which proves the claim. O
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of Theorem 5.3 By the no-regret property we have for each player

T T
SR SIS RO+,

t=1 ccat t=1 e€o;

We may sum over each player:

> St SZZ STRa+1)

t=1e€F js.it. eEa’ ecFEisteco;
and rearrange the sums:

DSOS TR <IN L0+ 1)

t=1ecE t=1eckE
We now apply a lemma used by Christodoulou and Koutsoupjas [7

Lemma A.3. For f(z) a polynomial with non-negative coefficients of degteand for everyc, y > 0:

< 7S | Oy S

y-flz+1) <

2 3
whereCy(d) = p?' """,
Applying the lemma, we get
T T
SN bl < ZZ fo(lt + 1)1
t=1e€cFE t=1e€cF
a le t CVO l f )
< 20 3
t=1 ecF eckE
Rearranging, we then get
T T
YOS RO < Co(d) DY
t=1eckE t=1eekE
which completes the proof. O

of Theorem 5.4 Denote byy; the expected probability that playgis on the maximally loaded machine (breaking ties
between equally loaded machines at random). Note that fheceed social cost is they(.S) = Zf:l q;w;. By the

regret-minimizing property, for all playerg, S>7 | @;(S*) < w; +e+ &>, M
Definep;; to be the expected probability that playeselects machlnje ¢ isthe expected probability that players
i andh select the same machine. Then for any fixed

(gt a)wn <D (L+cn)w

h:h#i h:h#i

z wp, + Z CihWh

h:h#i h:h#i

= Z wp, + Z (PirPrIWn + Pi2Pr2wh)-
h:h#1i h:h#i

IN

Note that for any playet, regardless of her strategy, her cost is

a;(S) = wi + pa Z PriWh + Pi2 Z Ph2Wh
h:h#i h:h#i
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by definition. This relationship is essentially Lemma 1 of[fzhowever they only note that it holds for Nash equilib-
rium strategies. This gives 08, _; (g + qn)wn < 3,5, wh + @:(S) — w;. Averaging over time, this is

T
—Z Z ¢ +qh wh<*ZZ’LUh ?;& (S") —

t=1 h:h#i t=1 h:h#i

Using the fact that playerobtains low regret, we then have

_ZZ (@ +ai) “’h<—z th+e+ Zzh heti Who

t=1 h:hsi i=1 h:h#i

Rearranging, this yields for any fixed

1 T
~(at
T ;7(5)
1 T k
= Tzzqzwh
t=1 h=1
1< (3
< fz (2 Z wh+q1w1*2qfwh +e€
t=1 h:h#i h#i
L (3
Z §ZwiL——+quz qLth+qu, +e€
t:l

Note thatOPT > max{3 SF_, wp,w;} for anyi. If for all agentsi, & 327 ¢ < 2, then
T k

1 & 1
TZW(SIS) = —Z ahwr,

t=1 t=1 h=1

]‘ t
-3 <whf;qh>

N

3
SO
h
< gOPT.

Otherwise, there exists some agéestich thatk 2/ ¢! > 2 and thus

1 T
TZWSI‘)
t=1
<20PTlZ(§— )+ OPT — Z(zt—§)+e
= AP T2y
3
:§0PT +€,

as desired.
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of Theorem 5.5Considem parallel links1, ..., n, andn players all with unit weightsy; = 1. Clearly, OPT = 1.
Define a sequence of plays , ..., A” as follows: Divide the players int®,/n groupsGo, . . ., G 1, €ach of size
Vvn/2. Attimet, all playersinG';, 04 2/ Play on link1, and all other players play over links-(t mod n—1),2+
(t+1 mod n—1),...,2+(t+n—y/n/2—1 mod n—1) sothatthere is exactly one player on each link (ordering may
be arbitrary). Then each player experiences average Lat%erEtT:l a;(A?) = 2%/5 . 4 + 2‘2/7/7—:1 1=2-— 7
Consider the latency experienced by playéf she were to play at any fixed node. Given the sequence ofplay
described above, every node> 2 is occupied by some playér= i on an(n — \/n/2 — 1)/(n - 1) fraction of time

Vo
steps. Since playeralways pays for her own weight, she expects to experieneadg® - i Q(n 1) =

n—1
2— Q(f . Therefore, for sufficiently large, all players experience negative regret. Neverthelesseay time step,
the maximum latency i€(/n). O

of Theorem 5.6 By the no regret property, for each player

T T Lot T I It +1
Ya) =Y ey amen) <>
t=1 =1 " =1 t=1 o
Summing over all players and reordering the sum, we get
t T t *
Yy < sty ek
t=1ecE t=1e€E Te
T
L ((e)?+(12)°
< [ Nes T NPe) *
< ) - ( 5 1
t=1eckE
where the second inequality follows from the fact thab < # Subtracting, we get
T T
1 lt 2
DM ( vi)

t=lecE "¢ =1 cel

T £)2 T *

Z ) < + 20}

i—1eccE ¢ t=1ecE Te

Combining these inequalities, we can bound the price of &tarchy:

S Teer & B Beep 2
D DL DD L
) St Seer &
zt ) Peen -

*

S 1+2Z EEE‘ITe

ecE ‘n'e

We then use the following technical lemma of Suri et al. [29]

Lemma A.4. Letn, k be positive integers and > 0, 7. > 0 be reals such tha‘EeEE . = k. Then

le/me
ZeeE /7T < (1 + max i)
ZEEE 12/me 1<i,j<n ;" 2k

;. N
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This gives us

Thisis1 + o(1) in k whenk >> n, which completes the proof.
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